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Abstract

Suppose that each member of a.s€bf applicants ranks a subset of a set
& of posts in an order of preference, possibly involving ti&snatchingis
a set of (applicant, post) pairs such that each applicanéaok post appears
in at most one pair. Aank-maximalmatching is one in which the maximum
possible number of applicants are matched to their firstaghpost, and sub-
ject to that condition, the maximum possible number are hreatdo their
second choice post, and so on. This is a relevant conceptyipraactical
matching situation and it was first studied by Irving [8].

We give an algorithm to compute a rank-maximal matching witiming
time O(min(n+C,C,/n)m), whereC is the maximal rank of an edge used in
a rank-maximal matchingy is the number of applicants and posts ands
the total size of the preference lists.

1 Introduction

Let .o/ be a set ofpplicantsand 2 be a set oposts and suppose that, associated
with each member of7 is a preference list (possibly involving ties) comprising
a subset of the elements 7. A matchingof &7 to &2 is an allocation of each
applicant to at most one post from his preference list so ¢hah post is filled
by at most one applicant; in other words it is a matching in lipartite graph
G=(4UZ2,&), where& consists of all pairga, p) such that posp appears in
the preference list of applicaat

Each edgga, p) has a ranki, which means that pogt is anith choice for
applicanta. In any applicanf’s list, there may be any number ith choice posts,
even zero. We believe that this is the natural way of forniathe problem of
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allocation of projects to students and the allocation obptimnary posts to trainee
teachers, for instance.

The question arises as to how we might define a notion of ofitimiat
will allow us to compare matchings, and how we might effidieriind an op-
timal matching. In the case where preferences are exprassdubth sides, we
have the notion of various kinds stability to describe optimal matchings. This
is the domain oftable matchingroblems, which have been studied extensively
[2, 4,5, 7,9, 11]. When preferences are expressed on oneslgdonly appli-
cants have preferences over posts), a number of differeniskbf optimality can
be defined. Here we study the notionrahk-maximalmatchings, introduced in

[8].

Definition 1 Let r be the largest rank that an applicant uses to rank any.pbise
signatureof a matching M is defined to be the r-tupbe, ...,x ) where for each
1<i<r, x is the number of applicants who are matched in M with one df the
i-th choice posts.

As a matter of convenience, we abbreviate a signdtare.., X ) by (X1, ...,Xq)
if X4 > 0andx =0fori=d+1,...,r. We use< to denote the lexicographic order
on signatures(xi, ..., ) < (yi1,...,yr) if i =y; for 1 <i < k andxx < yk, for some
k. Denote by.# the set of all matchings af/ to &.

Definition 2 A matching that has the maximum signature under this orddsra
rank-maximalmatching. Alternately, and equivalently, defing to be the subset
of ., in which the maximum possible number of applicants are heat¢o their
first choice post. For = 2,3, ...,r define.#; to be the subset of7_1 in which the
maximum possible number of applicants are matched to theichoice post. A
matching that belongs te7; is arank-maximalmatching.

For a given problem instance, there might be more than onlemaximal
matching, but all rank-maximal matchings must have the seamginality and the
same signature.

It is easy to see that a simple greedy algorithm, in which veégasthe max-
imum number of applicants to their first choice post, thenrtfaximum number
to their second choice post, and so on, is by ho means guadattelead to a
rank-maximal matching.

Irving [8] considered the problem of computing a rank-maaimatching in
instances where the preference list for any appliGrt <7 is strictly ordered,
that is, there are no ties ias list. The running time of the algorithm in [8] is
O(3< 1 K (X+1)(n+2)), where(xg, ..., Xc) is the signature of a rank-maximal
matching andy = X3 + - - - + Xk. The worst case complexity of this algorithm in the
case where all preference lists have length at mpist O(c?n®); observe that for
(X1,..-,%) = (L,1,...,1,n—c+ 1), the last term in the sum B(c*nq).

A rank-maximal matching can also be found by transformirggitiput to an in-
stance of the classical maximum weight bipartite matchimmiplem. This involves
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allocating a suitably steeply decreasing sequence of uwsetgtthe edges. For in-
stance, giving weight' ' to ranki edges. The scaling algorithm of Gabow and
Tarjan [1] solves such instances will{,/nmlog(n")) arithmetic operations (addi-
tions and comparisons) on numbers bounded'byUnder the standard assump-
tion that numbers of magnitud®(n) can be handled in constant time and constant
space, the resulting running time@r2,/nmlogn) and the space requirement is
O(rm).

We give a simple combinatorial algorithm for constructingaak-maximal
matching. It runs in timeO(min(n+ C,Cy/n)m), whereC < r is the maximal
rank used in an optimal solution. Our algorithm runs in itiemss. Let the edge
set of Gbe & = & U...U&, whered; is the set of edges of rank In itera-
tion i, our algorithm constructs a rank-maximal matchidgin the graphG; =
(FUZP . EU...U&E). The algorithm constructli 1 by computing a maximum
matching (by augmentinlyl;) in a suitable subgraph &;,;. Note that a rank-
maximal matching is very different from a maximum cardihalnatching but we
modify the graphG; 1 so as to transform the rank-maximal matching problem to
that of computing a maximum matching.

In Section 2 we describe our algorithm and analyze it. Se@ioontains some
concluding remarks.

2 A Combinatorial Algorithm

In this section we present a combinatorial algorithm for poting a rank-maximal
matching in a bipartite grapt = (& U &2, &’). Before presenting the algorithm,
let us examine the structure of the problem and build somutiom.

2.1 Some intuition

Recall that the edge setds= &1 U &...U & . For the present, let us assume that
for everyi and everya € <7, & contains exactly one edge incidentaoFirst, we
notice that in this case we can tell at once how many edges #obelong to a
rank-maximal matching as well as which vertices frarhare matched by them,
namely exactly the vertices iZ¥ incident to an edge if;. Let us denote this subset
of &2 by £2;. If some vertexp € &2, is connected throughf; edges to more than
one vertexa € A, then we know only that, in a rank-maximal matching, one such
vertexa must be matched witlp, but we do not know which one. Nevertheless,
without prejudice to the final outcome, we can delete fromdgtaph all the edges
of rank greater than one that are incident to vertices béhgnp £2;.

We observe that if we match all the verticesdfy throughé&y edges arbitrarily,
delete edges of rank greater than one that are incident twe®in &7, and then
extend this matching along augmenting paths, then the nuofk@ edges in the
matching will not change.

What can we say abouf; edges? Here we may be uncertain as to which



Figure 1: One ofp, p3 can be matched with a rank 2 edge.

vertices of &2 should be matched throug} edges in a rank-maximal matching.
This is the case, for example, in Figure 1, which illustrgtest of the graphG,

for a particular instance. We know thpt must be matched through &h edge
but we do not know a priori which gp;, p3 should be matched with afp edge.
However, vertices; anda, must be matched by edges of rank at most two in a
rank-maximal matching. Hence, we can delete all edgeseéntidpona;, a, that

are of rank greater than two. But do deletions of this kindise?

Our objective is to delete all edges that we know will nevdpbe to a rank-
maximal matching in order to transform the rank-maximal chatg problem to a
maximum matching problem in the reduced graph. We will shioat the edges
to be deleted can be determined using some well-known ctheeyl facts from
matching theory. We can also drop the assumption that farydyes; contains
exactly one edge incident to aaye A.

2.2 Even, odd and unreachable vertices

Let M be a maximum matching in a bipartite gragh We recall that the vertex
set of G’ can be partitioned, relative thl, into three disjoint sets, O, andU.
Nodes inE, O, andU are calledeven, oddand unreachable respectively [3].
E (O) consists of the nodes that can be reache&/irfrom a free node by an
even (odd) length alternating path (with respediiy andU consists of the nodes
that cannot be reached from a free node by any alternatiny pt Figure 1,
{(a1, 1), (82, P2), (a3, p4)} is @ maximum matching. It is easy to verify tHat=
{p1, P2, p3}, O={a1,a} andU = {as, ps}. For vertex seté\ andB, we call an
edge connecting a vertex A with a vertex inB an AB edge. Thus a®O edge
is an edge connecting two vertices@ The following lemma is well-known in
matching theory. We include its proof for completeness.

Lemma 1 Let M be a maximum matching i @nd let E, O and U be defined as
above.

1. The sets E, O and U are pairwise disjoint.

2. Let N be any maximum matching in G
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Figure 2: Matching edges are shown in bold. The left side shawnaximum
matchingM and an alternating path with respectMostarting at a free node. Also
the partition of the vertex set is indicated. Switching edlgethe path yields the
maximum matchingN. Observe that the partition of the vertex set does not change
and that the vertices i® remain matched.

(@) N defines the same sets E, O and U.

(b) N contains only UU and OE edges.

(c) Every vertex in O and every vertex in U is matched by N.
(d) Its cardinality is equal tgO| + |U|/2.

3. There isno EU edge and no EE edge in G

Proof: 1. By definition,U is disjoint fromO andE. It remains to show thaD
andE are disjoint. Assume a nodeis reachable by an even length alternating
path from free nodex and by an odd length alternating path from free nade
(Note thata # b sinceG' is a bipartite graph.) Thenis on the same side asand
the composition of the paths is an augmenting path feota b. ThusM is not
maximum, a contradiction.

2. Consider any maximum matchihg ThenM @& N consists of a set of alternating
cycles and alternating paths, and each such cycle and pstévea length. This
is obvious for the cycles. For the paths it follows from theximaality of M and
N. An alternating path containing more edgeshNbthan edges oM would be
augmenting with respect td and hence contradict the maximalityMf Similarly,
an alternating path containing more edged/irthan edges imN would contradict
the maximality ofN. Using these paths and cycles to switch betwgeand N
does not change the (even/odd/unreachable) status of aley see Figure 2, and
leaves the odd and the unreachable nodes matched. Thugtitierpato setskE,
O andU is independent of the particular maximum matching used time &.

If a matched node is reachable by an even (odd) length altegipath from a
free node, its mate is reachable by an odd (even) lengtmatiag path from the
same free node. Thus all edgedNrare eithetJU or OE edges. Also, every node
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M={(a.p).(3.8)} M ={@.p)(3@.B)@E p ).

Figure 3: A simple example.

in U must be matched bi (otherwise it would be reachable by a path of length
zero) and every node i® must be matched by (since an odd length alternating
path starting and ending at a free node is an augmenting. pidih} the cardinality

of Nis |O|+|U]|/2.

3. Nodes inE are reachable by even length alternating paths. Such pathm &
matching edge. Als& U edges are non-matching by part 2(b) and hence any such
edge could be used to extend the alternating path, a cocticadf the definition

of U.

Finally, since nodes ik are reachable by alternating paths ending in a match-
ing edge, if there were an edge between two nodds, @hen it would be a non-
matching edge and we could use it to construct an augmentitig [ his would
contradict the maximality o¥. 1

2.3 More intuition

The above facts formalize the ideas that we developed atehiating of this sec-
tion. Consider the edge sét= &1 U &. We first determine a maximum matching
Mi in G; = (& U £, &1) and identify the sets of odd, even and unreachable ver-
tices,04, E;, andU;. We then remove all rank two edges incident upon vertices in
01 UU4, because such vertices must be matched by edgésimany matching
using a maximum number of rank one edges (Part 2(c) of Lemm#/&)also re-
move all rank oné;0; andO1U; edges since no such edge appears in a matching
that contains a maximum number of rank one edges (Part 2(bgrama 1). Then
we augmenM; to obtain a matchin/l,. SinceMs is obtained by augmenting;,
vertices matched iM, are still matched itM,. So, vertices iD; andU; are still
matched. By virtue of the edges that we removed, we know &t gertex inO;
has to be matched by a rank obBgE; edge and each vertex b is matched by a
rank oneJ;U; edge. HenceMl; has at leasiO | +|U;1|/2 vertices matched by rank
one edges. So, in this way we preserve the number of vertie¢ste matched by
rank one edges. If we prove that no edge that we removed caoemgr in a rank-
maximal matching and sindd, is a maximum matching in the remaining graph,
then we can see thM; is indeed a rank-maximal matching (g7 U 22, &1 U &3).
Consider the simple example shown in Figure 3, where thd $inks indicate



rank one edges and the dashed lines indicate rank two elliges{(as, p1), (a2, p2)}
is a maximum matching in the grafb, consisting of only rank one edges, and
O1 = {p1, P2},E1 = {&a1,a2,a3,p3},Us = 0. Now we remove the edgésy, p1)
and (ag, p2) since these are rank two edges incident on vertice®;inThen we
augmentM; to obtainM,, which consists of two edges &% and one edge of>.

If we had augmentedl; without removing the rank two edgg@s, p2), then we
would have ended up with a maximum matching containing omge ed &7 and
two edges of - not a rank-maximal matching.

2.4 The algorithm

We now present our algorithm for constructing a rank-maximatchingM. Let
G =(/UZ,EU...U&). We start withG] = G1, andM; any maximum match-
ing in G}.

Fori =1tor — 1 do the following steps, and outph;.

1. Partition the nodes af/ U &2 into three disjoint setsk;, O;, andU;. E;
andQ; consist of the nodes that can be reache@{ifrom a free node by
an even or odd length alternating path (with respedifprespectively,
andU; contains the nodes that cannot be reached from a free node by a
alternating path.

2. Delete all edges incident to a nodedpuU; from &j for all j > i. O;UU;
consists of the nodes that are matched by every maximum mgtoh
G{. Delete all0;0; andO;U; edges fronG{. These are the edges that are
not used by any maximum matching@f. Add the edges i@ to G|,
and call the resulting grapB;_ ;.

3. Determine a maximum matchig_, in G, ; by augmentingvi;. (Note
thatM; is still contained inG[ ;.)

Observe that the algorithm maintains the invariant tiat; is a maximum

matching inG[, ;. We will show in the proof of correctness that the following

invariants are also maintained:
e every rank-maximal matching iG; 1 has all of its edges 5[
e M;, 1 is a rank-maximal matching i6G;, 1.
Suppos€s1, S, .---,S,-..) IS the signature of a rank-maximal matching. We will
show thatV; has signaturés;, s, ...,s).
2.5 The proof of correctness
We start with the following lemma, which proves that the eslffeat are deleted

during phaseé + 1 in our algorithm do not belong to any rank-maximal matching
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of Gj, 1, provided that we maintain our invariants until the end chgdi.

Lemma 2 Suppose that every rank-maximal matching pis& maximum match-
ing of G. Then every rank-maximal matching of,@is contained in G, ;.

Proof: We need to show that the edges that we removed itfitihel)th phase of
the algorithm do not belong to any rank-maximal matchingof; .

LetN;1 be any rank-maximal matching G 1. It has signatur¢s;, s, ...,S+1)-
Ni = Niz1 N &% is a matching with signaturés;, s, ...,5) and is therefore a rank-
maximal matching of5;. SoN; is a maximum matching i by the assumption.
By Lemma 1 parts 2(b) and (c), it has to pair the noded;iand match all nodes
in O; with nodes ing;.

ThusN; does not use an®;O; or O;U; edge ofG;. SinceN;, 1 is a matching,
it cannot use any such edge either, and moreover, it canecams edge of rank
higher thari incident to some node i®; UU;. SoN;, 1 is contained irG{H. 1

In addition, the deletions guarantee that the number of ®dfjeach smaller
rank is preserved throughout the algorithm:

Lemma 3 For every ij (j > i), the number of edges of rank at most i is the same
in Mj and M.

Proof: SinceM; is obtained fromM; by successive augmentations, every vertex
matched byM; is also matched bil;. Hence, all nodes ib; andO; are matched
in |\/|j.

SinceG’j has no edges of rank greater thiaimcident to nodes if©®; andU;,
and noO;O; edge orO;U; edge of rank< i, M; must pair the nodes id; and must
match nodes i©; with nodes inE;. These edges have rank at mos$o,M; has at
least as many edges of ragki asM;, andM; cannot have more since all the edges
of rank < i in Gj belong toG; andM; is a maximum matching i;. 1

Now, we are ready to prove the correctness of our algorithm.

Theorem 1 For everyl < k <r, the following statements hold:
(i) Every rank-maximal matching ins a maximum matching in|G
(i) M is a rank-maximal matching in G

Proof: We prove this by induction ok. Since all edges i1 have the same rank,
a rank-maximal matching i is the same as a maximum matching. SiMgeis
a maximum matching i;, both statements hold fér= 1.

Let us now prove these statements faf 1 assuming them to be true for
SinceM,; is a rank-maximal matching i6;, its signature igss,...,S). Suppose the
signature oM 1 is (ry,...,r;,ri+1). By Lemma 3, we know that, for eveky(1 <
k<i), 35,5 =3%4ri. Soitfollows that the signature ;1 is (S1,..., Sl 1)
for somerj 1 < S.1.



By the induction hypothesis, every rank-maximal matchifigspis a maxi-
mum matching ofG. Hence, by Lemma 2, any rank-maximal matching3pf;
is contained inG{, ;. Thus there is a matching of cardinaligy+ ... +s +S1
in G/,,. SinceM;, is a maximum matching IG5 ,, its cardinality is at least
S1+...S+S+1. Thusripg =s.1.

HenceM; ; is a rank-maximal matching i@, 1. It is now easy to show that
every rank-maximal matching @1 is a maximum matching o&, ;. LetN;,
be any rank-maximal matching & ., 1. By the induction hypothesis and Lemma 2,
we know thafN; 1 is contained irG/, ;. FurthermoreN, 1 has cardinalitys; +s, +
...+ S+1, which is equal to the cardinality &f;, 1, which is a maximum matching
of G/,;. Hence,Ni, is also a maximum matching @ ,. This completes the
proof of the lemma. 1

2.6 The running time of the algorithm

Theorem 2 A rank-maximal matching can be computed itm@n(C/n, n+C) -
m) time, where C is the maximal rank of an edge in an optimal gwiut

Proof: Consider a fixed iteration We first determine the partition of the node
set intoE;, O;, andU;. This can be done i®(m) time by growing a Hungarian
forest with respect tdMj. Then we delete appropriate edges from the edge set,
which again take©O(m) time. We next computd/;;, from M; by augmenting
along augmenting paths. Using the algorithm of Hopcroft Kadp [6], this takes
time O(min(y/n, |Mit1| —|Mi|+ 1) -m). The number of iterations isand hence
the overall running time iI©(min(ry/n,n+r) - m).

We next show how to replageby C. At the beginning of each iteration, say
iterationi, we first check whethavl; is already a maximum matching @&, where
G, denotes the graph consisting of all edges, of all ranks, ahastill present at
the beginning of phasie This takes timeéO(m). If M; is a maximum matching in
G;, then we stop. Otherwise, there is an edge of rank greateii thhose addition
increases the cardinality of the maximum matching, an@ soi. In this case, we
continue as described above. In this way, dDlgerations are executed. ]

3 Conclusions

We presented an algorithm to compute a rank-maximal majchira bipartite
graph where each edge has a rank. The algorithm has runmmegG{C./nm).
There are several natural variations of the rank-maximdthiag problem.

Posts may have capacities: a ppsif capacityc(p) can be matched with up to
c(p) applicants. We can solve this problem by makatg) copies ofp with each
of them adjacent to the same neighborspaand then solving the rank-maximal
matching problem in the resulting graph.
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Instead of asking for the matching maximizing the signatsies,, ...,s ) we
might be interested in the maximal cardinality matching mazing (s1,,...,S)
or minimizing(s-,S -1, . ..,S1). We do not know whether our algorithm generalizes
to these problems. However, the reduction to weighted nivagststill works and
yields algorithms with running tim@(r?,/nmlogn) and space requireme@rm).
In [10], the running time is improved tO(r,/nmlogn) and the space requirement
is reduced t@(m).
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