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haily Katarzyna Palu
hzAbstra
tSuppose that ea
h member of a set A of appli
ants ranks a subset of a set P of postsin an order of preferen
e, possibly involving ties. A mat
hing is a set of (appli
ant, post)pairs su
h that ea
h appli
ant and ea
h post appears in at most one pair. A greedymat
hing is one in whi
h the maximum possible number of appli
ants are mat
hed totheir �rst 
hoi
e post, and subje
t to that 
ondition, the maximum possible number aremat
hed to their se
ond 
hoi
e post, and so on. This is a relevant 
on
ept in any pra
ti
almat
hing situation and it was �rst studied by Irving [8℄.We de�ne the bipartite graph G = (A [ P ; E), where E 
onsists of all pairs (a; p)su
h that post p appears in the preferen
e list of appli
ant a. Ea
h edge (a; p) hasa rank i, whi
h means that post p is an ith 
hoi
e for appli
ant a. The traditionalsolution of 
omputing a greedy mat
hing in G would be to use the Hungarian algorithm to
ompute a maximum weight mat
hing by assigning a suitably steeply de
reasing sequen
eof weights to the edges. This would result in an algorithm with worst 
ase running timern(m + n logn) and the spa
e requirement �(rm), where n is the number of verti
es, mis the number of edges and r is the largest rank of an edge.Here, we des
ribe two algorithms to 
ompute a greedy mat
hing that improve upon thisalgorithm. We give a 
ombinatorial algorithm with running time O(min(n+C;Cpn)m),where C � r is the maximal rank of an edge used in a greedy mat
hing. This algo-rithm works in phases and uses the maximum 
ardinality mat
hing algorithm. We alsogive an O(Cnm) algorithm that ta
kles the problem of large edge weights introdu
ed bythe Hungarian algorithm. This algorithm uses s
aling and works in phases. The spa
erequirement of both these algorithms is O(m).1 Introdu
tion1.1 The problemLet A be a set of appli
ants and P be a set of posts, and suppose that, asso
iated with ea
hmember of A is a partially ordered preferen
e list 
omprising a subset of the elements of P.A mat
hing of A to P is an allo
ation of ea
h appli
ant to at most one post so that ea
hpost is �lled by at most one appli
ant; in other words it is a mat
hing in the bipartite graphG = (A[P; E), where E 
onsists of all pairs (a; p) su
h that post p appears in the preferen
elist of appli
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Ea
h edge (a; p) has a rank i, whi
h means that post p is an ith 
hoi
e for appli
ant a.In any appli
ant a's list, there may be any number of ith 
hoi
e posts, even zero. We believethat this is the natural way of formulating the problem of allo
ation of proje
ts to studentsand the allo
ation of probationary posts to trainee tea
hers, for instan
e.In the 
ase where preferen
es are expressed on both sides, we have the notion of variouskinds of stability to des
ribe optimal mat
hings. This is the domain of stable mat
hing prob-lems, whi
h have been studied extensively [2, 4, 5, 7, 9, 13℄. When preferen
es are expressedon one side only (only appli
ants have preferen
es over posts), a number of di�erent kinds ofoptimality 
an be de�ned. Here we study the notion of greedy or rank-maximal mat
hings,introdu
ed in [8℄.Let r be the largest rank that an appli
ant uses to rank any post.De�nition 1 The signature �(M) of a mat
hing M is de�ned to be the r-tuple (x1; :::; xr)where for ea
h 1 � i � r, xi is the number of appli
ants who are mat
hed in M with one oftheir ith 
hoi
e posts.As a matter of 
onvenien
e, we abbreviate a signature (x1; :::; xr) by (x1; :::; xd) if xd > 0and xi = 0 for i = d+ 1; :::; r.We de�ne a total order�, similar to lexi
ographi
 order, on signatures as follows: (x1; :::; xr)� (y1; :::; yr) if xi = yi for 1 � i < k and xk < yk, for some k. Denote by M the set of allmat
hings of A to P.De�nition 2 A mat
hing that has the maximum signature under this ordering is a greedyor rank-maximal mat
hing. Alternately, or equivalently, de�ne M1 to be the subset of M, inwhi
h the maximum possible number of appli
ants are mat
hed to their �rst 
hoi
e post. Fori = 2; 3; :::; r de�ne Mi to be the subset of Mi�1 in whi
h the maximum possible number ofappli
ants are mat
hed to their ith 
hoi
e post. A mat
hing that belongs to Mr is a greedyor rank-maximal mat
hing.For a given problem instan
e, there might be more than one greedy mat
hing, but it is a
onsequen
e of the de�nition that all greedy mat
hings must have the same size.It is easy to see that a simple greedy algorithm, in whi
h we assign the maximum numberof appli
ants to their �rst 
hoi
e post, then the maximum number to their se
ond 
hoi
e post,and so on, is by no means guaranteed to lead to a greedy mat
hing.1.2 Previous Results and New ResultsAs mentioned earlier, the 
ase where preferen
es are expressed by both sides has been exten-sively studied in the area of stable mat
hing problems. When preferen
es are expressed byonly one side, Irving in [8℄ 
onsiders the problem of 
omputing a greedy mat
hing in instan
eswhere the preferen
e list for any appli
ant a 2 A is stri
tly ordered i.e., there are no ties in a'slist. The running time of the greedy mat
hing algorithm in [8℄ is O(PCk=1 k2(xk+1)(n+sk)),where (x1; :::; xC ) is the signature of a greedy mat
hing and sk = x1 + � � � + xk. The worst
ase 
omplexity of this algorithm in the 
ase where all preferen
e lists are of length boundedby d, is O(d3n2).We give a simple 
ombinatorial algorithm with running time O(min(n + C;Cpn)m) for
onstru
ting a greedy mat
hing. 2



We also give an O(Cnm) algorithm for 
onstru
ting a greedy mat
hing by transformingthis problem to a maximum weight mat
hing problem. The algorithms given here illustratetwo di�erent approa
hes to 
ompute a greedy mat
hing.1.3 Te
hniquesOur 
ombinatorial algorithm runs in phases. Let the edge set of G be E = E1 [ E2 [ ::: [ Er,where Ei is the set of edges of rank i. In phase i, our algorithm 
onstru
ts a greedy mat
hingMi in the graph Gi = (A[P; E1 [E2 [ :::[Ei). The algorithm 
omputes Mi+1 by 
omputinga maximum mat
hing in a suitable subgraph of Gi+1 and by augmenting Mi.Note that a greedy mat
hing is very di�erent from a maximum 
ardinality mat
hingbut we modify the graph Gi+1 so as to transform the greedy mat
hing problem to that of
omputing a maximum mat
hing.A greedy mat
hing 
an also be found by transforming the input to an instan
e of the
lassi
al maximum weight bipartite mat
hing problem. This involves allo
ating a suitablysteeply de
reasing sequen
e of weights to the edges. For instan
e, giving a weight of nr�1 tothe edge (a; p) if p is a �rst 
hoi
e of a, a weight of nr�2 if p is a se
ond 
hoi
e of a, and soon. But the use of su
h large integers as edge weights implies that an arithmeti
 operationmight 
ost up to �(r) time and the spa
e requirement be
omes �(rm). We present a s
alingalgorithm, whi
h works in phases, to ta
kle the problem of large edge weights. This algorithmhas a running time of O(Cnm) and it uses O(m) spa
e.Organization of the Paper: In Se
tion 2 we des
ribe the 
ombinatorial algorithm andanalyse it. In Se
tion 3 we des
ribe the s
aling algorithm and its analysis. Se
tion 4 
ontainssome 
on
luding remarks and open problems.2 A Combinatorial AlgorithmIn this se
tion we present a 
ombinatorial algorithm for 
omputing a greedy mat
hing in abipartite graph G = (A[P; E). Before presenting the algorithm, let us examine the stru
tureof the problem and build some intuition.For the time being, let us assume that, for every i, Ei 
ontains exa
tly one edge in
identto any a 2 A. First, we 
an noti
e that in this 
ase we 
an tell at on
e how many edges fromE1 belong to a greedy mat
hing as well as whi
h nodes from P are mat
hed by them. Let usdenote them by P1. If some vertex p 2 P1 is 
onne
ted through E1 edges to more than onevertex a 2 A, then we only know that in a greedy mat
hing, one of them must be mat
hedwith p through E1. We do not know, however, whi
h of them gets assigned to p and whi
h
annot. Nevertheless, without any harm, we 
an delete from the graph all the edges of rankhigher than 1 in
ident to verti
es belonging to P1.We 
an observe that if we mat
h all the nodes in P1 through E1 edges arbitrarily, deleteedges of rank higher than one in
ident to nodes in P1 and then extend this mat
hing alongaugmenting paths, then the number of E1 edges in the mat
hing will not 
hange.What 
an we say about E2 edges? Here we may sometimes be un
ertain whi
h verti
esbelonging to P should be mat
hed through E2 edges in a greedy mat
hing. It is so, forexample, in Figure 1. We know that p2 is mat
hed through an E1 edge but we do not knowa priori whi
h of p1; p3 gets mat
hed with an E2 edge. For a1 and a2 we 
an noti
e that theymust be mat
hed by edges of rank at most two in a greedy mat
hing. Hen
e, we 
an deleteall edges ranked higher than 2 in
ident upon a1, a2. But do deletions of this kind suÆ
e?3



We would like to delete all edges that we know will never belong to any greedy mat
hingin order to redu
e the greedy mat
hing problem to a maximum mat
hing problem in theredu
ed graph. We will show that we 
an determine whi
h edges should be deleted usingsome well-known notions and fa
ts from mat
hing theory. We also drop the assumption thatfor every i, Ei 
ontains exa
tly one edge in
ident to any a 2 A.
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Figure 1: One of p1; p3 
an bemat
hed with a rank 2 edge.
Let M be a maximum mat
hing in a bipartite graph G0.We will show that the vertex set of G0 
an be partitioned intothree disjoint sets: E;O, and U . Nodes in E, O, and U are
alled even, odd, and unrea
hable, respe
tively [3℄. E (O) arethe nodes that 
an be rea
hed in G0 from a free node by aneven (odd) length alternating path (with respe
t to M), andU are the nodes that 
annot be rea
hed from a free node byany alternating path. In Figure 1, f(a1; p1); (a2; p2); (a3; p4)gis a maximummat
hing. Then the even nodes are fp1; p2; p3g.The odd nodes are fa1; a2g and the unrea
hable nodes arefa3; p4g.The following lemma is well-known in mat
hing theory.We in
lude its proof for 
ompleteness.Lemma 1 The sets E, O and U are pairwise disjoint. Every maximum mat
hing in G0 pairsthe nodes in U , mat
hes all nodes in O, mat
hes ea
h node in O with a node in E, and has
ardinality equal to jOj+ jU j=2. There is no edge in G0 
onne
ting a node in E with a nodein U , or between two nodes of E. No maximum mat
hing in G0 uses an edge 
onne
ting twonodes in O or a node in O with a node in U .Proof: Assume a node v is rea
hable by an even length alternating path from the free nodea and by an odd length alternating path from the free node b. Then v is on the same sideas a and the 
omposition of the paths is an augmenting path from a to b. Thus M is notmaximum, a 
ontradi
tion.Every node not rea
hable by an alternating path must be mat
hed (otherwise it wouldbe rea
hable by a path of length zero) and hen
e must be mat
hed with a node whi
h isalso unrea
hable. M mat
hes the nodes in O with nodes in E. Thus the 
ardinality of M isjOj+ jU j=2.Consider any maximal mat
hing N . Then M � N 
onsists of a set of alternating 
y
lesand paths. Augmenting any su
h paths and 
y
les to M leaves the odd and the unrea
hablenodes mat
hed and also does not 
hange the status of any node.Nodes in E are rea
hable by even length alternating paths. Su
h paths end in a mat
hingedge. An edge 
onne
ting a node in E to a node in U is non-mat
hing and hen
e 
ould beused to extend the alternating path, a 
ontradi
tion to the de�nition of U .Sin
e nodes in E are rea
hable by alternating paths ending in a mat
hing edge, if there isan edge between two nodes of E, then it is a non-mat
hing edge and we 
an use it to 
onstru
tan augmenting path. This 
ontradi
ts the maximality of M .Sin
e any maximum mat
hing pairs the nodes in U and mat
hes nodes in O with nodesin E, no maximum mat
hing uses an edge 
onne
ting two odd nodes or an odd node with anunrea
hable node.

4



The above fa
ts formalise the ideas that we developed at the beginning of this se
tion.Consider the edge set E = E1 [ E2. We �rst determine a maximum mat
hing M1 in G1 =(A [ P; E1) and identify the sets of odd, even and unrea
hable verti
es: O1; E1, and U1.Suppose we remove all rank 2 edges in
ident upon nodes in O1 [ U1, remove rank 1 edgesbetween two nodes of O1 or a node of O1 and a node of U1 and then augment M1 to obtaina mat
hing M2. Sin
e M2 is obtained by augmenting M1, nodes mat
hed in M1 are stillmat
hed in M2. So, verti
es in O1 and U1 are still mat
hed. By virtue of the edges that weremoved, we know that ea
h node in O1 has to be mat
hed by a rank 1 edge to a vertex inE1 and ea
h node in U1 is mat
hed to another node in U1 by a rank 1 edge. Hen
e, M2 hasat least jO1j + jU1j=2 nodes mat
hed by rank 1 edges. So, this way we preserve the numberof nodes that are mat
hed by rank 1 edges. If we prove that every edge that we removed
an never o

ur in a greedy mat
hing and sin
e M2 is a maximum mat
hing in the remaininggraph, then we 
an see that M2 is indeed a greedy mat
hing in (A[ P; E1 [ E2).
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Figure 2: A simple example.
Let us 
onsider the simple exampleshown in Figure 2, where the bold linesindi
ate rank 1 edges and the dashedlines indi
ate rank 2 edges. M1 =f(a1; p1); (a2; p2)g is a maximum mat
h-ing in the graph G1 
onsisting of onlyrank 1 edges. O1 = fp1; p2g; E1 =fa1; a2; a3; p3g; U1 = ;. Now we remove theedges (a3; p2) and (a2; p1). Then we aug-ment M1 to obtain M2 whi
h 
onsists oftwo edges of E1 and one edge of E2. If wehad augmented M1 without removing the rank 2 edge fa3; p2g, we would have ended up in amaximum mat
hing with one edge of E1 and two edges of E2 - not a greedy mat
hing.We now present the following iterative algorithm for 
onstru
ting a greedy mat
hingM . Inthe i-th iteration the algorithm 
onstru
ts a greedy mat
hingMi inGi = (A[P; E1[: : :[Ei). If(s1; s2; : : : ; si; : : : ) is the signature of a greedy mat
hing, thenMi has signature (s1; s2; : : : ; si).We start with G01 = G1, and M1 any maximum mat
hing in G01.For i = 1 to r � 1 do the following steps, and output Mr.1. Partition the nodes of A [ B into three disjoint sets: Ei, Oi, and Ui. Ei and Oi,as de�ned before, are the nodes that 
an be rea
hed in G0i from a free node by aneven or odd length alternating path (with respe
t to Mi), respe
tively, and Ui arethe nodes that 
annot be rea
hed from a free node by an alternating path.2. Delete all edges in
ident to a node in Oi [ Ui from Ej ;8j > i. Oi [ Ui are thenodes that are mat
hed by every maximum mat
hing of G0i. Delete all edges in G0i
onne
ting two nodes in Oi or a node in Oi with a node in Ui. These are the edgesthat are not used by any maximum mat
hing of G0i. Add the edges in Ei+1 to G0i.Call the resulting graph G0i+1.3. Determine a maximum mat
hing Mi+1 in G0i+1 by augmenting Mi. (Note that Miis still 
ontained in G0i+1.)Figure 3: A 
ombinatorial algorithm for 
omputing a rank maximal mat
hing5



Observe that the algorithm maintains the invariant that Mi is a maximum mat
hing inG0i. We will show in the proof of 
orre
tness that the following invariants are also maintained:� every greedy mat
hing in Gi has all its edges in G0i� Mi is a greedy mat
hing in Gi.The proof of 
orre
tnessWe start with the following lemma, whi
h proves that the edges that are deleted during phasei+1 do not belong to any greedy mat
hing of Gi+1, provided that we maintain the invariantsuntil the end of phase i.Lemma 2 Suppose that every greedy mat
hing of Gi is a maximum mat
hing of G0i. Thenevery greedy mat
hing of Gi+1 is 
ontained in G0i+1.Proof: We need to show that the edges that we removed in the (i + 1)th phase of thealgorithm do not belong to any greedy mat
hing of Gi+1.Let Ni+1 be any greedy mat
hing of Gi+1. Then its signature is (s1; s2; :::; si; si+1). Ni =Ni+1 \ E�i is a mat
hing with signature (s1; s2; :::; si) and is therefore, a greedy mat
hing ofGi. So, Ni is a maximum mat
hing in G0i by the assumption. By Lemma 1, it has to pair thenodes in Ui and mat
h all nodes in Oi with nodes in Ei.Thus, Ni does not use any edge of Gi 
onne
ting two nodes in Oi or a node in Oi witha node in Ui. Sin
e Ni+1 is a mat
hing, it 
annot use any su
h edge either, and moreover,it 
annot use any edge of rank higher than i in
ident to some node in Oi [ Ui. So, Ni+1 is
ontained in G0i+1.In addition, the deletions guarantee that the number of edges of ea
h smaller rank ispreserved throughout the algorithm:Lemma 3 For every i; j su
h that j > i, the number of edges of rank at most i is the samein Mi and Mj.Proof: Sin
e Mj is obtained from Mi by su

essive augmentations, every vertex mat
hedby Mi is also mat
hed by Mj . Hen
e, all nodes in Ui and Oi are mat
hed in Mj .Sin
e G0j has no edges of rank greater than i in
ident to nodes in Oi and Ui and no edgesof rank at most i 
onne
ting two nodes in Oi or a node in Oi with a node in Ui, Mj must pairthe nodes in Ui and must mat
h nodes in Oi with nodes in Ei. And these edges have rank atmost i. So, Mj has at least as many edges of rank � i as Mi and Mj 
annot have more sin
eall the edges of rank � i in G0j belong to G0i and Mi is a maximum mat
hing in G0i.Now, we are ready to prove the 
orre
tness of our algorithm.Lemma 4 For every k, the following statements hold:(i) Every greedy mat
hing in Gk is a maximum mat
hing in G0k;(ii) Mk is a greedy mat
hing in Gk. 6



Proof: We prove this by indu
tion on k. Sin
e all edges in G1 have the same rank, a greedymat
hing in G1 is the same as a maximum mat
hing. Sin
e M1 is a maximum mat
hing inG1, both statements hold for k = 1.Let us now prove these statements for i + 1 assuming them to be true for i. Sin
e Miis a greedy mat
hing in Gi, its signature is (s1; : : : ; si). Suppose the signature of Mi+1 is(r1; : : : ; ri; ri+1). By Lemma 3, we know that for every k between 1 and i,Pkj=1 si =Pkj=1 ri.It follows that the signature of Mi+1 is (s1; : : : ; si; ri+1) for some ri+1 � si+1.By the indu
tion hypothesis, every greedy mat
hing of Gi is a maximum mat
hing of G0i.Hen
e, by Lemma 2, any greedy mat
hing of Gi+1 is 
ontained in G0i+1. Thus there is amat
hing of 
ardinality s1 + : : : + si + si+1 in G0i+1. Sin
e Mi+1 is a maximum mat
hing inG0i+1, its 
ardinality is at least s1 + : : : si + si+1. Thus ri+1 = si+1.Hen
e, Mi+1 is a greedy mat
hing in Gi+1. It is now easy to show that every greedymat
hing of Gi+1 is a maximum mat
hing of G0i+1. Let Ni+1 be any greedy mat
hing ofGi+1. By the indu
tion hypothesis and Lemma 2, we know that Ni+1 is 
ontained in G0i+1.Ni+1 has 
ardinality s1 + s2 + : : : + si+1, whi
h is equal to the 
ardinality of Mi+1, whi
his a maximum mat
hing of G0i+1. Hen
e, Ni+1 is also a maximum mat
hing of G0i+1. This
ompletes the proof of the lemma.The running time of the algorithmTheorem 1 A rank-maximal mat
hing 
an be 
omputed in time O(min(n+ C;C � pn) �m),where C is the maximal rank of an edge in an optimal solutionProof: Consider a �xed phase. We �rst determine the partition of the node set and thenredu
e the edge sets. This takes time O(m). We next 
ompute Mi+1 from Mi by augmentingalong augmenting paths. Using the algorithm of Hop
roft and Karp [6℄, this takes timeO(min(pn; jMi+1j � jMij + 1) � m). The total number of phases is r and hen
e the overallrunning time is O(min(n+ r; r � pn) �m).We next show how to repla
e r by C. At the beginning of ea
h phase, say phase i, we �rst
he
k whether Mi�1 is already a maximum mat
hing in G0ir, where G0ir denotes the graph
onsisting of all edges, of all ranks, that are still present at the beginning of phase i. Thistakes time O(m). If so, we stop. If not, we 
ontinue as des
ribed above. In this way, only Cphases are exe
uted.3 A Redu
tion to Weighted Mat
hingsIn this se
tion, we present another algorithm to 
ompute a greedy mat
hing in the graphG = (A[ P; E). This algorithm transforms the greedy mat
hing problem into the maximumweight mat
hing problem. In order to do so, as mentioned in Se
tion 1, one 
an give ea
hedge of rank i the weight nr�i, where r is the maximum rank of any edge in G. It is theneasy to see that a maximum weight mat
hing is a greedy mat
hing.The best strongly polynomial algorithm for solving the maximum weighted mat
hing (asdes
ribed in [10℄) uses the primal-dual s
hema and has running time O(n(m + n logn)).Moreover, when the edge weights are integers there are weakly polynomial algorithms [1, 11℄7



with running time O(pnm log (nD)) where D is the largest edge weight. These algorithmsare based on s
aling. All the above running times assume that arithmeti
 operations 
anbe performed in 
onstant time. In our 
ase, sin
e any edge weight may be as large as nr�1,ea
h operation might take time up to r (this assumes that numbers up to n are handled in
onstant time). Together with the fa
t that the algorithms use numbers whi
h are boundedby a 
onstant times the maximal edge weight, we get a running time of rn(m+ n log n) andrpnm logn respe
tively. The spa
e requirement also in
reases sin
e for ea
h edge we have tokeep a ve
tor of size r for its edge weight. This limits the feasible problem size.Our algorithm is based on the strongly polynomial primal-dual algorithm. However, aswe will show there is no need for shortest path 
omputations and moreover, we have ta
kledthe problem of the arithmeti
 operations due to the large edge weights. Its running timeis O(Cnm), where C � r is the maximal rank used in an optimal solution. The spa
erequirement is O(m). We leave it as an open question whether similar te
hniques as used in[1, 11℄ 
an be used in order to get a better running time of (Cpnm) using weighted mat
hingalgorithms.Let us give some ba
kground. The maximum weighted mat
hing problem 
an be formu-lated as a linear programming problem. We asso
iate a variable x(e) with every edge e and
onstrain it to 0 � x(e) � 1. In the dual linear program we use the variable �(v) for thevariable 
orresponding to node v. The fun
tion � is 
alled the potential fun
tion. Moreover,let the redu
ed 
ost of an edge e with endpoints a and b be �
(e) = �(a) + �(b) � we, wherewe is the weight of the edge. An edge is 
alled tight if it has redu
ed 
ost equal to zero. Atight non-negative potential fun
tion proves the optimality of a maximum weight mat
hing.For more details see [10℄ and [12℄.Our algorithm uses s
aling and works in phases. Re
all that M1 is the set of mat
hingsin whi
h a maximal number of nodes in A is mat
hed through their highest ranked edge. Fori � 2, Mi is the subset of Mi�1 in whi
h a maximal number of nodes in A is paired throughtheir rank i edges. Note that a greedy mat
hing belongs to all Mi's. At the end of phasei, our algorithm 
onstru
ts a mat
hing Mi 2 Mi and a potential fun
tion �i : A [ P 7! Nproving its optimality. In phase i we use 
ost ni�j for the edges of rank j.An overview of the algorithmAll the edges in phase 1 are rank 1 edges. So, M1 is a maximum 
ardinality mat
hing, whi
h
an be 
omputed by the Hop
roft-Karp algorithm [6℄ whi
h takes time O(pnm). Moreover,we set the potential �1 of all nodes in A and all free nodes in P to zero and the potential ofall mat
hed nodes in P to one. In this way �1 proves the optimality of M1.Assume now we have 
ompleted phase i � 1. We have a mat
hing Mi�1 2 Mi�1 and apotential fun
tion �i�1 proving its optimality, i.e., for every edge e = (a; b) 2 E�i�1 we have�
i�1(e) � 0 and with equality for the edges in Mi�1 and we have �i�1(v) � 0 for all nodesand with equality for free nodes. These are the usual optimality 
onditions.We now s
ale up. We multiply all node potentials by n, add one to the potentials of thenodes in A, for every edge in E�i�1 we multiply the weight by n, we add the edges in Ei andset their weight to one. Call the new potential fun
tion �i.It is easy to see that by this s
aling up, the resulting potential fun
tion �i is non-negativeand also that �
i(e) � 0 is true for all edges. We ensure this 
ondition holds for the edges inEi by adding one to the potentials of the nodes in A. For the edges in E�i�1 it holds trivially.Finally observe that edges in Mi�1 have redu
ed 
ost exa
tly one.8



We now �nd Mi by any of the standard algorithms, e.g., the one des
ribed in [10℄. Thealgorithm starts with the empty mat
hing, and the potential fun
tion �i obtained from thes
aling step. The only initially possible violated optimality 
ondition, is that a free node vmight have potential �i(v) > 0. The algorithm iteratively redu
es the number of su
h freenodes, by either augmenting along a suitable alternating path of tight edges, or by redu
ingthe total potential. In both situations, the other optimality 
onditions are always preserved.When all remaining free nodes have potential zero, all optimality 
onditions are satis�ed andthus the obtained mat
hingMi is optimal, and the potential fun
tion �i proves its optimality.Lemma 5 Mi has the same number of edges of all ranks j; j < i as Mi�1.Proof: Be
ause of the steeply de
reasing sequen
e of weights, for any value of j < i, if Mihas a smaller number of edges of rank j than Mi�1, then the weight of Mi is smaller thanthe 
urrent weight of Mi�1, independent of the number of edges of rank > j mat
hed by Mi.This 
ontradi
ts that Mi is the maximum weight mat
hing.The following lemma is valuable for our algorithm's running time.Lemma 6 Let �i be the sum of all �i potentials. Thenn�i�1 = nw(Mi�1) � w(Mi) � �i � n�i�1 + n:Proof: The �rst equality holds sin
e �i�1 proves the optimality of Mi�1. The se
ondinequality holds sin
e Mi 
ontains the same number of edges of all ranks j, j < i as Mi�1and maybe some edges of rank i and the weights of all edges in E�i�1 have been multipliedby n. The third inequality holds sin
e �i is non-negative and 
overs all edges, and the �nalinequality follows from the de�nition of �i.We next analyze the running time of a phase.Lemma 7 Assuming that all arithmeti
 operations 
an be performed in 
onstant time, aphase takes O(nm) running time.Proof: The lemma follows from the fa
t that ea
h augmentation either in
reases the sizeof the mat
hing or in
reases the number of free nodes of potential zero, thus there 
an be atmost 2n augmentations. Moreover, ea
h potential 
hange de
reases the total potential by atleast one, and therefore by Lemma 6 there 
an be at most n global potential 
hanges. Ea
hsu
h operation takes time O(m). Finally, the s
aling part of the phase takes time O(n+m).Cost of arithmeti
 operationsLet us now address the question of arithmeti
. Node potentials, edge 
osts, and redu
ed 
ostsof edges are bounded by nn and hen
e the 
ost of an arithmeti
 operation might be as largeas n (this assumes that numbers up to n are handled in 
onstant time).We want to argue that edges of large redu
ed 
ost 
an be ignored. The following twolemmas allow us to do so. 9



Lemma 8 If the redu
ed 
ost of an edge, �
(e) is more than n at the beginning of a phase,then this edge 
annot be
ome tight during the exe
ution of this phase.Proof: In ea
h phase there are at most n global potential 
hanges. We may assume thatea
h su
h 
hange in
rements and de
rements node potentials by one. Thus the redu
ed 
ostof an edge 
an be de
reased by at most n in a phase and hen
e any edge whi
h has redu
ed
ost more than n at the beginning of a phase 
annot be
ome tight during the phase.Lemma 9 Any edge whi
h is non-tight at the end of a phase, will never be
ome tight laterin the exe
ution and 
an therefore be deleted.Proof: Assume that an edge has redu
ed 
ost �
(e) � n + 1 at the beginning of a phase.Then it has redu
ed 
ost at least 1 at the end of the phase. At the beginning of the nextphase, this edge has redu
ed 
ost �
0(e) = n � �
(e) + 1 � n + 1. Thus this edge will neverbe
ome tight later in the exe
ution and 
an therefore be deleted.From the above, we 
an 
on
lude that all old edges will have redu
ed 
ost one at thebeginning of a phase and also that the redu
ed 
osts are bounded by O(n) and hen
e 
an behandled in 
onstant time. It only remains to show that we 
an 
ompute the initial redu
ed
osts of newly added edges in 
onstant time.Their weight is one and hen
e their redu
ed 
ost will be larger than n+1 if either endpointhas potential two or more at the end of the previous phase. So let us assume that we knowat the end of a phase, whi
h nodes have potential zero, one or at least two. The former nodeshave potential zero or one at the beginning of the next phase, the middle nodes have potentialn or n+ 1 and the latter nodes have potential at least 2n at the beginning of the next phaseand hen
e at least n at the end of the next phase. Thus we only need to distinguish potentialvalues 0 to n+1 and +1. The1 
ategory 
ontains all nodes whose potential is guaranteed tobe at least 2 at the end of the phase. Potentials up to n+1 are in
remented and de
rementedduring a phase. On
e a node potential rea
hes n+ 2, the node is moved to the 1-
ategory.Now we present the full s
aling algorithm.The s
aling algorithmWe start with M1, whi
h is a maximum 
ardinality mat
hing in the graph de�ned by E1, theedges of rank 1, and potential �1 su
h that �1(a) = 0 8a 2 A; �1(b) = 0 8 free nodes b 2 Band �1(b) = 1 8 mat
hed nodes b 2 B. All edges of rank 1 have weight 1.For i = 2 to r do the following steps, and output Mr.1. If Mi�1 is a perfe
t mat
hing, then output Mi�1 and exit, else de�ne�i(v) = �i(v) � n+ 1 8v 2 A�i(v) = �i(v) � n 8v 2 B2. Add the edges in Ei to the graph. For every new edge e, if either endpoint of e is in the1 
ategory, delete e. For every remaining new edge e, 
ompute the redu
ed 
ost of eby setting w(e) = 1. 10



3. Determine Mi by using the primal-dual algorithm for maximum weighted mat
hing inthe above graph. With every edge, store its redu
ed 
ost. Update the redu
ed 
ostwhenever the potential of one of its endpoints 
hanges. Whenever a node potentialrea
hes n+ 2, move the node to the 1 
ategory.4. Delete all non-tight edges.If for any v, �i(v) � 2, then move v to the 1 
ategory.The following theorem summarizes our algorithm's running time.Theorem 2 The s
aling maximum weighted mat
hing algorithm 
omputes a rank maximalmat
hing in O(Cnm) time, where C is the largest rank used in an optimal solution. It usesspa
e O(m).Proof: The running time follows dire
tly from Lemma 7 and the fa
t that every arithmeti
operation 
an be performed in 
onstant time. The spa
e requirement follows from the fa
tthat we need to store only the redu
ed 
osts of the edges, and the node potentials. Both arebounded by O(n), thus use 
onstant spa
e.4 Con
lusion and open problemsWe present two algorithms to 
ompute a greedy mat
hing in a bipartite graph where ea
hedge has a rank. Both the algorithms are improvements over the traditional solution of thisproblem using the Hungarian algorithm. We des
ribe a 
ombinatorial algorithm with runningtime O(Cpnm) and a s
aling algorithm with running time O(Cnm), where C is the highestrank used in a greedy mat
hing. Our s
aling algorithm uses the strongly polynomial primal-dual algorithm to 
ompute a maximum weight mat
hing. We leave it as an open questionwhether the weakly polynomial algorithms for maximum weight mat
hings 
an be adaptedto give better running times for 
omputing a greedy mat
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