Rank-Maximal Matchings

Robert W. Irving* Telikepalli Kavitha! Kurt Mehlhorn'
Dimitrios Michailf Katarzyna Paluch?
Abstract

Suppose that each member of a set A of applicants ranks a subset of a set P of posts
in an order of preference, possibly involving ties. A matching is a set of (applicant, post)
pairs such that each applicant and each post appears in at most one pair. A greedy
matching is one in which the maximum possible number of applicants are matched to
their first choice post, and subject to that condition, the maximum possible number are
matched to their second choice post, and so on. This is a relevant concept in any practical
matching situation and it was first studied by Irving [8].

We define the bipartite graph G = (AU P, &), where £ consists of all pairs (a,p)
such that post p appears in the preference list of applicant a. Each edge (a,p) has
a rank ¢, which means that post p is an ith choice for applicant a. The traditional
solution of computing a greedy matching in G' would be to use the Hungarian algorithm to
compute a maximum weight matching by assigning a suitably steeply decreasing sequence
of weights to the edges. This would result in an algorithm with worst case running time
rn(m + nlogn) and the space requirement ©(rm), where n is the number of vertices, m
is the number of edges and r is the largest rank of an edge.

Here, we describe two algorithms to compute a greedy matching that improve upon this
algorithm. We give a combinatorial algorithm with running time O(min(n + C,Cy/n)m),
where C' < r is the maximal rank of an edge used in a greedy matching. This algo-
rithm works in phases and uses the maximum cardinality matching algorithm. We also
give an O(Cnm) algorithm that tackles the problem of large edge weights introduced by
the Hungarian algorithm. This algorithm uses scaling and works in phases. The space
requirement of both these algorithms is O(m).

1 Introduction

1.1 The problem

Let A be a set of applicants and P be a set of posts, and suppose that, associated with each
member of A is a partially ordered preference list comprising a subset of the elements of P.
A matching of A to P is an allocation of each applicant to at most one post so that each
post is filled by at most one applicant; in other words it is a matching in the bipartite graph
G = (AUP,E), where £ consists of all pairs (a,p) such that post p appears in the preference
list of applicant a.

“Department of Computing Science, University of Glasgow, UK. rwi@dcs.gla.ac.uk

"Max-Planck-Institut fiir Informatik, Saarbriicken, Germany. {kavitha, mehlhorn, michail}@mpi-sb.mpg.de

Hnstitute of Computer Science, University of Wroclaw, Poland. abraka@ii.uni.wroc.pl. Work done while
the author was at MPII supported by Marie Curie Doctoral Fellowship

Each edge (a,p) has a rank i, which means that post p is an ith choice for applicant a.
In any applicant a’s list, there may be any number of 7th choice posts, even zero. We believe
that this is the natural way of formulating the problem of allocation of projects to students
and the allocation of probationary posts to trainee teachers, for instance.

In the case where preferences are expressed on both sides, we have the notion of various
kinds of stability to describe optimal matchings. This is the domain of stable matching prob-
lems, which have been studied extensively [2, 4, 5, 7, 9, 13]. When preferences are expressed
on one side only (only applicants have preferences over posts), a number of different kinds of
optimality can be defined. Here we study the notion of greedy or rank-mazimal matchings,
introduced in [8].

Let r be the largest rank that an applicant uses to rank any post.

Definition 1 The signature p(M) of a matching M is defined to be the r-tuple (z1, ..., ;)
where for each 1 < ¢ < r, x; is the number of applicants who are matched in M with one of
their ith choice posts.

As a matter of convenience, we abbreviate a signature (z1,...,x,) by (z1,...,xq) if zg > 0
and z; =0fori=d+1,...,r.

We define a total order <, similar to lexicographic order, on signatures as follows: (zy, ..., z;,)
< (y1y.e0yyr) if 2y = y; for 1 <4 < k and xp < yg, for some k. Denote by M the set of all
matchings of A to P.

Definition 2 A matching that has the mazimum signature under this ordering is a greedy
or rank-maximal matching. Alternately, or equivalently, define My to be the subset of M, in
which the mazimum possible number of applicants are matched to their first choice post. For
i =2,3,...,r define M; to be the subset of M;_1 in which the mazimum possible number of
applicants are matched to their ith choice post. A matching that belongs to M, is a greedy
or rank-maximal matching.

For a given problem instance, there might be more than one greedy matching, but it is a
consequence of the definition that all greedy matchings must have the same size.

It is easy to see that a simple greedy algorithm, in which we assign the maximum number
of applicants to their first choice post, then the maximum number to their second choice post,
and so on, is by no means guaranteed to lead to a greedy matching.

1.2 Previous Results and New Results

As mentioned earlier, the case where preferences are expressed by both sides has been exten-
sively studied in the area of stable matching problems. When preferences are expressed by
only one side, Irving in [8] considers the problem of computing a greedy matching in instances
where the preference list for any applicant a € A is strictly ordered i.e., there are no ties in a’s
list. The running time of the greedy matching algorithm in [8] is O(Zl?:l k2 (zp+1)(n+sk)),
where (z1,...,z¢) is the signature of a greedy matching and s = z; + - -+ + z. The worst
case complexity of this algorithm in the case where all preference lists are of length bounded
by d, is O(d3n?).

We give a simple combinatorial algorithm with running time O(min(n + C, Cy/n)m) for
constructing a greedy matching.

We also give an O(Cnm) algorithm for constructing a greedy matching by transforming
this problem to a maximum weight matching problem. The algorithms given here illustrate
two different approaches to compute a greedy matching.

1.3 Techniques

Our combinatorial algorithm runs in phases. Let the edge set of G be E =& U& U ... UE,,
where &; is the set of edges of rank 4. In phase 7, our algorithm constructs a greedy matching
M; in the graph G; = (AUP,E UE U...UE;). The algorithm computes M;; by computing
a maximum matching in a suitable subgraph of G;1; and by augmenting M;.

Note that a greedy matching is very different from a maximum cardinality matching
but we modify the graph G;;; so as to transform the greedy matching problem to that of
computing a maximum matching.

A greedy matching can also be found by transforming the input to an instance of the
classical maximum weight bipartite matching problem. This involves allocating a suitably
steeply decreasing sequence of weights to the edges. For instance, giving a weight of n"~! to
the edge (a,p) if p is a first choice of a, a weight of n” 2 if p is a second choice of a, and so
on. But the use of such large integers as edge weights implies that an arithmetic operation
might cost up to ©(r) time and the space requirement becomes O(rm). We present a scaling
algorithm, which works in phases, to tackle the problem of large edge weights. This algorithm
has a running time of O(Cnm) and it uses O(m) space.

Organization of the Paper: In Section 2 we describe the combinatorial algorithm and
analyse it. In Section 3 we describe the scaling algorithm and its analysis. Section 4 contains
some concluding remarks and open problems.

2 A Combinatorial Algorithm

In this section we present a combinatorial algorithm for computing a greedy matching in a
bipartite graph G = (AUP, E). Before presenting the algorithm, let us examine the structure
of the problem and build some intuition.

For the time being, let us assume that, for every 4, & contains exactly one edge incident
to any a € A. First, we can notice that in this case we can tell at once how many edges from
&1 belong to a greedy matching as well as which nodes from P are matched by them. Let us
denote them by P;. If some vertex p € P; is connected through &£, edges to more than one
vertex a € A, then we only know that in a greedy matching, one of them must be matched
with p through £. We do not know, however, which of them gets assigned to p and which
cannot. Nevertheless, without any harm, we can delete from the graph all the edges of rank
higher than 1 incident to vertices belonging to P;.

We can observe that if we match all the nodes in P; through &, edges arbitrarily, delete
edges of rank higher than one incident to nodes in P; and then extend this matching along
augmenting paths, then the number of £, edges in the matching will not change.

What can we say about & edges? Here we may sometimes be uncertain which vertices
belonging to P should be matched through £ edges in a greedy matching. It is so, for
example, in Figure 1. We know that ps is matched through an £ edge but we do not know
a priori which of p;, ps gets matched with an & edge. For a; and as we can notice that they
must be matched by edges of rank at most two in a greedy matching. Hence, we can delete
all edges ranked higher than 2 incident upon a1, as. But do deletions of this kind suffice?

We would like to delete all edges that we know will never belong to any greedy matching
in order to reduce the greedy matching problem to a maximum matching problem in the
reduced graph. We will show that we can determine which edges should be deleted using
some well-known notions and facts from matching theory. We also drop the assumption that
for every 7, & contains exactly one edge incident to any a € A.

Let M be a maximum matching in a bipartite graph G'.
We will show that the vertex set of G’ can be partitioned into
three disjoint sets: E,O, and U. Nodes in £, O, and U are
called even, odd, and unreachable, respectively [3]. E (O) are
the nodes that can be reached in G’ from a free node by an
even (odd) length alternating path (with respect to M), and
U are the nodes that cannot be reached from a free node by
any alternating path. In Figure 1, {(a1,p1), (a2,p2), (a3,p4)}
is a maximum matching. Then the even nodes are {p1, p2, p3}.
Figure 1: One of py, ps can be The odd nodes are {a1,as} and the unreachable nodes are
matched with a rank 2 edge. {as, pa}.

The following lemma is well-known in matching theory.
We include its proof for completeness.

Lemma 1 The sets E, O and U are pairwise disjoint. Every mazimum matching in G' pairs
the nodes in U, matches all nodes in O, matches each node in O with a node in E, and has
cardinality equal to (O] + |U|/2. There is no edge in G' connecting a node in E with a node
in U, or between two nodes of E. No mazimum matching in G' uses an edge connecting two
nodes in O or a node in O with a node in U.

Proof: Assume a node v is reachable by an even length alternating path from the free node
a and by an odd length alternating path from the free node b. Then v is on the same side
as a and the composition of the paths is an augmenting path from a to b. Thus M is not
maximum, a contradiction.

Every node not reachable by an alternating path must be matched (otherwise it would
be reachable by a path of length zero) and hence must be matched with a node which is
also unreachable. M matches the nodes in O with nodes in E. Thus the cardinality of M is
O] +|Ul/2.

Consider any maximal matching N. Then M @ N consists of a set of alternating cycles
and paths. Augmenting any such paths and cycles to M leaves the odd and the unreachable
nodes matched and also does not change the status of any node.

Nodes in E are reachable by even length alternating paths. Such paths end in a matching
edge. An edge connecting a node in F to a node in U is non-matching and hence could be
used to extend the alternating path, a contradiction to the definition of U.

Since nodes in E are reachable by alternating paths ending in a matching edge, if there is
an edge between two nodes of F, then it is a non-matching edge and we can use it to construct
an augmenting path. This contradicts the maximality of M.

Since any maximum matching pairs the nodes in U and matches nodes in O with nodes
in £, no maximum matching uses an edge connecting two odd nodes or an odd node with an
unreachable node.]

The above facts formalise the ideas that we developed at the beginning of this section.
Counsider the edge set £ = & U E;. We first determine a maximum matching M; in Gy =
(AU P,&) and identify the sets of odd, even and unreachable vertices: Oq, Fy, and Uj.
Suppose we remove all rank 2 edges incident upon nodes in O; U U, remove rank 1 edges
between two nodes of O; or a node of O and a node of U; and then augment M; to obtain
a matching Ms. Since My is obtained by augmenting M;, nodes matched in M; are still
matched in Ms. So, vertices in O and U are still matched. By virtue of the edges that we
removed, we know that each node in O; has to be matched by a rank 1 edge to a vertex in
FE, and each node in U; is matched to another node in U; by a rank 1 edge. Hence, My has
at least |O;| + |U1|/2 nodes matched by rank 1 edges. So, this way we preserve the number
of nodes that are matched by rank 1 edges. If we prove that every edge that we removed
can never occur in a greedy matching and since My is a maximum matching in the remaining
graph, then we can see that M, is indeed a greedy matching in (AU P, & U Ey).

Let us consider the simple example

M= {(a,p).(a;p)} M ={(a,p).(8&,P3.(a3p)} shown in Figure 2, where the bold lines

indicate rank 1 edges and the dashed

lines indicate rank 2 edges. M, =

{(a1,p1), (a2,p2)} is a maximum match-

ing in the graph G; consisting of only

rank 1 edges. O; = {p,p},E1 =

{a1,a2,a3,p3},U; = 0. Now we remove the

edges (a3,p2) and (a2,p1). Then we aug-

Figure 2: A simple example. ment M; to obtain M, which consists of

two edges of £ and one edge of &. If we

had augmented M; without removing the rank 2 edge {as3,p2}, we would have ended up in a
maximum matching with one edge of £; and two edges of & - not a greedy matching.

We now present the following iterative algorithm for constructing a greedy matching M. In
the i-th iteration the algorithm constructs a greedy matching M; in G; = (AUP, E1U. . .UE;). If
(81,82, ,8i,...) s the signature of a greedy matching, then M; has signature (s1, so,... , $;).
We start with G| = G, and M; any maximum matching in G/.

For i =1 to r — 1 do the following steps, and output M,.

1. Partition the nodes of A U B into three disjoint sets: E;, O;, and U;. E; and O;,
as defined before, are the nodes that can be reached in G} from a free node by an
even or odd length alternating path (with respect to M;), respectively, and U; are
the nodes that cannot be reached from a free node by an alternating path.

2. Delete all edges incident to a node in O; U U; from &;,Vj > 4. O; UU; are the
nodes that are matched by every maximum matching of G;. Delete all edges in G,
connecting two nodes in O; or a node in O; with a node in U;. These are the edges
that are not used by any maximum matching of G. Add the edges in &1, to G}.
Call the resulting graph G7_

3. Determine a maximum matching M;) in G}, by augmenting M;. (Note that M;
is still contained in G7_;.)

Figure 3: A combinatorial algorithm for computing a rank maximal matching

Observe that the algorithm maintains the invariant that M; is a maximum matching in
G'. We will show in the proof of correctness that the following invariants are also maintained:

e every greedy matching in G; has all its edges in G,

o M; is a greedy matching in Gj;.

The proof of correctness

We start with the following lemma, which proves that the edges that are deleted during phase
¢+ 1 do not belong to any greedy matching of G, provided that we maintain the invariants
until the end of phase 1.

Lemma 2 Suppose that every greedy matching of G; is a mazimum matching of G}. Then
every greedy matching of Giy1 is contained in G .

Proof: We need to show that the edges that we removed in the (i + 1)th phase of the
algorithm do not belong to any greedy matching of Gjy;.

Let Nj;+1 be any greedy matching of Gj;4;. Then its signature is (s1, $2, ..., Si, Sit1). IV; =
Nit1 N E<; is a matching with signature (sq, s, ..., s;) and is therefore, a greedy matching of
G;. So, N; is a maximum matching in G by the assumption. By Lemma 1, it has to pair the
nodes in U; and match all nodes in O; with nodes in E;.

Thus, V; does not use any edge of G; connecting two nodes in O; or a node in O; with
a node in U;. Since N;4p is a matching, it cannot use any such edge either, and moreover,
it cannot use any edge of rank higher than ¢ incident to some node in O; U U;. So, Ny is
contained in G7_ ;. 1

In addition, the deletions guarantee that the number of edges of each smaller rank is
preserved throughout the algorithm:

Lemma 3 For every ,j such that j > 1, the number of edges of rank at most 1 is the same
in M; and M;.

Proof: Since Mj; is obtained from M; by successive augmentations, every vertex matched
by M; is also matched by M;. Hence, all nodes in U; and O; are matched in M;.

Since G;- has no edges of rank greater than ¢ incident to nodes in O; and U; and no edges
of rank at most ¢ connecting two nodes in O; or a node in O; with a node in U;, M; must pair
the nodes in U; and must match nodes in O; with nodes in F;. And these edges have rank at
most 7. So, M; has at least as many edges of rank < ¢ as M; and M; cannot have more since
all the edges of rank <4 in G belong to G} and M; is a maximum matching in G}. 1

Now, we are ready to prove the correctness of our algorithm.

Lemma 4 For every k, the following statements hold:
(i) Bvery greedy matching in Gy, is a mazimum matching in G} ;
(ii) My is a greedy matching in Gj.

Proof: We prove this by induction on k. Since all edges in GG; have the same rank, a greedy
matching in G is the same as a maximum matching. Since M; is a maximum matching in
(G1, both statements hold for £ = 1.

Let us now prove these statements for ¢ + 1 assuming them to be true for i. Since M;

is a greedy matching in G;, its signature is (s1,...,$;). Suppose the signature of M;; is
(riy...,7i,riy1). By Lemma 3, we know that for every k between 1 and 4, Z?Zl 8; = Z?Zl T;.
It follows that the signature of M; 1 is (s1,... , S, 7it+1) for some r; 11 < s;41.

By the induction hypothesis, every greedy matching of G; is a maximum matching of G.
Hence, by Lemma 2, any greedy matching of Gy is contained in G}, ;. Thus there is a
matching of cardinality s; + ...+ s; + s;41 in G;_H. Since M;41 is a maximum matching in
G;'+1’ its cardinality is at least s; +...s; + s;41. Thus 741 = s;41.

Hence, M;,; is a greedy matching in G;4;. It is now easy to show that every greedy
matching of Gy is a maximum matching of G ;. Let N;;1 be any greedy matching of
Git1. By the induction hypothesis and Lemma 2, we know that N;; is contained in G, 41
N;41 has cardinality s; + s2 + ... + s;41, which is equal to the cardinality of M;,;, which
is a maximum matching of G/, 41~ Hence, N;i1 is also a maximum matching of G 41- This
completes the proof of the lemma.]

The running time of the algorithm

Theorem 1 A rank-mazimal matching can be computed in time O(min(n + C,C - /n) - m),
where C' is the mazimal rank of an edge in an optimal solution

Proof: Consider a fixed phase. We first determine the partition of the node set and then
reduce the edge sets. This takes time O(m). We next compute M;; from M; by augmenting
along augmenting paths. Using the algorithm of Hopcroft and Karp [6], this takes time
O(min(y/n, |[Mit1| — |M;] 4+ 1) - m). The total number of phases is 7 and hence the overall
running time is O(min(n + 7,7 - /n) - m).

We next show how to replace r by C. At the beginning of each phase, say phase i, we first
check whether M;_; is already a maximum matching in G, where G’ denotes the graph
consisting of all edges, of all ranks, that are still present at the beginning of phase i. This
takes time O(m). If so, we stop. If not, we continue as described above. In this way, only C
phases are executed.]

3 A Reduction to Weighted Matchings

In this section, we present another algorithm to compute a greedy matching in the graph
G = (AUP,E). This algorithm transforms the greedy matching problem into the maximum
weight matching problem. In order to do so, as mentioned in Section 1, one can give each
edge of rank i the weight n"~¢, where r is the maximum rank of any edge in G. It is then
easy to see that a maximum weight matching is a greedy matching.

The best strongly polynomial algorithm for solving the maximum weighted matching (as
described in [10]) uses the primal-dual schema and has running time O(n(m + nlogn)).
Moreover, when the edge weights are integers there are weakly polynomial algorithms [1, 11]

with running time O(y/nmlog (nD)) where D is the largest edge weight. These algorithms
are based on scaling. All the above running times assume that arithmetic operations can
be performed in constant time. In our case, since any edge weight may be as large as n” 1,
each operation might take time up to r (this assumes that numbers up to n are handled in
constant time). Together with the fact that the algorithms use numbers which are bounded
by a constant times the maximal edge weight, we get a running time of rn(m + nlogn) and
rv/nmlogn respectively. The space requirement also increases since for each edge we have to
keep a vector of size r for its edge weight. This limits the feasible problem size.

Our algorithm is based on the strongly polynomial primal-dual algorithm. However, as
we will show there is no need for shortest path computations and moreover, we have tackled
the problem of the arithmetic operations due to the large edge weights. Its running time
is O(Cnm), where C < r is the maximal rank used in an optimal solution. The space
requirement is O(m). We leave it as an open question whether similar techniques as used in
[1, 11] can be used in order to get a better running time of (C'y/nm) using weighted matching
algorithms.

Let us give some background. The maximum weighted matching problem can be formu-
lated as a linear programming problem. We associate a variable z(e) with every edge e and
constrain it to 0 < z(e) < 1. In the dual linear program we use the variable 7(v) for the
variable corresponding to node v. The function 7 is called the potential function. Moreover,
let the reduced cost of an edge e with endpoints a and b be ¢(e) = w(a) + 7(b) — we, where
w, is the weight of the edge. An edge is called tight if it has reduced cost equal to zero. A
tight non-negative potential function proves the optimality of a maximum weight matching.
For more details see [10] and [12].

Our algorithm uses scaling and works in phases. Recall that M is the set of matchings
in which a maximal number of nodes in A is matched through their highest ranked edge. For
i > 2, M, is the subset of M; ; in which a maximal number of nodes in A is paired through
their rank ¢ edges. Note that a greedy matching belongs to all M;’s. At the end of phase
i, our algorithm constructs a matching M; € M; and a potential function m; : AUP — N
proving its optimality. In phase 7 we use cost n‘~J for the edges of rank j.

An overview of the algorithm

All the edges in phase 1 are rank 1 edges. So, M; is a maximum cardinality matching, which
can be computed by the Hopcroft-Karp algorithm [6] which takes time O(y/nm). Moreover,
we set the potential m; of all nodes in A and all free nodes in P to zero and the potential of
all matched nodes in P to one. In this way m; proves the optimality of M;.

Assume now we have completed phase i — 1. We have a matching M; 1 € M, ; and a
potential function m;_; proving its optimality, i.e., for every edge e = (a,b) € £<;—1 we have
¢i—1(e) > 0 and with equality for the edges in M; ; and we have m;_1(v) > 0 for all nodes
and with equality for free nodes. These are the usual optimality conditions.

We now scale up. We multiply all node potentials by n, add one to the potentials of the
nodes in A, for every edge in £<;_1 we multiply the weight by n, we add the edges in & and
set their weight to one. Call the new potential function ;.

It is easy to see that by this scaling up, the resulting potential function ; is non-negative
and also that ¢;(e) > 0 is true for all edges. We ensure this condition holds for the edges in
&; by adding one to the potentials of the nodes in A. For the edges in £<;_1 it holds trivially.
Finally observe that edges in M;_; have reduced cost exactly one.

We now find M; by any of the standard algorithms, e.g., the one described in [10]. The
algorithm starts with the empty matching, and the potential function 7; obtained from the
scaling step. The only initially possible violated optimality condition, is that a free node v
might have potential 7;(v) > 0. The algorithm iteratively reduces the number of such free
nodes, by either augmenting along a suitable alternating path of tight edges, or by reducing
the total potential. In both situations, the other optimality conditions are always preserved.
When all remaining free nodes have potential zero, all optimality conditions are satisfied and
thus the obtained matching M; is optimal, and the potential function 7; proves its optimality.

Lemma 5 M; has the same number of edges of all ranks 5,7 <1 as M;_1.

Proof: Because of the steeply decreasing sequence of weights, for any value of j < i, if M;
has a smaller number of edges of rank j than M; ;, then the weight of M; is smaller than
the current weight of M;_;, independent of the number of edges of rank > 7 matched by M;.
This contradicts that M; is the maximum weight matching.]

The following lemma is valuable for our algorithm’s running time.
Lemma 6 Let I1; be the sum of all w; potentials. Then
nll—1 = nw(M;—1) < w(M;) <II; < nll;_1 + n.

Proof: The first equality holds since m;_; proves the optimality of M;_;. The second
inequality holds since M; contains the same number of edges of all ranks j, 7 < ¢ as M;
and maybe some edges of rank 7 and the weights of all edges in £<;_1 have been multiplied
by n. The third inequality holds since m; is non-negative and covers all edges, and the final
inequality follows from the definition of ;.]

We next analyze the running time of a phase.

Lemma 7 Assuming that all arithmetic operations can be performed in constant time, a
phase takes O(nm) running time.

Proof: The lemma follows from the fact that each augmentation either increases the size
of the matching or increases the number of free nodes of potential zero, thus there can be at
most 2n augmentations. Moreover, each potential change decreases the total potential by at
least one, and therefore by Lemma, 6 there can be at most n global potential changes. Each
such operation takes time O(m). Finally, the scaling part of the phase takes time O(n + m).

|

Cost of arithmetic operations

Let us now address the question of arithmetic. Node potentials, edge costs, and reduced costs
of edges are bounded by n™ and hence the cost of an arithmetic operation might be as large
as n (this assumes that numbers up to n are handled in constant time).

We want to argue that edges of large reduced cost can be ignored. The following two
lemmas allow us to do so.

Lemma 8 If the reduced cost of an edge, c(e) is more than n at the beginning of a phase,
then this edge cannot become tight during the execution of this phase.

Proof: In each phase there are at most n global potential changes. We may assume that
each such change increments and decrements node potentials by one. Thus the reduced cost
of an edge can be decreased by at most n in a phase and hence any edge which has reduced
cost more than n at the beginning of a phase cannot become tight during the phase.]

Lemma 9 Any edge which is non-tight at the end of a phase, will never become tight later
in the execution and can therefore be deleted.

Proof: Assume that an edge has reduced cost ¢(e) > n + 1 at the beginning of a phase.
Then it has reduced cost at least 1 at the end of the phase. At the beginning of the next
phase, this edge has reduced cost &(e) = n x¢(e) +1 > n + 1. Thus this edge will never
become tight later in the execution and can therefore be deleted.]

From the above, we can conclude that all old edges will have reduced cost one at the
beginning of a phase and also that the reduced costs are bounded by O(n) and hence can be
handled in constant time. It only remains to show that we can compute the initial reduced
costs of newly added edges in constant time.

Their weight is one and hence their reduced cost will be larger than n+1 if either endpoint
has potential two or more at the end of the previous phase. So let us assume that we know
at the end of a phase, which nodes have potential zero, one or at least two. The former nodes
have potential zero or one at the beginning of the next phase, the middle nodes have potential
n or n+ 1 and the latter nodes have potential at least 2n at the beginning of the next phase
and hence at least n at the end of the next phase. Thus we only need to distinguish potential
values 0 to n+1 and +00. The oo category contains all nodes whose potential is guaranteed to
be at least 2 at the end of the phase. Potentials up to n+ 1 are incremented and decremented
during a phase. Once a node potential reaches n + 2, the node is moved to the oco-category.

Now we present the full scaling algorithm.

The scaling algorithm

We start with M7, which is a maximum cardinality matching in the graph defined by &1, the
edges of rank 1, and potential 7; such that 71(a) = 0 Va € A; m1(b) = 0V free nodes b € B
and 71 (b) = 1 V matched nodes b € B. All edges of rank 1 have weight 1.

For i = 2 to r do the following steps, and output M,.

1. If M; 1 is a perfect matching, then output M; ; and exit, else define
mi(w) =m)-n+1 Yve A
mi(v) = m(v) -n Yo € B

2. Add the edges in &; to the graph. For every new edge e, if either endpoint of e is in the
oo category, delete e. For every remaining new edge e, compute the reduced cost of e
by setting w(e) = 1.

10

3. Determine M; by using the primal-dual algorithm for maximum weighted matching in
the above graph. With every edge, store its reduced cost. Update the reduced cost
whenever the potential of one of its endpoints changes. Whenever a node potential
reaches n + 2, move the node to the co category.

4. Delete all non-tight edges.
If for any v, m;(v) > 2, then move v to the oo category.

The following theorem summarizes our algorithm’s running time.

Theorem 2 The scaling mazimum weighted matching algorithm computes a rank mazimal
matching in O(Cnm) time, where C is the largest rank used in an optimal solution. It uses
space O(m).

Proof: The running time follows directly from Lemma 7 and the fact that every arithmetic
operation can be performed in constant time. The space requirement follows from the fact
that we need to store only the reduced costs of the edges, and the node potentials. Both are
bounded by O(n), thus use constant space.]

4 Conclusion and open problems

We present two algorithms to compute a greedy matching in a bipartite graph where each
edge has a rank. Both the algorithms are improvements over the traditional solution of this
problem using the Hungarian algorithm. We describe a combinatorial algorithm with running
time O(C'y/nm) and a scaling algorithm with running time O(Cnm), where C' is the highest
rank used in a greedy matching. Our scaling algorithm uses the strongly polynomial primal-
dual algorithm to compute a maximum weight matching. We leave it as an open question
whether the weakly polynomial algorithms for maximum weight matchings can be adapted
to give better running times for computing a greedy matching.

References

[1] H. N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. STAM
Journal of Computing, 18:1013-1036, 1989.

[2] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69:9-15, 1962.

3] R. L. Graham, M. Grotschel, and L. Lovasz, editors. The Handbook of Combinatorics,
chapter 3, Matchings and Extensions, pages 179-232. North Holland, 1995.

[4] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, 1989.

[5] M. M. Halldérsson, K. Iwama, S. Miyasaki, and H. Yanagisawa. Improved approximation
of the stable marriage problem. to appear in ESA 2003.

11

[6]

[7]

[10]

[11]

[12]

[13]

J. E. Hopcroft and R. M. Karp. An n®/? algorithm for maximum matching in bipartite
graphs. SIAM Journal on Computing, 2:225-231, 1973.

R. W. Irving. Matching medical students to pairs of hospitals: a new variation on a well-
known theme. In Proceedings of the Sizth European Symposium on Algorithms, pages
381-392, 1998.

R. W. Irving. Greedy matchings. Technical Report TR-2003-136, University of Glasgow,
April 2003.

R. W. Irving, D. F. Manlove, and S. Scott. Strong stability in the hospitals/residents
problem. In Proceedings of the STACS, pages 439-450, 2003.

K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999.

J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum
cycle problems. Mathematical Programming, 54:41-56, 1992.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization Algorithms and Com-
plexity. Prentice Hall, 1982.

A. E. Roth. The evaluation of the labor market for medical interns and residents: a case
study in game theory. Journal of Political Economy, 92(6), 1984.

12

