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Abstract. An instance of the stable marriage problem is an undirected
bipartite graph G = (X ∪̇ W,E) with linearly ordered adjacency lists;
ties are allowed. A matching M is a set of edges no two of which share
an endpoint. An edge e = (a, b) ∈ E \ M is a blocking edge for M if
a is either unmatched or strictly prefers b to its partner in M , and b is
either unmatched or strictly prefers a to its partner in M or is indifferent
between them. A matching is strongly stable if there is no blocking edge
with respect to it. We give an O(nm) algorithm for computing strongly
stable matchings, where n is the number of vertices and m is the number
of edges. The previous best algorithm had running time O(m2).
We also study this problem in the hospitals-residents setting, which is
a many-to-one extension of the above problem. We give an O(m(|R| +
P

h∈H
ph)) algorithm for computing a strongly stable matching in the

hospitals-residents problem, where |R| is the number of residents and ph

is the quota of a hospital h. The previous best algorithm had running
time O(m2).

1 Introduction

An instance of the stable marriage problem is an undirected bipartite graph
G = (X ∪̇ W, E) where the adjacency lists of vertices are linearly ordered with
ties allowed. As is customary, we call the vertices of the graph men and women,
respectively.3 Each person seeks to be assigned to a person of the opposite sex
and his/her preference is given by the ordering of his/her adjacency list. In a’s
list, if the edges (a, b) and (a, b′) are tied, we say that a is indifferent between b
and b′ and if the edge (a, b) strictly precedes (a, b′), we say that a prefers b to
b′. We use n for the number of vertices and m for the number of edges. A stable
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marriage problem is called complete if there are an equal number of men and
women and G is the complete bipartite graph; thus m = (n/2)2.

A matching M is a set of edges no two of which share an endpoint. If (a, b) ∈
M we call b the partner of a and a the partner of b. A matching M is strongly

stable if there is no edge (a, b) ∈ E \ M (called blocking edge) such that by
becoming matched with to each other, one of a and b (say, a) is better off and b
is not worse off. For a being better off means that it is either unmatched in M
or strictly prefers b to his/her partner in M , and a being not worse off means
that it is either better off or is indifferent between b and his/her partner in M .
In other words, a would prefer to match up with b and b would not object to
the change.

In this paper, we consider the problem of computing a strongly stable match-
ing. One of the motivations for this form of stability is the following. Suppose we
have a matching M and there exists a blocking edge (a, b). Suppose it is a that
becomes better off by becoming matched to b. It means that a is willing to take
some action to improve its situation and as b’s situation would not get worse, it
might yield to a. If there exists no such edge, then M can be considered to be
reasonably stable since no two vertices a and b such that (a, b) in E \M gain by
changing their present state and getting matched with each other. Observe that
not every instance of the stable marriage problem has a strongly stable solution.

There are two more notions of stability in matchings. The matching M is
said to be weakly stable (or, super strongly stable) if there does not exist a pair
(a, b) ∈ E \ M such that by becoming matched to each other both a and b are
better off (respectively, neither of them is worse off). The problem of finding
a weakly stable matching of maximum size was recently proved to be NP-hard
[IMMM99]. There is a simple O(n2) algorithm [Irv94] to determine if a super
strongly stable matching exists or not and it computes one, if it exists.

The stable marriage problem can also be studied in the more general con-
text of hospitals and residents. This is a many-to-one extension of the classical
men-women version. An instance of the hospitals-residents problem is again an
undirected bipartite graph (R ∪̇ H, E) with linearly ordered (allowing ties) ad-
jacency lists. Each resident r ∈ R seeks to be assigned to exactly one hospital,
and each hospital h ∈ H has a specified number ph of posts, referred to as its
quota. A matching M is a valid assignment of residents to hospitals, defined
more formally as a set of edges no two of which share the same resident and at
most ph of the edges in M can share the hospital h.

A blocking edge to a matching is defined similarly as in the case of men-
women. An edge (a, b) ∈ E\M is a blocking edge to M if a would prefer to match
up with b and b would not object to the change. A matching is strongly stable
if there is no blocking edge with respect to it. We also consider the problem of
computing a strongly stable matching in this setting. Observe that the classical
stable marriage problem is a special case of this general problem by setting
ph = 1 for all hospitals.

Our Contributions: In this paper we give an O(nm) algorithm to determine
a strongly stable matching for the classical stable marriage problem. We also give



an O(m(|R|+
∑

h∈H
ph)) algorithm to compute a strongly stable matching in the

hospitals-residents problem. The previous results for computing strongly stable
matchings are as follows. Irving [Irv94] gave an O(n4) algorithm for computing
strongly stable matchings for men-women in complete instances. In [Man99]
Manlove extended the algorithm to incomplete bipartite graphs; the extended
algorithm has running time O(m2). In [IMS03] an O(m2) algorithm was given
for computing a strongly stable matching for the hospitals-residents problem.

Our new algorithm for computing a strongly stable matching for the classical
stable marriage problem can be viewed as a specialisation of Irving’s algorithm,
i.e., every run of our algorithm is a run of his, but not vice versa. We obtain the
improved running time by introducing the concept of levels. Every vertex has a
level associated with it, the level of a vertex can change during the algorithm. We
use the levels of vertices to search for special matchings which are level-maximal

and this reduces the running time of the algorithm to O(nm). We also use the
above ideas in the hospitals-residents problem and obtain an improvement over
[IMS03].

The stable marriage problem has great practical significance [Irv98,Roth84],
[CRMS]. The classical results in stable marriage (no ties and the lists are com-
plete) are the Gale/Shapley theorem and algorithm [GS62]. Gusfield and Irving
[GI89] covers plenty of results obtained in the area of stable matchings.

Organisation of the paper: In Section 2 we present our O(nm) algorithm
for strongly stable matchings for the classical stable marriage problem. In Section
3 we present our O(m(|R| +

∑
h∈H

ph)) algorithm for the hospitals-residents
problem.

2 The Algorithm for Strongly Stable Marriage

We review a variant of Irving’s algorithm [Irv94] in Section 2.1 and then describe
our modifications in Section 2.2. Figure 1 contains a concise write-up of our
algorithm.

2.1 Irving’s algorithm

We review a variant of Irving’s algorithm for strongly stable matchings. The
algorithm proceeds in phases and maintains two graphs G′ and Gc; G′ and Gc

are subgraphs of G. Gc is the current graph in which we compute maximum
matchings and G′ is the graph of edges E′ not considered relevant yet. In each
phase, a certain subset of the edges of G′ is moved to Gc. Also edges get deleted
from G′ and Gc. We use Ei to denote the edges moved in phase i and E≤i to
denote the edges moved in the first i phases. Initially, we have G′ = G and
Ec = ∅.

At the beginning of phase i, Ec ⊆ E<i and we have a maximum matching M
in Gc. Also, if a man is free with respect to M , then no edges of Ec are incident
to it. Let Ei consist of the top choices4 in E′ of each free man. We say, that every

4 Recall that E′ ⊆ E and that adjacency lists are linearly ordered with ties allowed.
The top choices for a man x are the set of women tied for first place.



free man proposes to all women currently at the top of his list. When a woman
receives a proposal from a man x, she deletes all strict successors of x from E′

and Ec. This may also remove edges in M .
Observe, that the rules for adding and deleting edges guarantee that if (a, b) ∈

Ec and (a, b′) ∈ Ec then a is indifferent between b and b′. For a free man x, all
his top choices are moved to Ec and hence edges in E′ go to strictly inferior
women. A woman keeps only the best proposals made to her and hence edges in
E′ go either to strictly superior men or to men tied with her choices in Ec.

Next we extend M to a maximum matching in Ec. During this process,
further edges may be deleted. We iterate over the free men in arbitrary order.
Let x be any free man. If there is an augmenting path starting at x, we use
it to increase the cardinality of the matching. Otherwise, let Z be the set of
men reachable from x by alternating paths and let N(Z) be the set of women
adjacent to Z in Ec. For each woman w ∈ N(Z) we delete5 all lowest ranked
edges in Ec ∪E′ incident to it. This is at least one edge (x, w) ∈ Ec and zero or
more edges (x′, w) ∈ E′.

At the end of the phase, we have a maximum matching in Ec. Also, every
free man is isolated in Gc since the edges incident to it were removed when we
searched for an augmenting path starting from it.

The algorithm terminates when all free men have run out of proposals. Let
M be the final matching and let Gc be the final graph. Then M is a maximum
matching in Gc and all free men are isolated in Gc and G′. M is a strongly
stable matching in G if no woman that was ever non-isolated in Gc during the
execution of the algorithm is free with respect to M . 6

We refer the reader to [Irv94,Man99] for the proof of correctness of this
algorithm. The algorithm runs in O(m2) time since the cost summed over all
phases is O(m · (1 + number of successful augmenting path computations)) and
since the number of augmenting path computations is at most m. The latter
claim follows from the fact that a matched man becomes free only if the matching
edge incident to it is deleted.

2.2 The New Algorithm

We now show how to modify the algorithm so that it runs in time O(nm). Our
method maintains level-maximal matchings and uses level-maximal augmenting
paths.

The running time of the algorithm for a strongly stable matching is actually
the time spent on looking for augmenting paths. The notion of the level of an edge
and the level of a vertex help us to search for augmenting paths in a streamlined
manner. The vertices with higher levels are given precedence when searching for

5 It is here, where we slightly deviate from Irving’s algorithm. We delete edges when-
ever we identify a free man which cannot be matched. Irving first computes a max-
imum matching in Ec and then deletes edges.

6 For complete instances, it is particularly easy to decide whether the final matching
M is stable. M is stable if it is a perfect matching in G.



Set phase number i = 1, E′ = E and Ec = ∅.
M = ∅
repeat

while ∃ a free man x do

move all top choice edges e = (x, w) of x in E′ to Ec and delete all edges
(x′, w) from E′ ∪ Ec which w ranks strictly after e.

end while

Let Ei be the edges moved to Ec.
for all free men x w.r.t. M do

if an alternating path from x to a free woman exists then

let w be a free woman [of maximal level ] reachable from x by an alter-
nating path and let p be an alternating path from x to w
M = M ⊕ p

else

let Z be the set of men reachable from x by alternating paths and let
N(Z) be the women adjacent to them in Ec;
for all women w ∈ N(Z) do

delete all lowest ranked edges in Ec ∪ E′ incident to w;
end for

end if

end for

i = i + 1
until (all free men have run out of proposals)
declare M strongly stable if every woman that was ever non-isolated in Gc during
the execution of the algorithm is matched in M . Otherwise, there is no strongly
stable matching.

Fig. 1. Two algorithms for strongly stable marriage. The algorithms differ by the phrase
[of maximal level ]. Without the phrase, the algorithm may augment the current match-
ing along any augmenting path and the running time is O(m2). With the phrase, an
augmenting path to a woman of maximal level (see Section 2.2) must be used. The
running time improves to O(nm).

augmenting paths. When we search for augmenting paths with this precedence
and we succeed in finding one, then we can show that the level numbers of all
the edges traversed are at least the level number of the unmatched vertex at the
end of the augmenting path. This allows us to bound the total number of edges
traversed in our search for augmenting paths.

Definition 1. Let Ei be the edges added to Gc in phase i and define the level

l(e) of an edge to be the phase when this edge was first added to Gc. Edges never

added to Gc have no level assigned to them.

So, the set of edges ever added to Gc consists of the disjoint union E1 ∪ E2 ∪
...Er, where r is the total number of phases in the algorithm. Note that r can be
as large as m.

Definition 2. Define the level l(v) of a vertex v to be the minimum level of the

edges in Gc incident to v. The level of an isolated vertex is undefined.



Definition 3. The level l(M) of a matching M is the sum of the levels of the

matched women. A matching M is level-maximal if l(M) ≥ l(M ′) for any match-

ing M ′ which matches the same men.

Lemma 1. For a man all incident edges in Gc have the same level. All women

adjacent to a man of level i have level at most i. When a woman loses an incident

edge in Ec she loses all her incident edges in Ec.

Proof. Obvious.

Lemma 2. A matching M is level-maximal iff there is no alternating path from

a free woman to a woman of lower level.

Proof. Observe that the endpoint of the path is a matched woman. Augmenta-
tion increases the level of the matching and does not change the set of matched
men.

For the converse, assume that M is not level-maximal. Let M ′ be level-
maximal and matching the same men. Then M ⊕ M ′ is a set of alternating
paths and cycles. Augmenting a cycle does not change the level sum. Thus there
must be at least one path whose augmentation to M increases the level sum.
Since the degree of every man in M ⊕ M ′ is either zero or two, the path must
connect two women, one free in M and one free in M ′.

Lemma 3. If M is level-maximal, x is a free man with respect to M , w is a

woman of maximal level reachable from x by an augmenting path and p is an

augmenting path from x to w, then N = M ⊕ p is level-maximal.

Proof. Let us look at an alternating path p′ from a free woman w′ to a matched
woman w′′ (all with respect to N). We will show that l(w′) ≤ l(w′′) and thereby
by Lemma 2 that N is level-maximal.

If p′ does not contain any edge from p, then p′ was an alternating path from
a free woman w′ to a matched woman w′′ in M . Since M is level-maximal, by
Lemma 2, l(w′) ≤ l(w′′).

Let us then assume, that p′ contains some edge(s) from p.

x

x’

path p’

w"w’

e"

e’ w"

path p’

w’

path p

2

w

w

path p

Fig. 2. The thick edges belong to the matching N

Let x′ denote the first vertex on the path p′ that belongs to p, which we meet
while traversing p′ from w′. Let e′ denote the first edge belonging to p (Figure



2). The vertex x′ must be a man, because all edges incident to vertices on p
and not belonging to p, cannot belong to the matching N and we started the
traversal of p′ from the unmatched woman. So, e′ is matched. Let us now look at
this part of p that has x′ at its one end and does not contain e′. It has the man
x at its other end, that was free in M . Since M ⊕ p = N , the matched edges of
path p were exactly vice versa before the augmentation, in the sense that those
edges, that are now present in the matching N , were not present in the matching
M previously and the other way round. It means that w′ was reachable by an
alternating path from x in M . Thus l(w′) ≤ l(w).

Analogously, let w2 denote the first vertex on the path p′′ that belongs to p
which we meet when we traverse p′ beginning from the matched woman w′′. Let
e′′ denote the first edge belonging to p (Figure 2). It is not difficult to notice
that w2 must be a woman. Now, if we look at that part of p, that has w2 at its
one end and does not contain e′′, we will notice that it has the woman w at its
other end. Thus in M there existed an alternating path from the free woman w
to the matched woman w′′ and hence, by Lemma 2, l(w) ≤ l(w′′).

Combining the observations, we get that l(w′) ≤ l(w′′).

Lemma 4. M is a level-maximal matching at all times of the execution.

Proof. We use induction on time. Initially, M is empty and therefore level-
maximal. For the induction step assume that M is level-maximal at the be-
ginning of phase i.

First, every free man proposes to the women at the top of his list. This
introduces the edge set Ei. The level of non-isolated women does not change, the
level of women previously isolated and not isolated anymore is set to i. M is
still level-maximal. Assume otherwise, then there must be an alternating path
from a free woman to a woman of lower level. This path must use one of the new
edges. The new edges are incident to free men, a contradiction.

Every woman keeps only her best proposals. For a particular woman w this
has one of two effects: either she does not drop any incident edge or she keeps
only edges in Ei (not necessarily all of them). The matching M may be reduced
in size. Let us use M ′ to denote the resulting matching. We claim that it is
level-maximal. Assume otherwise, then there must an alternating path p from a
free woman to a woman of lower level. It cannot use any of the new edges since
new edges are incident to free men. Thus p can use only old edges. Also p cannot
start at a woman of level i since only new edges are incident to such a woman.
Thus p starts at a woman of level less than i and hence the woman is free with
respect to M . Since M ′ ⊆ M , p is alternating with respect to M , a contradiction
to the level-maximality of M .

Next, we consider the free men in turn and search for augmenting paths. Let
x be a free man.

If no augmenting path starting at x exists, let Z be the set of men reachable
by alternating paths from x and let N(Z) be their neighbours. Then |Z| >
|N(Z)|. We delete all lowest rank edges incident to the women in N(Z). This
may decrease the size of the matching. The matching clearly stays level-maximal.



If an augmenting path exists, let p be an augmenting path to a woman of
maximal level. We use p to increase the cardinality of the matching. By Lemma 3,
the resulting matching is level-maximal.

2.3 The Search for Augmenting Paths and the Analysis

We come to the implementation of the search for augmenting paths and the
analysis.

Let x be a free man. We need to determine a maximal level free woman w
reachable from x and an augmenting path from x to w. Let p be such an aug-
menting path. Then all women on this path have level at least l(w) by Lemma 2.
Note that l(w) ≤ l(x). This is because all the women adjacent to x have level
at most l(x), so if w is adjacent to x, then l(w) ≤ l(x). If w is not adjacent to
x and if l(w) > l(x), then p contains an alternating path from a free woman of
higher level (that is, w) to a matched woman of lower level (the neighbour of x).
This contradicts the level-maximality of the matching.

We organise the search in rounds l(x), l(x) − 1, l(x) − 2, . . . . In round j,
we explore all augmenting paths starting in x and exploring only edges out of
vertices of level j or larger. We stop in round j when a free woman of level j is
reached by the search or if the Hungarian tree rooted at x has reached its full
size. In the former case, j is the maximal level of a woman reachable from x by
an augmenting path. In the latter case, no free woman is reachable from x. If
the search has not stopped yet, the frontier of the search consists of women of
level less than j. In the next round, we continue the search from all women of
level j − 1 in the frontier.

In order to find these women, we maintain an array A of buckets (= linear
lists) which implements a simple priority queue. All buckets are initially empty.
At the beginning of round j, bucket Bl, l ≤ j contains the women of level l in the
frontier. We also keep an (unsorted) list of the non-empty buckets and the total
number of women contained in the buckets. We initialise the bucket structure
by putting the neighbours of x into the appropriate buckets and setting j to
l(x). In round j, we continue the search from the women in bucket j. If the
bucket is empty and the number of unexplored women is positive, we decrease
j by one. If the bucket is empty and the number of unexplored women is zero,
we stop. There is no augmenting path starting at x (failure). If the bucket is
non-empty, let w be a woman in the bucket. We remove w from the bucket. If w
is free, we stop (success): w is the highest ranked woman reachable from x. If w
is matched, we explore alternating paths from w (starting with matched edges)
until a woman of level less than j is reached. These women are then added to
their appropriate buckets. When the search stops, we empty all buckets using
the list of non-empty buckets.

Let j(x) be the minimal bucket index from which we remove a woman. In
the case of failure this is the minimal level of a woman reachable from x and in
the case of success this is the maximum level of a woman reachable from x by
an augmenting path.



The time for the search from x is proportional to the number k of edges
explored in the search plus l(x) − j(x) + 1. We charge this cost as follows:

In the case of failure we charge one unit each to each edge deleted (this
accounts for k) and we charge l(x) − j(x) + 1 to the minimum level woman w
reachable from x. The first kind of charges adds up to m since every edge is
deleted at most once. The second kind of charge is less than the difference of
the current level of w and the next level of w. Thus for a single woman the total
charge of the second kind is bounded by m. We conclude that the total cost of
unsuccessful searches is O(nm).

In the case of success, we charge both costs to w. Observe that all edges
explored have level at least l(w) (= j(x)) and at most i (= the phase number)
and that the level of w jumps to at least i+1 if it ever becomes free again. Thus
every edge can be assigned at most once to w. Also l(x) − j(x) + 1 is bounded
by the difference between the current level of w and the next level of w. Thus
the total charge to w is bounded by m. The total cost of successful searches is
therefore bounded by O(nm).

Theorem 1. Strongly stable matchings for the classical stable marriage problem

can be computed in time O(nm).

Note that the running time of our strongly stable matching algorithm is actu-
ally O(|W |m) since the total cost of all unsuccessful searches and augmentations
is shared by women and the cost charged to a single woman sums to at most
m over all phases. So, if |W | ≪ |X | or |X | ≪ |W | (then we reverse the roles of
men and women and it is free women who propose in every phase and it is men
who pay for the augmentations), then we can bound the running time of our
algorithm by O(min(|X |, |W |) · m).

3 Extension to Hospitals-Residents

Recall that the hospitals-residents problem is a many-to-one extension of the
classical stable marriage problem. We give an O(m(|R|+

∑
h∈H

ph)) algorithm for
computing a strongly stable matching for the hospitals-residents problem. Our
algorithm is based on the algorithm in [IMS03] which is an O(m2) algorithm.
We obtain the improved running time by restricting again all augmentations to
result in level-maximal matchings. We give an outline of our approach here and
the full version of the paper has all the proofs and details.

3.1 The Algorithm in [IMS03]

We first review a variant of the algorithm in [IMS03] and then present our modi-
fied algorithm. The algorithm in [IMS03] generalises the ideas used for computing
strongly stable matchings in [Irv94] to the hospitals-residents problem.

As in the case of the stable marriage problem, the algorithm proceeds in
phases. In any phase, every free resident proposes to all hospitals currently at
the top of his list and residents become provisionally assigned to hospitals. Each



hospital h can accommodate up to ph residents, and it needs to keep only the
best ph proposals made to it but if there is a tie in the last place of its list (called
the tail), then h can be provisionally assigned to > ph residents. We introduce a
few terms:

– A hospital is said to be over-subscribed, under-subscribed or fully subscribed

according as it is provisionally assigned a number of residents greater than,
less than, or equal to, its quota.

– A resident r who is provisionally assigned to a hospital h is said to be bound

to h if h is not over-subscribed or r is not in h’s tail (or both).
– A resident r is dominated in a hospital h’s list if h prefers to r at least ph

residents who are provisionally assigned to it.

The algorithm maintains two graph G′ and Gc which are subgraphs of G. Gc

is called the provisional assignment graph with edge set Ec and G′ is the graph
of edges E′ not considered yet. During the execution of the algorithm, residents
become provisionally assigned to hospitals which means that edges are moved
from G′ to Gc. The algorithm proceeds in the same way, as the algorithm for
strongly stable marriage, by deleting edges e = (r, h) which cannot belong to
any strongly stable matching.

Reduced Assignment Graph: We maintain a graph Gr ⊆ Gc, called the
reduced assignment graph. The residents who appear in Gr are those that are not
bound to any hospital (we call such residents unbound). So, for any hospital h,
the edges incident to h in Gr are to the unbound residents, and hence are at the
tail of h’s list. Each hospital h has a reduced quota p′

h
in the reduced assignment

graph, which is the difference between the original quota ph and the number of
residents bound to h. So, the vertices of Gr are the set of unbound residents
and the set of hospitals which are the neighbours of the unbound residents. The

reduced assignment graph of phase i is denoted as G
(i)
r .

Now the algorithm is very similar to the algorithm for strongly stable mar-
riage, except that we compute maximum matchings in the reduced assignment

graph. Initially, G′ = G; Ec = ∅; all the residents are free and G
(0)
r is the empty

graph. At the beginning of phase i, we have a maximum matching M in G
(i−1)
r . If

a resident is free with respect to M , then he is isolated in G
(i−1)
r . Then we move

the edges corresponding to the top most choices of every free resident from E′ to
Ec. This denotes free residents being provisionally assigned to hospitals. When-
ever a hospital h becomes fully or over-subscribed, then we delete all edges (r, h),
where r is dominated on h’s list, from G′ and Gc. The reduced assignment graph

G
(i)
r is computed from G

(i−1)
r . Observe that an edge (r, h) can change state from

bound (r is bound to h) to unbound (r is not bound to h) but not vice-versa. If
a new edge that gets added to Gc corresponding to one of the top choices of a

free resident in G
(i−1)
r is a bound edge, then it could cause some bound edges to

become unbound or it could cause some edges to get deleted. Any edge of G
(i−1)
r

that is not deleted from Gc continues to remain in G
(i)
r . The change of state of

an edge (r, h) from bound to unbound need not make the resident r unbound
unless (r, h) was the only bound edge incident to r and now (r, h) has changed



state to unbound. Then r, which was not present in G
(i−1)
r , starts appearing in

G
(i)
r . Then we extend M in G

(i)
r to match all the unmatched residents.

Augmenting path: In the hospitals-residents setting, a hospital h is con-
sidered free in Gr if it is not matched up to its reduced quota p′

h
. An alternating

path from a free resident to a hospital that is not filled up to its quota is con-
sidered an augmenting path.

We iterate over the free residents in arbitrary order. Let r be any free resident.
If there is an augmenting path starting at r, we use it to increase the cardinality
of the matching. Otherwise, let Z be the set of residents reachable from r by
alternating paths and let N(Z) be the set of hospitals adjacent to Z in Ec. For
each hospital h ∈ N(Z) we delete all lowest ranked edges in Ec ∪ E′ incident to
it.

At the end of the phase, we have a maximum matching M in G
(i)
r . Also, every

free resident is isolated in Gc since the edges incident to it were removed when
we searched for an augmenting path starting from it. When all free residents
have run out of proposals, we need to find a feasible matching M ′ in Gc which
contains the maximum matching M in Gr and matches every bound resident r to
a hospital that r is bound to. M ′ is a strongly stable matching if a hospital that
was fully or over-subscribed at some point in the execution of the algorithm is
fully matched in M ′ or a hospital that was always under-subscribed has assignees
in M ′ equal to its degree in Gc. We refer the reader to [IMS03] for the proof of
correctness of this algorithm.

3.2 Our Modifications

Let us extend our definitions in order to capture the somehow different structure
of the hospitals-residents problem.

Definition 4. Define the level of an edge e, l(e), to be the phase that e is added

to the reduced assignment graph Gr.
7

Definition 5. Define the level of a vertex v, l(v), to be the minimum level of

the edges incident to v. If v does not belong to Gr, its level is undefined.

Definition 6. Define the level of a matching M , l(M), to be the sum over all

hospitals of the level of a hospital multiplied by the number of edges that this

hospital is matched with.

Definition 7. A matching M is level-maximal if l(M) ≥ l(M ′) for any match-

ing M ′ which matches the same residents.

The following lemmas show how to maintain a level maximal matching. The
proofs are available in the full version of this paper.

7 Note that an edge appears in Gr at some phase which might not necessarily be the
phase that this edge appeared in Gc.



Lemma 5. A matching M is level-maximal iff there is no alternating path start-

ing with an unmatched edge from a free hospital to a hospital of lower level.

Lemma 6. If M is level-maximal, r is a free resident with respect to M , h is

a hospital of maximal level reachable from r by an augmenting path and p is an

augmenting path from r to h, then N = M ⊕ p is level-maximal.

Lemma 7. M is a level-maximal matching at all times of the execution.

3.3 The Running Time

The search for augmenting paths in Gr is implemented as in the classical sta-
ble marriage problem. Using similar arguments, one can see that the cost of
unsuccessful searches is O(m) and of successful searches is O((

∑
h∈H

ph)m).
Furthermore, with an appropriate representation of the graphs, all changes of
Gr can be done in time O(|R|m).

Theorem 2. Strongly stable matchings for the hospitals-residents problem can

be computed in time O(m(|R| +
∑

h∈H
ph)).

We conclude that in the worst case
∑

h∈H
ph can be as large as m, in which

case we get a running time of O(m2), but in any practical application, we expect
that

∑
h∈H

ph = |R|, in which case we get a total running time O(|R|m).
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