
Rank-Maximal MathingsRobert W. Irving� Telikepalli Kavithay Kurt MehlhornyDimitrios Mihaily Katarzyna PaluhzAbstratSuppose that eah member of a set A of appliants ranks a subset of a set P of postsin an order of preferene, possibly involving ties. A mathing is a set of (appliant, post)pairs suh that eah appliant and eah post appears in at most one pair. A greedymathing is one in whih the maximum possible number of appliants are mathed totheir �rst hoie post, and subjet to that ondition, the maximum possible number aremathed to their seond hoie post, and so on. This is a relevant onept in any pratialmathing situation and it was �rst studied by Irving [8℄.We de�ne the bipartite graph G = (A [P ; E), where E onsists of all pairs (a; p)suh that post p appears in the preferene list of appliant a. Eah edge (a; p) hasa rank i, whih means that post p is an ith hoie for appliant a. The traditionalsolution of omputing a greedy mathing in G would be to use the Hungarian algorithm toompute a maximum weight mathing by assigning a suitably steeply dereasing sequeneof weights to the edges. This would result in an algorithm with worst ase running timern(m + n logn) and the spae requirement �(rm), where n is the number of verties, mis the number of edges and r is the largest rank of an edge.Here, we desribe two algorithms to ompute a greedy mathing that improve upon thisalgorithm. We give a ombinatorial algorithm with running time O(min(n+C;Cpn)m),where C � r is the maximal rank of an edge used in a greedy mathing. This algo-rithm works in phases and uses the maximum ardinality mathing algorithm. We alsogive an O(Cnm) algorithm that takles the problem of large edge weights introdued bythe Hungarian algorithm. This algorithm uses saling and works in phases. The spaerequirement of both these algorithms is O(m).1 Introdution1.1 The problemLet A be a set of appliants and P be a set of posts, and suppose that, assoiated with eahmember of A is a partially ordered preferene list omprising a subset of the elements of P.A mathing of A to P is an alloation of eah appliant to at most one post so that eahpost is �lled by at most one appliant; in other words it is a mathing in the bipartite graphG = (A[P; E), where E onsists of all pairs (a; p) suh that post p appears in the preferenelist of appliant a.�Department of Computing Siene, University of Glasgow, UK. rwi�ds.gla.a.ukyMax-Plank-Institut f�ur Informatik, Saarbr�uken, Germany. fkavitha, mehlhorn, mihailg�mpi-sb.mpg.dezInstitute of Computer Siene, University of Wrolaw, Poland. abraka�ii.uni.wro.pl. Work done whilethe author was at MPII supported by Marie Curie Dotoral Fellowship1

Eah edge (a; p) has a rank i, whih means that post p is an ith hoie for appliant a.In any appliant a's list, there may be any number of ith hoie posts, even zero. We believethat this is the natural way of formulating the problem of alloation of projets to studentsand the alloation of probationary posts to trainee teahers, for instane.In the ase where preferenes are expressed on both sides, we have the notion of variouskinds of stability to desribe optimal mathings. This is the domain of stable mathing prob-lems, whih have been studied extensively [2, 4, 5, 7, 9, 13℄. When preferenes are expressedon one side only (only appliants have preferenes over posts), a number of di�erent kinds ofoptimality an be de�ned. Here we study the notion of greedy or rank-maximal mathings,introdued in [8℄.Let r be the largest rank that an appliant uses to rank any post.De�nition 1 The signature �(M) of a mathing M is de�ned to be the r-tuple (x1; :::; xr)where for eah 1 � i � r, xi is the number of appliants who are mathed in M with one oftheir ith hoie posts.As a matter of onveniene, we abbreviate a signature (x1; :::; xr) by (x1; :::; xd) if xd > 0and xi = 0 for i = d+ 1; :::; r.We de�ne a total order�, similar to lexiographi order, on signatures as follows: (x1; :::; xr)� (y1; :::; yr) if xi = yi for 1 � i < k and xk < yk, for some k. Denote by M the set of allmathings of A to P.De�nition 2 A mathing that has the maximum signature under this ordering is a greedyor rank-maximal mathing. Alternately, or equivalently, de�ne M1 to be the subset of M, inwhih the maximum possible number of appliants are mathed to their �rst hoie post. Fori = 2; 3; :::; r de�ne Mi to be the subset of Mi�1 in whih the maximum possible number ofappliants are mathed to their ith hoie post. A mathing that belongs to Mr is a greedyor rank-maximal mathing.For a given problem instane, there might be more than one greedy mathing, but it is aonsequene of the de�nition that all greedy mathings must have the same size.It is easy to see that a simple greedy algorithm, in whih we assign the maximum numberof appliants to their �rst hoie post, then the maximum number to their seond hoie post,and so on, is by no means guaranteed to lead to a greedy mathing.1.2 Previous Results and New ResultsAs mentioned earlier, the ase where preferenes are expressed by both sides has been exten-sively studied in the area of stable mathing problems. When preferenes are expressed byonly one side, Irving in [8℄ onsiders the problem of omputing a greedy mathing in instaneswhere the preferene list for any appliant a 2 A is stritly ordered i.e., there are no ties in a'slist. The running time of the greedy mathing algorithm in [8℄ is O(PCk=1 k2(xk+1)(n+sk)),where (x1; :::; xC) is the signature of a greedy mathing and sk = x1 + � � � + xk. The worstase omplexity of this algorithm in the ase where all preferene lists are of length boundedby d, is O(d3n2).We give a simple ombinatorial algorithm with running time O(min(n + C;Cpn)m) foronstruting a greedy mathing. 2

We also give an O(Cnm) algorithm for onstruting a greedy mathing by transformingthis problem to a maximum weight mathing problem. The algorithms given here illustratetwo di�erent approahes to ompute a greedy mathing.1.3 TehniquesOur ombinatorial algorithm runs in phases. Let the edge set of G be E = E1 [E2 [::: [Er,where Ei is the set of edges of rank i. In phase i, our algorithm onstruts a greedy mathingMi in the graph Gi = (A[P; E1 [E2 [:::[Ei). The algorithm omputes Mi+1 by omputinga maximum mathing in a suitable subgraph of Gi+1 and by augmenting Mi.Note that a greedy mathing is very di�erent from a maximum ardinality mathingbut we modify the graph Gi+1 so as to transform the greedy mathing problem to that ofomputing a maximum mathing.A greedy mathing an also be found by transforming the input to an instane of thelassial maximum weight bipartite mathing problem. This involves alloating a suitablysteeply dereasing sequene of weights to the edges. For instane, giving a weight of nr�1 tothe edge (a; p) if p is a �rst hoie of a, a weight of nr�2 if p is a seond hoie of a, and soon. But the use of suh large integers as edge weights implies that an arithmeti operationmight ost up to �(r) time and the spae requirement beomes �(rm). We present a salingalgorithm, whih works in phases, to takle the problem of large edge weights. This algorithmhas a running time of O(Cnm) and it uses O(m) spae.Organization of the Paper: In Setion 2 we desribe the ombinatorial algorithm andanalyse it. In Setion 3 we desribe the saling algorithm and its analysis. Setion 4 ontainssome onluding remarks and open problems.2 A Combinatorial AlgorithmIn this setion we present a ombinatorial algorithm for omputing a greedy mathing in abipartite graph G = (A[P; E). Before presenting the algorithm, let us examine the strutureof the problem and build some intuition.For the time being, let us assume that, for every i, Ei ontains exatly one edge inidentto any a 2 A. First, we an notie that in this ase we an tell at one how many edges fromE1 belong to a greedy mathing as well as whih nodes from P are mathed by them. Let usdenote them by P1. If some vertex p 2 P1 is onneted through E1 edges to more than onevertex a 2 A, then we only know that in a greedy mathing, one of them must be mathedwith p through E1. We do not know, however, whih of them gets assigned to p and whihannot. Nevertheless, without any harm, we an delete from the graph all the edges of rankhigher than 1 inident to verties belonging to P1.We an observe that if we math all the nodes in P1 through E1 edges arbitrarily, deleteedges of rank higher than one inident to nodes in P1 and then extend this mathing alongaugmenting paths, then the number of E1 edges in the mathing will not hange.What an we say about E2 edges? Here we may sometimes be unertain whih vertiesbelonging to P should be mathed through E2 edges in a greedy mathing. It is so, forexample, in Figure 1. We know that p2 is mathed through an E1 edge but we do not knowa priori whih of p1; p3 gets mathed with an E2 edge. For a1 and a2 we an notie that theymust be mathed by edges of rank at most two in a greedy mathing. Hene, we an deleteall edges ranked higher than 2 inident upon a1, a2. But do deletions of this kind suÆe?3

We would like to delete all edges that we know will never belong to any greedy mathingin order to redue the greedy mathing problem to a maximum mathing problem in theredued graph. We will show that we an determine whih edges should be deleted usingsome well-known notions and fats from mathing theory. We also drop the assumption thatfor every i, Ei ontains exatly one edge inident to any a 2 A.
2

p
1

p
2
p3

1
1

2

2

pa
3 4

1

a

a1

Figure 1: One of p1; p3 an bemathed with a rank 2 edge.
Let M be a maximum mathing in a bipartite graph G0.We will show that the vertex set of G0 an be partitioned intothree disjoint sets: E;O, and U . Nodes in E, O, and U arealled even, odd, and unreahable, respetively [3℄. E (O) arethe nodes that an be reahed in G0 from a free node by aneven (odd) length alternating path (with respet to M), andU are the nodes that annot be reahed from a free node byany alternating path. In Figure 1, f(a1; p1); (a2; p2); (a3; p4)gis a maximummathing. Then the even nodes are fp1; p2; p3g.The odd nodes are fa1; a2g and the unreahable nodes arefa3; p4g.The following lemma is well-known in mathing theory.We inlude its proof for ompleteness.Lemma 1 The sets E, O and U are pairwise disjoint. Every maximum mathing in G0 pairsthe nodes in U , mathes all nodes in O, mathes eah node in O with a node in E, and hasardinality equal to jOj+ jU j=2. There is no edge in G0 onneting a node in E with a nodein U , or between two nodes of E. No maximum mathing in G0 uses an edge onneting twonodes in O or a node in O with a node in U .Proof: Assume a node v is reahable by an even length alternating path from the free nodea and by an odd length alternating path from the free node b. Then v is on the same sideas a and the omposition of the paths is an augmenting path from a to b. Thus M is notmaximum, a ontradition.Every node not reahable by an alternating path must be mathed (otherwise it wouldbe reahable by a path of length zero) and hene must be mathed with a node whih isalso unreahable. M mathes the nodes in O with nodes in E. Thus the ardinality of M isjOj+ jU j=2.Consider any maximal mathing N . Then M � N onsists of a set of alternating ylesand paths. Augmenting any suh paths and yles to M leaves the odd and the unreahablenodes mathed and also does not hange the status of any node.Nodes in E are reahable by even length alternating paths. Suh paths end in a mathingedge. An edge onneting a node in E to a node in U is non-mathing and hene ould beused to extend the alternating path, a ontradition to the de�nition of U .Sine nodes in E are reahable by alternating paths ending in a mathing edge, if there isan edge between two nodes of E, then it is a non-mathing edge and we an use it to onstrutan augmenting path. This ontradits the maximality of M .Sine any maximum mathing pairs the nodes in U and mathes nodes in O with nodesin E, no maximum mathing uses an edge onneting two odd nodes or an odd node with anunreahable node.

4

The above fats formalise the ideas that we developed at the beginning of this setion.Consider the edge set E = E1 [E2. We �rst determine a maximum mathing M1 in G1 =(A [P; E1) and identify the sets of odd, even and unreahable verties: O1; E1, and U1.Suppose we remove all rank 2 edges inident upon nodes in O1 [U1, remove rank 1 edgesbetween two nodes of O1 or a node of O1 and a node of U1 and then augment M1 to obtaina mathing M2. Sine M2 is obtained by augmenting M1, nodes mathed in M1 are stillmathed in M2. So, verties in O1 and U1 are still mathed. By virtue of the edges that weremoved, we know that eah node in O1 has to be mathed by a rank 1 edge to a vertex inE1 and eah node in U1 is mathed to another node in U1 by a rank 1 edge. Hene, M2 hasat least jO1j + jU1j=2 nodes mathed by rank 1 edges. So, this way we preserve the numberof nodes that are mathed by rank 1 edges. If we prove that every edge that we removedan never our in a greedy mathing and sine M2 is a maximum mathing in the remaininggraph, then we an see that M2 is indeed a greedy mathing in (A[P; E1 [E2).
p3a

2
a

1p1a

3

2

3

2

11

3

M = {(a ,p),(a ,p),(a ,p)}1321 2 321M = {(a ,p),(a ,p)}2211

2
p

p

p

p

a

a

a

Figure 2: A simple example.
Let us onsider the simple exampleshown in Figure 2, where the bold linesindiate rank 1 edges and the dashedlines indiate rank 2 edges. M1 =f(a1; p1); (a2; p2)g is a maximum math-ing in the graph G1 onsisting of onlyrank 1 edges. O1 = fp1; p2g; E1 =fa1; a2; a3; p3g; U1 = ;. Now we remove theedges (a3; p2) and (a2; p1). Then we aug-ment M1 to obtain M2 whih onsists oftwo edges of E1 and one edge of E2. If wehad augmented M1 without removing the rank 2 edge fa3; p2g, we would have ended up in amaximum mathing with one edge of E1 and two edges of E2 - not a greedy mathing.We now present the following iterative algorithm for onstruting a greedy mathingM . Inthe i-th iteration the algorithm onstruts a greedy mathingMi inGi = (A[P; E1[: : :[Ei). If(s1; s2; : : : ; si; : : :) is the signature of a greedy mathing, thenMi has signature (s1; s2; : : : ; si).We start with G01 = G1, and M1 any maximum mathing in G01.For i = 1 to r � 1 do the following steps, and output Mr.1. Partition the nodes of A [B into three disjoint sets: Ei, Oi, and Ui. Ei and Oi,as de�ned before, are the nodes that an be reahed in G0i from a free node by aneven or odd length alternating path (with respet to Mi), respetively, and Ui arethe nodes that annot be reahed from a free node by an alternating path.2. Delete all edges inident to a node in Oi [Ui from Ej ;8j > i. Oi [Ui are thenodes that are mathed by every maximum mathing of G0i. Delete all edges in G0ionneting two nodes in Oi or a node in Oi with a node in Ui. These are the edgesthat are not used by any maximum mathing of G0i. Add the edges in Ei+1 to G0i.Call the resulting graph G0i+1.3. Determine a maximum mathing Mi+1 in G0i+1 by augmenting Mi. (Note that Miis still ontained in G0i+1.)Figure 3: A ombinatorial algorithm for omputing a rank maximal mathing5

Observe that the algorithm maintains the invariant that Mi is a maximum mathing inG0i. We will show in the proof of orretness that the following invariants are also maintained:� every greedy mathing in Gi has all its edges in G0i� Mi is a greedy mathing in Gi.The proof of orretnessWe start with the following lemma, whih proves that the edges that are deleted during phasei+1 do not belong to any greedy mathing of Gi+1, provided that we maintain the invariantsuntil the end of phase i.Lemma 2 Suppose that every greedy mathing of Gi is a maximum mathing of G0i. Thenevery greedy mathing of Gi+1 is ontained in G0i+1.Proof: We need to show that the edges that we removed in the (i + 1)th phase of thealgorithm do not belong to any greedy mathing of Gi+1.Let Ni+1 be any greedy mathing of Gi+1. Then its signature is (s1; s2; :::; si; si+1). Ni =Ni+1 \ E�i is a mathing with signature (s1; s2; :::; si) and is therefore, a greedy mathing ofGi. So, Ni is a maximum mathing in G0i by the assumption. By Lemma 1, it has to pair thenodes in Ui and math all nodes in Oi with nodes in Ei.Thus, Ni does not use any edge of Gi onneting two nodes in Oi or a node in Oi witha node in Ui. Sine Ni+1 is a mathing, it annot use any suh edge either, and moreover,it annot use any edge of rank higher than i inident to some node in Oi [Ui. So, Ni+1 isontained in G0i+1.In addition, the deletions guarantee that the number of edges of eah smaller rank ispreserved throughout the algorithm:Lemma 3 For every i; j suh that j > i, the number of edges of rank at most i is the samein Mi and Mj.Proof: Sine Mj is obtained from Mi by suessive augmentations, every vertex mathedby Mi is also mathed by Mj . Hene, all nodes in Ui and Oi are mathed in Mj .Sine G0j has no edges of rank greater than i inident to nodes in Oi and Ui and no edgesof rank at most i onneting two nodes in Oi or a node in Oi with a node in Ui, Mj must pairthe nodes in Ui and must math nodes in Oi with nodes in Ei. And these edges have rank atmost i. So, Mj has at least as many edges of rank � i as Mi and Mj annot have more sineall the edges of rank � i in G0j belong to G0i and Mi is a maximum mathing in G0i.Now, we are ready to prove the orretness of our algorithm.Lemma 4 For every k, the following statements hold:(i) Every greedy mathing in Gk is a maximum mathing in G0k;(ii) Mk is a greedy mathing in Gk. 6

Proof: We prove this by indution on k. Sine all edges in G1 have the same rank, a greedymathing in G1 is the same as a maximum mathing. Sine M1 is a maximum mathing inG1, both statements hold for k = 1.Let us now prove these statements for i + 1 assuming them to be true for i. Sine Miis a greedy mathing in Gi, its signature is (s1; : : : ; si). Suppose the signature of Mi+1 is(r1; : : : ; ri; ri+1). By Lemma 3, we know that for every k between 1 and i,Pkj=1 si =Pkj=1 ri.It follows that the signature of Mi+1 is (s1; : : : ; si; ri+1) for some ri+1 � si+1.By the indution hypothesis, every greedy mathing of Gi is a maximum mathing of G0i.Hene, by Lemma 2, any greedy mathing of Gi+1 is ontained in G0i+1. Thus there is amathing of ardinality s1 + : : : + si + si+1 in G0i+1. Sine Mi+1 is a maximum mathing inG0i+1, its ardinality is at least s1 + : : : si + si+1. Thus ri+1 = si+1.Hene, Mi+1 is a greedy mathing in Gi+1. It is now easy to show that every greedymathing of Gi+1 is a maximum mathing of G0i+1. Let Ni+1 be any greedy mathing ofGi+1. By the indution hypothesis and Lemma 2, we know that Ni+1 is ontained in G0i+1.Ni+1 has ardinality s1 + s2 + : : : + si+1, whih is equal to the ardinality of Mi+1, whihis a maximum mathing of G0i+1. Hene, Ni+1 is also a maximum mathing of G0i+1. Thisompletes the proof of the lemma.The running time of the algorithmTheorem 1 A rank-maximal mathing an be omputed in time O(min(n+ C;C � pn) �m),where C is the maximal rank of an edge in an optimal solutionProof: Consider a �xed phase. We �rst determine the partition of the node set and thenredue the edge sets. This takes time O(m). We next ompute Mi+1 from Mi by augmentingalong augmenting paths. Using the algorithm of Hoproft and Karp [6℄, this takes timeO(min(pn; jMi+1j � jMij + 1) � m). The total number of phases is r and hene the overallrunning time is O(min(n+ r; r � pn) �m).We next show how to replae r by C. At the beginning of eah phase, say phase i, we �rsthek whether Mi�1 is already a maximum mathing in G0ir, where G0ir denotes the graphonsisting of all edges, of all ranks, that are still present at the beginning of phase i. Thistakes time O(m). If so, we stop. If not, we ontinue as desribed above. In this way, only Cphases are exeuted.3 A Redution to Weighted MathingsIn this setion, we present another algorithm to ompute a greedy mathing in the graphG = (A[P; E). This algorithm transforms the greedy mathing problem into the maximumweight mathing problem. In order to do so, as mentioned in Setion 1, one an give eahedge of rank i the weight nr�i, where r is the maximum rank of any edge in G. It is theneasy to see that a maximum weight mathing is a greedy mathing.The best strongly polynomial algorithm for solving the maximum weighted mathing (asdesribed in [10℄) uses the primal-dual shema and has running time O(n(m + n logn)).Moreover, when the edge weights are integers there are weakly polynomial algorithms [1, 11℄7

with running time O(pnm log (nD)) where D is the largest edge weight. These algorithmsare based on saling. All the above running times assume that arithmeti operations anbe performed in onstant time. In our ase, sine any edge weight may be as large as nr�1,eah operation might take time up to r (this assumes that numbers up to n are handled inonstant time). Together with the fat that the algorithms use numbers whih are boundedby a onstant times the maximal edge weight, we get a running time of rn(m+ n log n) andrpnm logn respetively. The spae requirement also inreases sine for eah edge we have tokeep a vetor of size r for its edge weight. This limits the feasible problem size.Our algorithm is based on the strongly polynomial primal-dual algorithm. However, aswe will show there is no need for shortest path omputations and moreover, we have takledthe problem of the arithmeti operations due to the large edge weights. Its running timeis O(Cnm), where C � r is the maximal rank used in an optimal solution. The spaerequirement is O(m). We leave it as an open question whether similar tehniques as used in[1, 11℄ an be used in order to get a better running time of (Cpnm) using weighted mathingalgorithms.Let us give some bakground. The maximum weighted mathing problem an be formu-lated as a linear programming problem. We assoiate a variable x(e) with every edge e andonstrain it to 0 � x(e) � 1. In the dual linear program we use the variable �(v) for thevariable orresponding to node v. The funtion � is alled the potential funtion. Moreover,let the redued ost of an edge e with endpoints a and b be �(e) = �(a) + �(b) � we, wherewe is the weight of the edge. An edge is alled tight if it has redued ost equal to zero. Atight non-negative potential funtion proves the optimality of a maximum weight mathing.For more details see [10℄ and [12℄.Our algorithm uses saling and works in phases. Reall that M1 is the set of mathingsin whih a maximal number of nodes in A is mathed through their highest ranked edge. Fori � 2, Mi is the subset of Mi�1 in whih a maximal number of nodes in A is paired throughtheir rank i edges. Note that a greedy mathing belongs to all Mi's. At the end of phasei, our algorithm onstruts a mathing Mi 2 Mi and a potential funtion �i : A [P 7! Nproving its optimality. In phase i we use ost ni�j for the edges of rank j.An overview of the algorithmAll the edges in phase 1 are rank 1 edges. So, M1 is a maximum ardinality mathing, whihan be omputed by the Hoproft-Karp algorithm [6℄ whih takes time O(pnm). Moreover,we set the potential �1 of all nodes in A and all free nodes in P to zero and the potential ofall mathed nodes in P to one. In this way �1 proves the optimality of M1.Assume now we have ompleted phase i � 1. We have a mathing Mi�1 2 Mi�1 and apotential funtion �i�1 proving its optimality, i.e., for every edge e = (a; b) 2 E�i�1 we have�i�1(e) � 0 and with equality for the edges in Mi�1 and we have �i�1(v) � 0 for all nodesand with equality for free nodes. These are the usual optimality onditions.We now sale up. We multiply all node potentials by n, add one to the potentials of thenodes in A, for every edge in E�i�1 we multiply the weight by n, we add the edges in Ei andset their weight to one. Call the new potential funtion �i.It is easy to see that by this saling up, the resulting potential funtion �i is non-negativeand also that �i(e) � 0 is true for all edges. We ensure this ondition holds for the edges inEi by adding one to the potentials of the nodes in A. For the edges in E�i�1 it holds trivially.Finally observe that edges in Mi�1 have redued ost exatly one.8

We now �nd Mi by any of the standard algorithms, e.g., the one desribed in [10℄. Thealgorithm starts with the empty mathing, and the potential funtion �i obtained from thesaling step. The only initially possible violated optimality ondition, is that a free node vmight have potential �i(v) > 0. The algorithm iteratively redues the number of suh freenodes, by either augmenting along a suitable alternating path of tight edges, or by reduingthe total potential. In both situations, the other optimality onditions are always preserved.When all remaining free nodes have potential zero, all optimality onditions are satis�ed andthus the obtained mathingMi is optimal, and the potential funtion �i proves its optimality.Lemma 5 Mi has the same number of edges of all ranks j; j < i as Mi�1.Proof: Beause of the steeply dereasing sequene of weights, for any value of j < i, if Mihas a smaller number of edges of rank j than Mi�1, then the weight of Mi is smaller thanthe urrent weight of Mi�1, independent of the number of edges of rank > j mathed by Mi.This ontradits that Mi is the maximum weight mathing.The following lemma is valuable for our algorithm's running time.Lemma 6 Let �i be the sum of all �i potentials. Thenn�i�1 = nw(Mi�1) � w(Mi) � �i � n�i�1 + n:Proof: The �rst equality holds sine �i�1 proves the optimality of Mi�1. The seondinequality holds sine Mi ontains the same number of edges of all ranks j, j < i as Mi�1and maybe some edges of rank i and the weights of all edges in E�i�1 have been multipliedby n. The third inequality holds sine �i is non-negative and overs all edges, and the �nalinequality follows from the de�nition of �i.We next analyze the running time of a phase.Lemma 7 Assuming that all arithmeti operations an be performed in onstant time, aphase takes O(nm) running time.Proof: The lemma follows from the fat that eah augmentation either inreases the sizeof the mathing or inreases the number of free nodes of potential zero, thus there an be atmost 2n augmentations. Moreover, eah potential hange dereases the total potential by atleast one, and therefore by Lemma 6 there an be at most n global potential hanges. Eahsuh operation takes time O(m). Finally, the saling part of the phase takes time O(n+m).Cost of arithmeti operationsLet us now address the question of arithmeti. Node potentials, edge osts, and redued ostsof edges are bounded by nn and hene the ost of an arithmeti operation might be as largeas n (this assumes that numbers up to n are handled in onstant time).We want to argue that edges of large redued ost an be ignored. The following twolemmas allow us to do so. 9

Lemma 8 If the redued ost of an edge, �(e) is more than n at the beginning of a phase,then this edge annot beome tight during the exeution of this phase.Proof: In eah phase there are at most n global potential hanges. We may assume thateah suh hange inrements and derements node potentials by one. Thus the redued ostof an edge an be dereased by at most n in a phase and hene any edge whih has reduedost more than n at the beginning of a phase annot beome tight during the phase.Lemma 9 Any edge whih is non-tight at the end of a phase, will never beome tight laterin the exeution and an therefore be deleted.Proof: Assume that an edge has redued ost �(e) � n + 1 at the beginning of a phase.Then it has redued ost at least 1 at the end of the phase. At the beginning of the nextphase, this edge has redued ost �0(e) = n � �(e) + 1 � n + 1. Thus this edge will neverbeome tight later in the exeution and an therefore be deleted.From the above, we an onlude that all old edges will have redued ost one at thebeginning of a phase and also that the redued osts are bounded by O(n) and hene an behandled in onstant time. It only remains to show that we an ompute the initial reduedosts of newly added edges in onstant time.Their weight is one and hene their redued ost will be larger than n+1 if either endpointhas potential two or more at the end of the previous phase. So let us assume that we knowat the end of a phase, whih nodes have potential zero, one or at least two. The former nodeshave potential zero or one at the beginning of the next phase, the middle nodes have potentialn or n+ 1 and the latter nodes have potential at least 2n at the beginning of the next phaseand hene at least n at the end of the next phase. Thus we only need to distinguish potentialvalues 0 to n+1 and +1. The1 ategory ontains all nodes whose potential is guaranteed tobe at least 2 at the end of the phase. Potentials up to n+1 are inremented and derementedduring a phase. One a node potential reahes n+ 2, the node is moved to the 1-ategory.Now we present the full saling algorithm.The saling algorithmWe start with M1, whih is a maximum ardinality mathing in the graph de�ned by E1, theedges of rank 1, and potential �1 suh that �1(a) = 0 8a 2 A; �1(b) = 0 8 free nodes b 2 Band �1(b) = 1 8 mathed nodes b 2 B. All edges of rank 1 have weight 1.For i = 2 to r do the following steps, and output Mr.1. If Mi�1 is a perfet mathing, then output Mi�1 and exit, else de�ne�i(v) = �i(v) � n+ 1 8v 2 A�i(v) = �i(v) � n 8v 2 B2. Add the edges in Ei to the graph. For every new edge e, if either endpoint of e is in the1 ategory, delete e. For every remaining new edge e, ompute the redued ost of eby setting w(e) = 1. 10

3. Determine Mi by using the primal-dual algorithm for maximum weighted mathing inthe above graph. With every edge, store its redued ost. Update the redued ostwhenever the potential of one of its endpoints hanges. Whenever a node potentialreahes n+ 2, move the node to the 1 ategory.4. Delete all non-tight edges.If for any v, �i(v) � 2, then move v to the 1 ategory.The following theorem summarizes our algorithm's running time.Theorem 2 The saling maximum weighted mathing algorithm omputes a rank maximalmathing in O(Cnm) time, where C is the largest rank used in an optimal solution. It usesspae O(m).Proof: The running time follows diretly from Lemma 7 and the fat that every arithmetioperation an be performed in onstant time. The spae requirement follows from the fatthat we need to store only the redued osts of the edges, and the node potentials. Both arebounded by O(n), thus use onstant spae.4 Conlusion and open problemsWe present two algorithms to ompute a greedy mathing in a bipartite graph where eahedge has a rank. Both the algorithms are improvements over the traditional solution of thisproblem using the Hungarian algorithm. We desribe a ombinatorial algorithm with runningtime O(Cpnm) and a saling algorithm with running time O(Cnm), where C is the highestrank used in a greedy mathing. Our saling algorithm uses the strongly polynomial primal-dual algorithm to ompute a maximum weight mathing. We leave it as an open questionwhether the weakly polynomial algorithms for maximum weight mathings an be adaptedto give better running times for omputing a greedy mathing.Referenes[1℄ H. N. Gabow and R.E. Tarjan. Faster saling algorithms for network problems. SIAMJournal of Computing, 18:1013{1036, 1989.[2℄ D. Gale and L. S. Shapley. College admissions and the stability of marriage. AmerianMathematial Monthly, 69:9{15, 1962.[3℄ R. L. Graham, M. Gr�otshel, and L. Lovasz, editors. The Handbook of Combinatoris,hapter 3, Mathings and Extensions, pages 179{232. North Holland, 1995.[4℄ D. Gus�eld and R. W. Irving. The Stable Marriage Problem: Struture and Algorithms.MIT Press, 1989.[5℄ M. M. Halld�orsson, K. Iwama, S. Miyasaki, and H. Yanagisawa. Improved approximationof the stable marriage problem. to appear in ESA 2003.11

[6℄ J. E. Hoproft and R. M. Karp. An n5=2 algorithm for maximum mathing in bipartitegraphs. SIAM Journal on Computing, 2:225{231, 1973.[7℄ R. W. Irving. Mathing medial students to pairs of hospitals: a new variation on a well-known theme. In Proeedings of the Sixth European Symposium on Algorithms, pages381{392, 1998.[8℄ R. W. Irving. Greedy mathings. Tehnial Report TR-2003-136, University of Glasgow,April 2003.[9℄ R. W. Irving, D. F. Manlove, and S. Sott. Strong stability in the hospitals/residentsproblem. In Proeedings of the STACS, pages 439{450, 2003.[10℄ K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geometri Com-puting. Cambridge University Press, 1999.[11℄ J. B. Orlin and R. K. Ahuja. New saling algorithms for the assignment and minimumyle problems. Mathematial Programming, 54:41{56, 1992.[12℄ C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization Algorithms and Com-plexity. Prentie Hall, 1982.[13℄ A. E. Roth. The evaluation of the labor market for medial interns and residents: a asestudy in game theory. Journal of Politial Eonomy, 92(6), 1984.

12

