
A faster algorithm for Minimum Cycle Basis of
graphs

Telikepalli Kavitha1?, Kurt Mehlhorn1?, Dimitrios Michail1?,
Katarzyna Paluch2??

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany.
{kavitha, mehlhorn, michail}@mpi-sb.mpg.de

2 Institute of Computer Science, University of Wroclaw, Poland.
abraka@ii.uni.wroc.pl.

Abstract. In this paper we consider the problem of computing a min-
imum cycle basis in a graph G with m edges and n vertices. The edges
of G have non-negative weights on them. The previous best result for
this problem was an O(mωn) algorithm, where ω is the best exponent of
matrix multiplication. It is presently known that ω < 2.376. We obtain
an O(m2n + mn2 log n) algorithm for this problem. Our algorithm also
uses fast matrix multiplication. When the edge weights are integers, we
have an O(m2n) algorithm. For unweighted graphs which are reasonably
dense, our algorithm runs in O(mω) time. For any ε > 0, we also design
a 1 + ε approximation algorithm to compute a cycle basis which is at
most 1+ ε times the weight of a minimum cycle basis. The running time
of this algorithm is O(mω

ε
log(W/ε)) for reasonably dense graphs, where

W is the largest edge weight.

1 Introduction

1.1 The problem

Let G = (V,E) be a graph. A cycle of G is any subgraph in which each vertex
has even degree. Associated with each cycle is an incidence vector x, indexed on
E, where xe = 1 if e is an edge of C, xe = 0 otherwise. The vector space over
GF (2) generated by the incidence vectors of cycles is called the cycle space of
G. It is well-known that when G is connected, this vector space has dimension
N = m − n + 1, where m is the number of edges of G and n is the number of
vertices. A maximal set of linearly independent cycles is called a cycle basis.

The edges of G have non-negative weights. The weight of a cycle is the sum
of the weights of its edges. The weight of a cycle basis is the sum of the weights
of its cycles. We consider the problem of computing a cycle basis of minimum
weight in a graph. (We use the abbreviation MCB to refer to a minimum cycle
basis.)
? Partially supported by the Future and Emerging Technologies programme of the EU

under contract number IST-1999-14186 (ALCOM-FT).
?? Work done while the author was at MPII supported by Marie Curie Doctoral Fel-

lowship.

1.2 Background

This problem has been extensively studied, both in its general setting and in spe-
cial classes of graphs. Its importance lies in understanding the cyclic structure
of a graph and its use as a preprocessing step in several algorithms. Such algo-
rithms include algorithms for diverse applications like electrical circuit theory
[2], structural engineering [1], and periodic event scheduling [5].

The oldest known references to the minimum cycle basis are Stepanec [13] and
Zykov [17]. Though polynomial time algorithms for this problem were claimed,
these algorithms were not correct [9, 10]. The first polynomial time algorithm
for the minimum cycle basis problem was given by Horton [8], and had running
time O(m3n).

Horton’s approach was to create a set M of mn cycles which he proved was
a superset of an MCB and then extract the MCB as the shortest m − n + 1
linearly independent cycles from M using Gaussian elimination. Golynski and
Horton [7] observed that the shortest m−n+1 linearly independent cycles could
be obtained from M in O(mωn) time using fast matrix multiplication algorithms,
where ω is the best exponent for matrix multiplication. It is presently known [4]
that ω < 2.376. The O(mωn) algorithm was the best known algorithm for the
MCB problem.

De Pina [5] gave an O(m3 +mn2 log n) to compute an MCB in a graph. The
approach in [5] is different from that of Horton; de Pina’s algorithm is similar
to the algorithm of Padberg and Rao [11] to solve the minimum weighted T -odd
cut problem. Our new algorithm to compute an MCB is also based on the same
approach.

1.3 New Results

In this paper we obtain the following new results.
For graphs with arbitrary non-negative weights on edges, we give an O(m2n+

mn2 log n) algorithm to compute an MCB, improving upon the current O(mωn)
upper bound. In particular, whenever m ≥ n log n, we have an O(m2n) algo-
rithm. We use an all pairs shortest paths (APSP) algorithm as a subroutine
in our algorithm. We obtain better running times for integer edge weights and
unweighted graphs by using faster all pairs shortest path algorithms for these
cases [12, 6, 14, 15]

We also look at approximation algorithms for computing a minimum cycle
basis in a graph. Given any α > 1, we have an α-approximation algorithm by
relaxing the shortest paths subroutine to an α stretch paths3 subroutine. We
also show that a witness of a minimum cycle basis can be constructed in O(mω)
time.

3 An α stretch (s, t) path is a path which is at most α times the length of a shortest
(s, t) path.

2

2 A Simple MCB Algorithm

De Pina [5] gave a combinatorial algorithm to compute a minimum cycle basis in
a graph with non-negative weights on its edges. We feel that the intuition behind
the algorithm and the idea as to why it works is not clear from the combinatorial
version of the algorithm. So, we interpret this algorithm algebraically. From the
algebraic version of the algorithm, the scope for improvement is also clear.

2.1 An algebraic interpretation

Let G = (V,E) be an undirected graph with m edges and n vertices and with non-
negative weights on its edges. We assume that G is connected since a minimum
cycle basis of a graph is the union of the minimum cycle bases of its connected
components. Let T be any spanning tree of G. Let e1, . . . , eN be the edges of
G \ T in some arbitrary but fixed order.

A cycle in G can be viewed in terms of its incidence vector and so each cycle
is a vector (with 0’s and 1’s in its coordinates) in the space spanned by all the
edges. Here we will only look these vectors restricted to the coordinates indexed
by {e1, ..., eN}.

In SIMPLE-MCB (see Fig. 1) we compute the cycles of a minimum cycle
basis and their witnesses. A witness S of a cycle C is a subset of {e1, ..., eN}
which will prove that C belongs to our minimum cycle basis. We will view these
witnesses or subsets in terms of their incidence vectors over {e1, ..., eN}.

Hence, both cycles and witnesses are vectors in the space {0, 1}N . 〈C,S〉
stands for the standard inner product of the vectors C and S. We say that a
vector S is orthogonal to C if 〈C,S〉 = 0. Since we are in the field GF (2), observe
that 〈C,S〉 = 1 if and only if C contains an odd number of edges of S. We present
in Fig. 1 a succinct description of the algorithm SIMPLE-MCB.

For i = 1 to N do the following:

1. Let Si be any arbitrary non-zero vector in the subspace orthogonal to
{C1, C2, ..., Ci−1}. That is, Si is a non-trivial solution to the set of linear
equations:

〈Ck, x〉 = 0 for k = 1 to i − 1.
(Initially, S1 is any arbitrary non-zero vector in the space {0, 1}N .)

2. Compute a shortest cycle Ci such that 〈Ci, Si〉 = 1.

Fig. 1. SIMPLE-MCB: An algebraic framework for computing an MCB

Since each Si is non-zero, it has to contain at least one edge e from G \ T .
The cycle formed by edges of T and e has intersection of size exactly 1 with Si.
So, there is always at least one cycle with an odd number of edges of Si.

3

Note that Ci is independent of C1, .., Ci−1 because any vector v in the span
of {C1, ..., Ci−1} satisfies 〈v, Si〉 = 0 (since 〈Cj , Si〉 = 0 for each 1 ≤ j ≤ i − 1),
whereas 〈Ci, Si〉 = 1. Hence, it follows immediately that {C1, ..., CN} is a basis.

We still have to describe how to compute a shortest cycle Ci such that
〈Ci, Si〉 = 1 and how to compute a non-zero vector Si in the subspace orthogonal
to {C1, ..., Ci−1}. We will do that in Sections 2.2 and 2.3 respectively. We will
first prove that {C1, ..., CN} computed in SIMPLE-MCB forms an MCB.

Theorem 1. The set {C1, C2, ..., CN} determined in SIMPLE-MCB is a mini-
mum cycle basis.

Proof. (from [5]) Suppose not. Then there exists an 0 ≤ i < N such that there
is a minimum cycle basis B that contains {C1, ..., Ci} but there is no minimum
cycle basis that contains {C1, ..., Ci, Ci+1}. Since the cycles in B form a spanning
set, there exist cycles D1, ..., Dk in B such that

Ci+1 = D1 + D2 + · · · + Dk

Since 〈Ci+1, Si+1〉 = 1, there exists some Dj in the above sum such that 〈Dj , Si+1〉
= 1. But Ci+1 is a shortest cycle such that 〈Ci+1, Si+1〉 = 1. So the weight of
Ci+1 ≤ the weight of Dj .

Let B′ = B ∪ {Ci+1} \ {Dj}. It is easy to see that B′ is also a basis. And
the weight of B′ is at most the weight of B which is a minimum cycle basis. So
B′ is also a minimum cycle basis. It is easy to show that {C1, C2, ..., Ci+1} ⊆ B′

because by assumption {C1, ..., Ci} ⊆ B and the cycle Dj that was omitted
from B cannot be equal to any one of C1, ..., Ci because 〈Dj , Si+1〉 = 1 whereas
〈Cj , Si+1〉 = 0 ∀j ≤ i.

The existence of the basis B′ contradicts that there is no minimum cycle
basis containing {C1, ..., Ci, Ci+1}. Hence, {C1, C2, ..., CN} is indeed a minimum
cycle basis. ut

2.2 Computing the cycles

Given Si, it is easy to compute a shortest cycle Ci such that 〈Ci, Si〉 = 1 by
reducing it to n shortest path computations in an appropriate graph Gi. The
following construction is well-known.

Gi has two copies v+ and v− of each vertex v ∈ V . For each edge e = (u, v) ∈
E do: if e /∈ Si, then add edges (u+, v+) and (u−, v−) to the edge set of Gi and
assign their weights to be the same as e. If e /∈ Si, then add edges (u+, v−) and
(u−, v+) to the edge set of Gi and assign their weights to be the same as e. Gi

can be visualised as 2 levels of G (the + level and the − level). Within each
level, we have edges of E \ Si. Between the levels we have the edges of Si.

Given any v+ to v− path p in Gi, we can correspond to it a cycle in G
by identifying the vertices and edges in Gi with their corresponding vertices
and edges in G. Because we identify both v+ and v− with v, the path in G
corresponding to p would be a cycle C.

4

More formally, take the incidence vector of the path p (over the edges of Gi)
and obtain an incidence vector over the edges of G by identifying (v∗, u†) with
(v, u) where ∗ and † are + or −. Suppose the path p contained more than one
copy of some edge(s). (It could have contained both (v+, u−) and (v−, u+) for
some (v, u).) Then add the number of occurrences of each such edge modulo 2
to obtain an incidence vector over the edges of G.

Let p = minv∈V shortest (v+, v−) path in Gi. The following lemma is simple
to show.

Lemma 1. The path p corresponds to a shortest cycle C in G that has odd
intersection with Si.

The computation of the path p can be done by computing n shortest (v+, v−)
paths (each by Dijkstra’s algorithm) in Gi and taking their minimum or by one
invocation of an all-pairs-shortest paths algorithm in Gi. This computation takes
O(n(m + n log n)) time. In the case when the edge weights are integers or the
unweighted case it is better to use faster all-pairs-shortest paths algorithms than
run Dijkstra’s algorithm n times.

Since we have to compute totally N such cycles C1, C2, ..., CN , we spend
O(mn(m + n log n)) time, since N = m − n + 1.

2.3 Computing the subsets

We will now consider the problem of computing the subsets Si, for i = 1 to N . Si

is a non-zero vector in the subspace orthogonal to {C1, ..., Ci−1}. One way to find
a non-zero vector in a subspace is to maintain the whole basis of the subspace.
Any vector in that basis will then be a non-zero vector in the subspace.

Initially, Sj = {ej} for all j, 1 ≤ j ≤ N . This corresponds to the standard
basis of the space {0, 1}N . At the beginning of phase i, we have {Si, Si+1, ..., SN}
which is a basis of the space C⊥ orthogonal to the space C spanned by {C1, ...,
Ci−1}. We use Si to compute Ci and update {Si+1, ..., SN} to a basis {S′

i+1, ...,
S′

N} of the subspace of C⊥ which is orthogonal to Ci. The update step of phase
i is as follows:

For i + 1 ≤ j ≤ N , let

S′
j =

{
Sj if 〈Ci, Sj〉 = 0
Sj + Si if 〈Ci, Sj〉 = 1

The following lemma holds.

Lemma 2. S′
i+1, ...S

′
N form a basis of the subspace orthogonal to C1, ..., Ci.

This completes the description of the algorithm SIMPLE-MCB.

5

Running Time of SIMPLE-MCB: During the update step of phase i, the
cost of updating each Sj , j > i is N and hence it is N(N − i) for updating
Si+1, ..., SN . Since we have N phases, the total cost of maintaining this basis is
N3, which is O(m3).

The total running time of the algorithm SIMPLE-MCB, by summing the
costs of computing the cycles and witnesses, is O(m3 + mn2 log n). So, indepen-
dent of which all-pairs-shortest-paths algorithm is used to compute the cycles,
the cost of updating the witnesses is the bottleneck.

Note that in each phase we needed just one vector from the subspace orthogo-
nal to {C1, ..., Ci}. But the algorithm maintained N−i such vectors: Si+1, ..., SN .
This was the limiting factor in the running time of the algorithm.

3 Our improvement

The maintenance of the basis of C⊥ costed us m2 in each iteration. In order to im-
prove the running time of SIMPLE-MCB, we relax the invariant that Si+1, ..., SN

form a basis of the subspace orthogonal to C1, ..., Ci. Since we need just one vec-
tor in this subspace, we can afford to relax this invariant and maintain the cor-
rectness of the algorithm. We will use a function extend cycle basis to compute
the minimum cycle basis. This function works in a recursive manner.

The procedure extend cycle basis({C1, ..., Ci}, {Si+1, . . . , Si+k}, k) takes a par-
tial basis C1, ..., Ci and k subsets Si+1, ..., Si+k with the property that these
subsets are all orthogonal to C1, ..., Ci and it recursively computes k new el-
ements Ci+1, ..., Ci+k of the minimum cycle basis. It first computes Ci+1, ...,
Ci+bk/2c using Si+1, . . . , Si+bk/2c. Then it updates Si+bk/2c+1, . . . , Si+k so that
the updated sets are orthogonal to Ci+1, ..., Ci+bk/2c and they continue to be
orthogonal to C1, ..., Ci. Then it computes Ci+bk/2c+1, . . . , Ci+k. We present in
Fig. 2 the overall algorithm FAST-MCB and the procedure extend cycle basis.
Recall that the edges e1, ..., eN are the edges of G \ T , where T is a spanning
tree of G.

3.1 The function update:

The function update is the key subroutine in our procedure extend cycle basis.
After computing the cycles Ci+1, ..., Ci+bk/2c, we call the function update with
{S′

i+1, . . . , S′
i+bk/2c} (the final versions of the subsets Si+1, . . . , Si+bk/2c) and

{Si+bk/2c+1, ..., Si+k}) as inputs. We want to update the sets Si+bk/2c+1, ..., Si+k

so that the updated sets lie in the subspace orthogonal to the space spanned by
C ∪ {Ci+1, ..., Ci+bk/2c}. We know that Si+bk/2c+1, ..., Si+k are all orthogonal to
C and now we need to ensure that the updated Si+bk/2c+1, ..., Si+k (call them
Ti+bk/2c+1, . . . , Ti+k) are all orthogonal to C ∪ {Ci+1, ..., Ci+bk/2c}.

We now want to update the sets Si+bk/2c+1, ..., Si+k, i.e., we want to deter-
mine Ti+bk/2c+1, . . . , Ti+k such that for each j in the range for i+bk/2c+1 ≤ j ≤
i + k : (i) Tj is orthogonal to Ci+1, . . . , Ci+bk/2c and (ii) Tj continues to remain

6

• Initialize the cycle basis with the empty set and initialize Sj = {ej} for 1 ≤
j ≤ N .

• Call the procedure extend cycle basis({}, {S1, . . . , SN}, N).

(A call to extend cycle basis({C1, ..., Ci}, {Si+1, . . . , Si+k}, k) extends the cycle ba-
sis by k cycles. C denotes the current partial cycle basis which is {C1, ..., Ci}.)

The procedure extend cycle basis(C, {Si+1, . . . , Si+k}, k):

– if k = 1, compute a shortest cycle Ci+1 such that 〈Ci+1, Si+1〉 = 1.

– if k > 1, use recursion.
• call extend cycle basis(C, {Si+1, . . . , Si+bk/2c}, bk/2c) to extend the current
cycle basis by bk/2c elements. That is, the cycles Ci+1, ..., Ci+bk/2c are com-
puted in a recursive manner. During the above recursive call, Si+1, ..., Si+bk/2c
get updated. Call their final versions as S′

i+1, ..., S
′
i+bk/2c.

• call update({S′
i+1, . . . , S

′
i+bk/2c}, {Si+bk/2c+1, ..., Si+k}) to update

{Si+bk/2c+1, ..., Si+k}. Let {Ti+bk/2c+1, ..., Ti+k} be the output returned
by update.
• call extend cycle basis(C∪{Ci+1, ..., Ci+bk/2c}, {Ti+bk/2c+1, . . . , Ti+k}, dk/2e)
to extend the current cycle basis by dk/2e cycles. That is, the cycles
Ci+bk/2c+1, ..., Ci+k will be computed recursively.

Fig. 2. FAST-MCB: A faster minimum cycle basis algorithm

orthogonal to C1, ..., Ci. So, we define Tj (for each i + bk/2c+ 1 ≤ j ≤ i + k) as
follows:

Tj = Sj + a linear combination of S′
i+1, . . . , S

′
i+bk/2c.

This makes sure that Tj is orthogonal to the cycles C1, . . . , Ci because Sj and
all of S′

i+1, ..., S
′
i+bk/2c are orthogonal to C1, . . . , Ci. Hence, Tj which is a lin-

ear combination of them will also be orthogonal to C1, . . . , Ci. The coefficients
of the linear combination will be chosen such that Tj will be orthogonal to
Ci+1, . . . , Ci+bk/2c.

Let
Tj = Sj + aj1S

′
i+1 + aj2S

′
i+2 + · · · + ajbk/2cS

′
i+bk/2c.

We will determine the coefficients aj1, ..., ajbk/2c for all i+ bk/2c+1 ≤ j ≤ i+ k
simultaneously.

We want
Ti+bk/2c+1

...

...
Ti+k

 = (A I) ·

S′
i+1

. . .
S′

i+bk/2c
Si+bk/2c+1

. . .
Si+k

7

where A is a dk/2e×bk/2c matrix whose `th row has the unknowns aj1, ..., ajbk/2c,
where j = i + bk/2c + `. And Tj represents a row with the coefficients of Tj as
its row elements.

Let us multiply both sides of this equation with an N × bk/2c matrix whose
columns are the cycles Ci+1, . . . , Ci+bk/2c. That is,

Ti+bk/2c+1

...

...
Ti+k

·
(
CT

i+1 . . . CT
i+bk/2c

)
= (A I)·

S′
i+1

. . .
S′

i+bk/2c
Si+bk/2c+1

. . .
Si+k

·
(
CT

i+1 . . . CT
i+bk/2c

)

Then the left hand side is the 0 matrix since each of the vectors Ti+bk/2c+1, ..., Ti+k

has to be orthogonal to each of Ci+1, ..., Ci+bk/2c. Let

(
X
Y

)
=

S′
i+1

. . .
S′

i+bk/2c
Si+bk/2c+1

. . .
Si+k

 ·
(
CT

i+1 . . . CT
i+bk/2c

)

where

X =

 S′
i+1

. . .
S′

i+bk/2c

·
(
CT

i+1 . . . CT
i+bk/2c

)
; Y =

Si+bk/2c+1

. . .
Si+k

·
(
CT

i+1 . . . CT
i+bk/2c

)
Then

0 = (A I) ·
(

X
Y

)
= AX + Y

If X is invertible, then A = −Y X−1 = Y X−1 since we are in GF (2). We can
determine A in kω time using fast matrix multiplication and inverse algorithms.

X =

〈S′

i+1, Ci+1〉 . . . 〈S′
i+1, Ci+bk/2c〉

〈S′
i+2, Ci+1〉 . . . 〈S′

i+2, Ci+bk/2c〉
...

...
...

〈S′
i+bk/2c, Ci+1〉 . . . 〈S′

i+bk/2c, Ci+bk/2c〉

 =

1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1 . . . ∗
...

...
...

...
...

0 0 0 . . . 1

is an upper diagonal matrix with 1’s on the diagonal, since each S′

j is the final
version of the subset Sj using which Cj is computed, which means that 〈S′

j , Cj〉 =
1 and 〈S′

j , C`〉 = 0 for all ` < j. Hence, X is invertible. Thus A = Y X−1.
Lemma 3 follows from the implementation of the function update.

Lemma 3. When k = 1, i.e., whenever we call extend cycle basis({C1, ..., Ci},
Si+1, 1), Si+1 is orthogonal to {C1, ..., Ci}. And Si+1 always contains the edge
ei+1.

8

Hence, just before we compute Ci+1, we always have a non-zero vector Si+1

orthogonal to {C1, ..., Ci}. And Ci+1 is a shortest cycle such that 〈Ci+1, Si+1〉 =
1. Hence, the correctness of FAST-MCB follows then from Theorem 1.

3.2 The running time of FAST-MCB

The recurrence of our FAST-MCB algorithm is as follows:

T (k) =

{
cost of computing a shortest odd cycle Ci in Si if k = 1
2T (k/2) + cost of update if k > 1

Cost of update: The computation of matrices X and Y takes time mkω−1 using
the fast matrix multiplication algorithm. We can also invert X in O(kω) time
and then we use fast matrix multiplication to multiply Y and X−1 to get the
matrix A. Then we use fast matrix multiplication again to multiply the matrix
(A I) with the matrix whose rows are S′

i+1, ...Si+k to get the updated subsets
Ti+bk/2c+1, ...Ti+k. So the time required for all these computations is O(mkω−1).

Using the algorithm described in Section 2.2 to compute a shortest cycle Ci

that has odd intersection with Si, the recurrence turns into

T (k) =

{
mn + n2 log n if k = 1
2T (k/2) + O(kω−1m) if k > 1

This solves to T (k) = O(k(mn+n2 log n)+kω−1m). Thus T (m) = O(mω+m2n+
mn2 log n). Since mω < m2n, this reduces to T (m) = O(m2n + mn2 log n).
For m > n log n, this is T (m) = O(m2n). For m ≤ n log n, this is T (m) =
O(mn2 log n).

Theorem 2. A minimum cycle basis of an undirected weighted graph can be
computed in time O(m2n + mn2 log n).

Our algorithm has a running time of O(mω + m · n(m + n log n)), where the
n(m + n log n) term is the cost to compute all pairs shortest paths. This term
can be replaced with a better term when the graph is unweighted or the edge
weights are integers or when the graph is sparse. When the edges of G have
integer weights, we can compute all pairs shortest paths in time O(mn) [14, 15],
that is, we can bound T (1) by O(mn). When the graph is unweighted or the
edge weights are small integers, we can compute all pairs shortest paths in time
Õ(nω) [12, 6]. When such graphs are reasonably dense, say m ≥ n1+(1+δ)/(ω−1),
then the mω term dominates the running time of our algorithm.

Theorem 3. A minimum cycle basis in a graph with integer edge weights can be
computed in time O(m2n). For unweighted graphs that satisfy m ≥ n1+(1+δ)/(ω−1)

for a constant δ > 0, we have an O(mω) algorithm to compute a minimum cycle
basis.

9

4 An approximation algorithm for Minimum Cycle Basis

The bottleneck in the running time of our minimum cycle basis algorithm is the
computation of the shortest cycle Ci such that 〈Ci, Si〉 = 1. Suppose we relax
our constraint that our cycle basis should have minimum weight and ask for a
cycle basis whose weight is at most α times the weight of an MCB. Then can we
give a faster algorithm?

We show a positive answer to the above question. For any parameter α > 1,
we present below an approximation algorithm which computes a cycle basis
whose weight is at most α times the weight of a minimum cycle basis. To the
best of our knowledge, this is the first time that an approximation algorithm for
the MCB problem is being given.

This algorithm is obtained by relaxing the base step (k = 1) in procedure
extend cycle basis of our FAST-MCB algorithm (Fig. 2). In the original algo-
rithm, we computed a shortest cycle Ci+1 such that 〈Ci+1, Si+1〉 = 1. Here, we
relax it to compute a cycle Di+1 such that 〈Di+1, Si+1〉 = 1 and the weight of
Di+1 is at most α times the weight of a shortest cycle that has odd intersection
with Si+1. The method of updating the subsets Si would be identical to the way
the updation is done in FAST-MCB.

A succinct description of our algorithm is given in Fig. 3.

For i = 1 to N do the following:

– Let Si be any arbitrary non-zero vector in the subspace orthogonal to
{D1, D2, ..., Di−1} i.e., Si is a non-trivial solution to the set of equations:

〈Dk, x〉 = 0 for k = 1 to i − 1.

– Compute a cycle Di such that 〈Di, Si〉 = 1 and the weight of Di ≤ α · the
weight of a shortest cycle that has odd intersection with Si.

Fig. 3. APPROX-MCB: An α-approximate MCB

The linear independence of the Di’s follows from the existence of Si’s (by
using Si to show that Di is linearly independent of {D1, ..., Di−1}). Similarly,
note that the subsets {S1, ..., SN} are linearly independent since each Si is in-
dependent of {Si+1, ..., SN} because 〈Si, Di〉 = 1 whereas 〈Sj , Di〉 = 0 for each
j > i.

4.1 Correctness of APPROX-MCB

Let |C| denote the weight of cycle C. We need to show that
∑N

i=1 |Di| ≤ α ·
weight of MCB. Let Ai be a shortest cycle that has odd intersection with Si.
The set {A1, ..., AN} need not be linearly independent since the subsets Si’s were
not updated according to the Ai’s. The following lemma was originally shown
in [5] in order to give an equivalent characterisation of the MCB problem as a
maximisation problem. We present a simple proof of the lemma here.

10

Lemma 4.
∑N

i=1 |Ai| ≤ weight of MCB.

Proof. We will look at the Ai’s in sorted order i.e., let π be a permutation on [N]
such that |Aπ(1)| ≤ |Aπ(2)| ≤ ... ≤ |Aπ(N)|. Let {C1, ..., CN} be the cycles of an
MCB and let |C1| ≤ |C2| ≤ ... ≤ |CN |. We will show that for each i, |Aπ(i)| ≤ |Ci|.
That will prove the lemma.

We will first show that 〈Ck, Sπ(`)〉 = 1 for some k and ` with 1 ≤ k ≤ i ≤ ` ≤
N . Otherwise, the N − i+1 linearly independent vectors Sπ(i), Sπ(i+1), ..., Sπ(N)

belong to the subspace orthogonal to C1, ..., Ci; however, this subspace has di-
mension only N − i. This means that |Aπ(`)| ≤ |Ck| since Aπ(`) is a shortest
cycle such that 〈Aπ(`), Sπ(`)〉 = 1. But by the sorted order, |Aπ(i)| ≤ |Aπ(`)| and
|Ck| ≤ |Ci|. This implies that |Aπ(i)| ≤ |Ci|. ut

Since |Di| ≤ α · |Ai| for each i, it follows from the above lemma that∑N
i=1 |Di| ≤ α· weight of MCB. Thus Theorem 4 follows.

Theorem 4. The weight of the basis {D1, ..., DN} computed by APPROX-MCB
is at most α times the weight of a minimum cycle basis.

4.2 The running time of APPROX-MCB

Since all the steps of APPROX-MCB, except the base step corresponding to
computing a cycle, are identical to FAST-MCB, we have the following recurrence
for APPROX-MCB:

T (k) =

{
cost of computing an α stretch cycle Di that is odd in Si if k = 1
2T (k/2) + O(kω−1m) if k > 1

When α = 2, we use the result in [3] to compute 2 stretch paths which would
result in 2 stretch cycles. Then APPROX-MCB runs in time Õ(m3/2n3/2) +
O(mω). For reasonably dense graphs (say, m ≥ n(1.5+δ)/(ω−1.5) for a constant
δ > 0), this is an O(mω) algorithm.

For 1 + ε approximation, we use the all pairs 1 + ε stretch paths algorithm
[16]. Then we have an Õ(mnω

ε log(W/ε)) + O(mω) algorithm to compute a cycle
basis which is at most 1+ ε times the weight of an MCB, where W is the largest
edge weight in the graph. If m ≥ n1+(1+δ)/(ω−1) for a constant δ > 0 and all
edge weights are polynomial in n, then APPROX-MCB is an O(mω

ε log(1/ε))
algorithm.

5 Computing a Certificate of Optimality

Given a set of cycles C = {C1, ..., CN} we would like to construct a certificate
to verify the claim that C forms an MCB. A certificate is an “easy to verify”
witness of the optimality of our answer. For example, the sets Si, 1 ≤ i ≤ N
in our algorithm from which we calculate the cycles C = {C1, ..., CN} of the
minimum cycle basis, are a certificate of the optimality of C. The verification
algorithm would consist of verifying that the cycles in C are linearly independent
and that each Ci is a shortest cycle such that 〈Ci, Si〉 = 1.

11

Theorem 5. Given a set of cycles C = {C1, ..., CN} we can construct a certifi-
cate {S1, ..., SN} in O(mω) time.

This theorem follows from an algorithm that inverts a matrix whose rows are
the incidence vectors of C1, ..., CN over the edges of G \ T (T is a spanning tree
of G).

Acknowledgment. We wish to thank Jaikumar Radhakrishnan for his helpful
comments.

References

1. A. C. Cassell, J. C. Henderson, and K. Ramachandran. Cycle bases of minimal
measure for the structural analysis of skeletal structures by the flexibility method.
In Proc. Royal Society of London Series A, volume 350, pages 61–70, 1976.

2. L. O. Chua and L. Chen. On optimally sparse cycle and coboundary basis for a
linear graph. In IEEE Trans. Circuit Theory, volume CT-20, pages 495–503, 1973.

3. E. Cohen and U. Zwick. All-pairs small-stretch paths. Journal of Algorithms,
38:335–353, 2001.

4. D. Coppersmith and S. Winograd. Matrix multiplications via arithmetic progres-
sions. Journal of Symb. Comput., 9:251–280, 1990.

5. J.C. de Pina. Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands, 1995.

6. Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer
length edges. Journal of Computing Systems and Sciences, 54:243–254, 1997.

7. Alexander Golynski and Joseph D. Horton. A polynomial time algorithm to find
the minimum cycle basis of a regular matroid. In 8th Scandinavian Workshop on
Algorithm Theory, 2002.

8. J. D. Horton. A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing, 16:359–366, 1987.

9. E. Hubicka and M. M. Syslo. Minimal bases of cycles of a graph. In M. Fiedler,
editor, Recent Advances in Graph Theory, pages 283–293, 1975.

10. E. Kolasinska. On a minimum cycle basis of a graph. Zastos. Mat., 16:631–639,
1980.

11. Padberg and Rao. Odd minimum cut-sets and b-matchings. Mathematics of Op-
erations Research, 7:67–80, 1982.

12. R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computing Systems and Sciences, 51:400–403, 1995.

13. G. F. Stepanec. Basis systems of vector cycles with extremal properties in graphs.
Uspekhi Mat. Nauk, 19:171–175, 1964.

14. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46:362–394, 1999.

15. M. Thorup. Floats, integers, and single source shortest paths. Journal of Algo-
rithms, 35:189–201, 2000.

16. U. Zwick. All pairs shortest paths in weighted directed graphs - exact and ap-
proximate algorithms. In Proc. of the 39th Annual IEEE FOCS, pages 310–319,
1998.

17. A. A. Zykov. Theory of Finite Graphs. Nauka, Novosibirsk, 1969.

12

