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Abstract

Suppose that each member of a setA of applicants ranks a subset of a set
P of posts in an order of preference, possibly involving ties.A matchingis
a set of (applicant, post) pairs such that each applicant andeach post appears
in at most one pair. Arank-maximalmatching is one in which the maximum
possible number of applicants are matched to their first choice post, and sub-
ject to that condition, the maximum possible number are matched to their
second choice post, and so on. This is a relevant concept in any practical
matching situation and it was first studied by Irving [8].

We give an algorithm to compute a rank-maximal matching withrunning
timeO(min(n+C,C

√
n)m), whereC is the maximal rank of an edge used in

a rank-maximal matching,n is the number of applicants and posts andm is
the total size of the preference lists.

1 Introduction

Let A be a set ofapplicantsandP be a set ofposts, and suppose that, associated
with each member ofA is a preference list (possibly involving ties) comprising
a subset of the elements ofP. A matchingof A to P is an allocation of each
applicant to at most one post from his preference list so thateach post is filled
by at most one applicant; in other words it is a matching in thebipartite graph
G = (A ∪P,E ), whereE consists of all pairs(a, p) such that postp appears in
the preference list of applicanta.

Each edge(a, p) has a ranki, which means that postp is an ith choice for
applicanta. In any applicanta’s list, there may be any number ofith choice posts,
even zero. We believe that this is the natural way of formulating the problem of
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allocation of projects to students and the allocation of probationary posts to trainee
teachers, for instance.

The question arises as to how we might define a notion of optimality that
will allow us to compare matchings, and how we might efficiently find an op-
timal matching. In the case where preferences are expressedon both sides, we
have the notion of various kinds ofstability to describe optimal matchings. This
is the domain ofstable matchingproblems, which have been studied extensively
[2, 4, 5, 7, 9, 11]. When preferences are expressed on one sideonly (only appli-
cants have preferences over posts), a number of different kinds of optimality can
be defined. Here we study the notion ofrank-maximalmatchings, introduced in
[8].

Definition 1 Let r be the largest rank that an applicant uses to rank any post. The
signatureof a matching M is defined to be the r-tuple(x1, ...,xr ) where for each
1≤ i ≤ r, xi is the number of applicants who are matched in M with one of their
i-th choice posts.

As a matter of convenience, we abbreviate a signature(x1, ...,xr ) by (x1, ...,xd)
if xd > 0 andxi = 0 for i = d+1, ..., r. We use≺ to denote the lexicographic order
on signatures:(x1, ...,xr ) ≺ (y1, ...,yr ) if xi = yi for 1≤ i < k andxk < yk, for some
k. Denote byM the set of all matchings ofA to P.

Definition 2 A matching that has the maximum signature under this ordering is a
rank-maximalmatching. Alternately, and equivalently, defineM1 to be the subset
of M , in which the maximum possible number of applicants are matched to their
first choice post. For i= 2,3, ..., r defineMi to be the subset ofMi−1 in which the
maximum possible number of applicants are matched to their ith choice post. A
matching that belongs toMr is a rank-maximalmatching.

For a given problem instance, there might be more than one rank-maximal
matching, but all rank-maximal matchings must have the samecardinality and the
same signature.

It is easy to see that a simple greedy algorithm, in which we assign the max-
imum number of applicants to their first choice post, then themaximum number
to their second choice post, and so on, is by no means guaranteed to lead to a
rank-maximal matching.

Irving [8] considered the problem of computing a rank-maximal matching in
instances where the preference list for any applicanta ∈ A is strictly ordered,
that is, there are no ties ina’s list. The running time of the algorithm in [8] is
O(∑C

k=1k2(xk + 1)(n+ s2
k)), where(x1, ...,xC) is the signature of a rank-maximal

matching andsk = x1+ · · ·+xk. The worst case complexity of this algorithm in the
case where all preference lists have length at mostc, is O(c2n3); observe that for
(x1, . . . ,xc) = (1,1, . . . ,1,n−c+1), the last term in the sum isO(c2n3).

A rank-maximal matching can also be found by transforming the input to an in-
stance of the classical maximum weight bipartite matching problem. This involves
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allocating a suitably steeply decreasing sequence of weights to the edges. For in-
stance, giving weightnr−i to rank i edges. The scaling algorithm of Gabow and
Tarjan [1] solves such instances withO(

√
nmlog(nr )) arithmetic operations (addi-

tions and comparisons) on numbers bounded bynr . Under the standard assump-
tion that numbers of magnitudeO(n) can be handled in constant time and constant
space, the resulting running time isO(r2√nmlogn) and the space requirement is
O(rm).

We give a simple combinatorial algorithm for constructing arank-maximal
matching. It runs in timeO(min(n+C,C

√
n)m), whereC ≤ r is the maximal

rank used in an optimal solution. Our algorithm runs in iterations. Let the edge
set of G be E = E1 ∪ . . .∪ Er , whereEi is the set of edges of ranki. In itera-
tion i, our algorithm constructs a rank-maximal matchingMi in the graphGi =
(A ∪P,E1∪ . . .∪Ei). The algorithm constructsMi+1 by computing a maximum
matching (by augmentingMi) in a suitable subgraph ofGi+1. Note that a rank-
maximal matching is very different from a maximum cardinality matching but we
modify the graphGi+1 so as to transform the rank-maximal matching problem to
that of computing a maximum matching.

In Section 2 we describe our algorithm and analyze it. Section 3 contains some
concluding remarks.

2 A Combinatorial Algorithm

In this section we present a combinatorial algorithm for computing a rank-maximal
matching in a bipartite graphG = (A ∪P,E ). Before presenting the algorithm,
let us examine the structure of the problem and build some intuition.

2.1 Some intuition

Recall that the edge set isE = E1∪E2 . . .∪Er . For the present, let us assume that
for every i and everya∈ A , Ei contains exactly one edge incident toa. First, we
notice that in this case we can tell at once how many edges fromE1 belong to a
rank-maximal matching as well as which vertices fromP are matched by them,
namely exactly the vertices inP incident to an edge inE1. Let us denote this subset
of P by P1. If some vertexp∈ P1 is connected throughE1 edges to more than
one vertexa∈ A, then we know only that, in a rank-maximal matching, one such
vertexa must be matched withp, but we do not know which one. Nevertheless,
without prejudice to the final outcome, we can delete from thegraph all the edges
of rank greater than one that are incident to vertices belonging toP1.

We observe that if we match all the vertices inP1 throughE1 edges arbitrarily,
delete edges of rank greater than one that are incident to vertices inP1 and then
extend this matching along augmenting paths, then the number of E1 edges in the
matching will not change.

What can we say aboutE2 edges? Here we may be uncertain as to which
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Figure 1: One ofp1, p3 can be matched with a rank 2 edge.

vertices ofP should be matched throughE2 edges in a rank-maximal matching.
This is the case, for example, in Figure 1, which illustratespart of the graphG2

for a particular instance. We know thatp2 must be matched through anE1 edge
but we do not know a priori which ofp1, p3 should be matched with anE2 edge.
However, verticesa1 anda2 must be matched by edges of rank at most two in a
rank-maximal matching. Hence, we can delete all edges incident upona1, a2 that
are of rank greater than two. But do deletions of this kind suffice?

Our objective is to delete all edges that we know will never belong to a rank-
maximal matching in order to transform the rank-maximal matching problem to a
maximum matching problem in the reduced graph. We will show that the edges
to be deleted can be determined using some well-known concepts and facts from
matching theory. We can also drop the assumption that for every i, Ei contains
exactly one edge incident to anya∈ A.

2.2 Even, odd and unreachable vertices

Let M be a maximum matching in a bipartite graphG′. We recall that the vertex
set ofG′ can be partitioned, relative toM, into three disjoint sets:E,O, andU .
Nodes inE, O, andU are calledeven, odd,and unreachable, respectively [3].
E (O) consists of the nodes that can be reached inG′ from a free node by an
even (odd) length alternating path (with respect toM), andU consists of the nodes
that cannot be reached from a free node by any alternating path. In Figure 1,
{(a1, p1),(a2, p2),(a3, p4)} is a maximum matching. It is easy to verify thatE =
{p1, p2, p3}, O = {a1,a2} andU = {a3, p4}. For vertex setsA andB, we call an
edge connecting a vertex inA with a vertex inB an AB edge. Thus anOO edge
is an edge connecting two vertices inO. The following lemma is well-known in
matching theory. We include its proof for completeness.

Lemma 1 Let M be a maximum matching in G′ and let E, O and U be defined as
above.

1. The sets E, O and U are pairwise disjoint.

2. Let N be any maximum matching in G′.
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Figure 2: Matching edges are shown in bold. The left side shows a maximum
matchingM and an alternating path with respect toM starting at a free node. Also
the partition of the vertex set is indicated. Switching edges in the path yields the
maximum matchingN. Observe that the partition of the vertex set does not change
and that the vertices inO remain matched.

(a) N defines the same sets E, O and U.

(b) N contains only UU and OE edges.

(c) Every vertex in O and every vertex in U is matched by N.

(d) Its cardinality is equal to|O|+ |U |/2.

3. There is no EU edge and no EE edge in G′.

Proof: 1. By definition,U is disjoint fromO andE. It remains to show thatO
andE are disjoint. Assume a nodev is reachable by an even length alternating
path from free nodea and by an odd length alternating path from free nodeb.
(Note thata 6= b sinceG′ is a bipartite graph.) Thenv is on the same side asa and
the composition of the paths is an augmenting path froma to b. ThusM is not
maximum, a contradiction.

2. Consider any maximum matchingN. ThenM⊕N consists of a set of alternating
cycles and alternating paths, and each such cycle and path has even length. This
is obvious for the cycles. For the paths it follows from the maximality of M and
N. An alternating path containing more edges ofN than edges ofM would be
augmenting with respect toM and hence contradict the maximality ofM. Similarly,
an alternating path containing more edges inM than edges inN would contradict
the maximality ofN. Using these paths and cycles to switch betweenM andN
does not change the (even/odd/unreachable) status of any node, see Figure 2, and
leaves the odd and the unreachable nodes matched. Thus the partition into setsE,
O andU is independent of the particular maximum matching used to define it.

If a matched node is reachable by an even (odd) length alternating path from a
free node, its mate is reachable by an odd (even) length alternating path from the
same free node. Thus all edges inN are eitherUU or OE edges. Also, every node
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Figure 3: A simple example.

in U must be matched byN (otherwise it would be reachable by a path of length
zero) and every node inO must be matched byN (since an odd length alternating
path starting and ending at a free node is an augmenting path). Thus the cardinality
of N is |O|+ |U |/2.

3. Nodes inE are reachable by even length alternating paths. Such paths end in a
matching edge. Also,EU edges are non-matching by part 2(b) and hence any such
edge could be used to extend the alternating path, a contradiction of the definition
of U .

Finally, since nodes inE are reachable by alternating paths ending in a match-
ing edge, if there were an edge between two nodes ofE, then it would be a non-
matching edge and we could use it to construct an augmenting path. This would
contradict the maximality ofM.

2.3 More intuition

The above facts formalize the ideas that we developed at the beginning of this sec-
tion. Consider the edge setE = E1∪E2. We first determine a maximum matching
M1 in G1 = (A ∪P,E1) and identify the sets of odd, even and unreachable ver-
tices,O1,E1, andU1. We then remove all rank two edges incident upon vertices in
O1∪U1, because such vertices must be matched by edges inE1 in any matching
using a maximum number of rank one edges (Part 2(c) of Lemma 1). We also re-
move all rank oneO1O1 andO1U1 edges since no such edge appears in a matching
that contains a maximum number of rank one edges (Part 2(b) ofLemma 1). Then
we augmentM1 to obtain a matchingM2. SinceM2 is obtained by augmentingM1,
vertices matched inM1 are still matched inM2. So, vertices inO1 andU1 are still
matched. By virtue of the edges that we removed, we know that each vertex inO1

has to be matched by a rank oneO1E1 edge and each vertex inU1 is matched by a
rank oneU1U1 edge. Hence,M2 has at least|O1|+ |U1|/2 vertices matched by rank
one edges. So, in this way we preserve the number of vertices that are matched by
rank one edges. If we prove that no edge that we removed can ever occur in a rank-
maximal matching and sinceM2 is a maximum matching in the remaining graph,
then we can see thatM2 is indeed a rank-maximal matching in(A ∪P,E1∪E2).

Consider the simple example shown in Figure 3, where the solid lines indicate
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rank one edges and the dashed lines indicate rank two edges.M1 = {(a1, p1),(a2, p2)}
is a maximum matching in the graphG1 consisting of only rank one edges, and
O1 = {p1, p2},E1 = {a1,a2,a3, p3},U1 = /0. Now we remove the edges(a2, p1)
and(a3, p2) since these are rank two edges incident on vertices inO1. Then we
augmentM1 to obtainM2, which consists of two edges ofE1 and one edge ofE2.
If we had augmentedM1 without removing the rank two edge(a3, p2), then we
would have ended up with a maximum matching containing one edge of E1 and
two edges ofE2 - not a rank-maximal matching.

2.4 The algorithm

We now present our algorithm for constructing a rank-maximal matchingM. Let
Gi = (A ∪P,E1∪ . . .∪Ei). We start withG′

1 = G1, andM1 any maximum match-
ing in G′

1.

For i = 1 to r −1 do the following steps, and outputMr .

1. Partition the nodes ofA ∪P into three disjoint sets:Ei, Oi, andUi. Ei

andOi consist of the nodes that can be reached inG′
i from a free node by

an even or odd length alternating path (with respect toMi) respectively,
andUi contains the nodes that cannot be reached from a free node by an
alternating path.

2. Delete all edges incident to a node inOi ∪Ui from E j for all j > i. Oi ∪Ui

consists of the nodes that are matched by every maximum matching of
G′

i. Delete allOiOi andOiUi edges fromG′
i. These are the edges that are

not used by any maximum matching ofG′
i. Add the edges inEi+1 to G′

i,
and call the resulting graphG′

i+1.

3. Determine a maximum matchingMi+1 in G′
i+1 by augmentingMi. (Note

thatMi is still contained inG′
i+1.)

Observe that the algorithm maintains the invariant thatMi+1 is a maximum
matching inG′

i+1. We will show in the proof of correctness that the following
invariants are also maintained:

• every rank-maximal matching inGi+1 has all of its edges inG′
i+1

• Mi+1 is a rank-maximal matching inGi+1.

Suppose(s1,s2, . . . ,si , . . .) is the signature of a rank-maximal matching. We will
show thatMi has signature(s1,s2, . . . ,si).

2.5 The proof of correctness

We start with the following lemma, which proves that the edges that are deleted
during phasei + 1 in our algorithm do not belong to any rank-maximal matching
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of Gi+1, provided that we maintain our invariants until the end of phasei.

Lemma 2 Suppose that every rank-maximal matching of Gi is a maximum match-
ing of G′

i . Then every rank-maximal matching of Gi+1 is contained in G′i+1.

Proof: We need to show that the edges that we removed in the(i +1)th phase of
the algorithm do not belong to any rank-maximal matching ofGi+1.

LetNi+1 be any rank-maximal matching ofGi+1. It has signature(s1,s2, ...,si+1).
Ni = Ni+1∩E≤i is a matching with signature(s1,s2, ...,si) and is therefore a rank-
maximal matching ofGi. SoNi is a maximum matching inG′

i by the assumption.
By Lemma 1 parts 2(b) and (c), it has to pair the nodes inUi and match all nodes
in Oi with nodes inEi.

ThusNi does not use anyOiOi or OiUi edge ofGi. SinceNi+1 is a matching,
it cannot use any such edge either, and moreover, it cannot use any edge of rank
higher thani incident to some node inOi ∪Ui. SoNi+1 is contained inG′

i+1.

In addition, the deletions guarantee that the number of edges of each smaller
rank is preserved throughout the algorithm:

Lemma 3 For every i, j ( j > i), the number of edges of rank at most i is the same
in Mi and Mj .

Proof: SinceM j is obtained fromMi by successive augmentations, every vertex
matched byMi is also matched byM j . Hence, all nodes inUi andOi are matched
in M j .

SinceG′
j has no edges of rank greater thani incident to nodes inOi andUi,

and noOiOi edge orOiUi edge of rank≤ i, M j must pair the nodes inUi and must
match nodes inOi with nodes inEi. These edges have rank at mosti. So,M j has at
least as many edges of rank≤ i asMi, andM j cannot have more since all the edges
of rank≤ i in G′

j belong toG′
i andMi is a maximum matching inG′

i .

Now, we are ready to prove the correctness of our algorithm.

Theorem 1 For every1≤ k≤ r, the following statements hold:
(i) Every rank-maximal matching in Gk is a maximum matching in G′k;
(ii) Mk is a rank-maximal matching in Gk.

Proof: We prove this by induction onk. Since all edges inG1 have the same rank,
a rank-maximal matching inG1 is the same as a maximum matching. SinceM1 is
a maximum matching inG1, both statements hold fork = 1.

Let us now prove these statements fori + 1 assuming them to be true fori.
SinceMi is a rank-maximal matching inGi, its signature is(s1, . . . ,si). Suppose the
signature ofMi+1 is (r1, . . . , r i , r i+1). By Lemma 3, we know that, for everyk (1≤
k≤ i), ∑k

j=1 si = ∑k
j=1 r i . So it follows that the signature ofMi+1 is (s1, . . . ,si , r i+1)

for somer i+1 ≤ si+1.
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By the induction hypothesis, every rank-maximal matching of Gi is a maxi-
mum matching ofG′

i. Hence, by Lemma 2, any rank-maximal matching ofGi+1

is contained inG′
i+1. Thus there is a matching of cardinalitys1 + . . . + si + si+1

in G′
i+1. SinceMi+1 is a maximum matching inG′

i+1, its cardinality is at least
s1 + . . .si +si+1. Thusr i+1 = si+1.

HenceMi+1 is a rank-maximal matching inGi+1. It is now easy to show that
every rank-maximal matching ofGi+1 is a maximum matching ofG′

i+1. Let Ni+1

be any rank-maximal matching ofGi+1. By the induction hypothesis and Lemma 2,
we know thatNi+1 is contained inG′

i+1. Furthermore,Ni+1 has cardinalitys1+s2+
. . .+si+1, which is equal to the cardinality ofMi+1, which is a maximum matching
of G′

i+1. Hence,Ni+1 is also a maximum matching ofG′
i+1. This completes the

proof of the lemma.

2.6 The running time of the algorithm

Theorem 2 A rank-maximal matching can be computed in O(min(C
√

n, n+C) ·
m) time, where C is the maximal rank of an edge in an optimal solution

Proof: Consider a fixed iterationi. We first determine the partition of the node
set intoEi,Oi , andUi. This can be done inO(m) time by growing a Hungarian
forest with respect toMi. Then we delete appropriate edges from the edge set,
which again takesO(m) time. We next computeMi+1 from Mi by augmenting
along augmenting paths. Using the algorithm of Hopcroft andKarp [6], this takes
time O(min(

√
n, |Mi+1|− |Mi|+ 1) ·m). The number of iterations isr and hence

the overall running time isO(min(r
√

n,n+ r) ·m).
We next show how to replacer by C. At the beginning of each iteration, say

iterationi, we first check whetherMi is already a maximum matching inG′
r , where

G′
r denotes the graph consisting of all edges, of all ranks, thatare still present at

the beginning of phasei. This takes timeO(m). If Mi is a maximum matching in
G′

r , then we stop. Otherwise, there is an edge of rank greater than i whose addition
increases the cardinality of the maximum matching, and soC > i. In this case, we
continue as described above. In this way, onlyC iterations are executed.

3 Conclusions

We presented an algorithm to compute a rank-maximal matching in a bipartite
graph where each edge has a rank. The algorithm has running time O(C

√
nm).

There are several natural variations of the rank-maximal matching problem.
Posts may have capacities: a postp of capacityc(p) can be matched with up to

c(p) applicants. We can solve this problem by makingc(p) copies ofp with each
of them adjacent to the same neighbors asp and then solving the rank-maximal
matching problem in the resulting graph.
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Instead of asking for the matching maximizing the signature(s1,s2, . . . ,sr) we
might be interested in the maximal cardinality matching maximizing (s1,s2, . . . ,sr)
or minimizing(sr ,sr−1, . . . ,s1). We do not know whether our algorithm generalizes
to these problems. However, the reduction to weighted matchings still works and
yields algorithms with running timeO(r2√nmlogn) and space requirementO(rm).
In [10], the running time is improved toO(r

√
nmlogn) and the space requirement

is reduced toO(m).
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