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Abstract

Cycles in graphs play an important role in many applications, e.g., analysis of electrical
networks, analysis of chemical and biological pathways, periodic scheduling, and graph
drawing. From a mathematical point of view, cycles in graphs have a rich structure. Cycle
bases are a compact description of the set of all cycles of a graph. In this paper, we survey
results on cycle bases and prove new ones. We introduce different kinds of cycle bases,
characterize them in terms of their cycle matrix, and prove structural results about them,
in particular, a-priori length bounds. We give polynomial algorithms for the minimum
cycle basis problem for some of the classes and prove APX -hardness for others. We also
discuss three applications and show that they require different kinds of cycle bases.
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Figure 1: The inclusion diagram of cycle bases and the complexity status of their minimum
weight cycle basis problems.

1 Introduction

Cycles in graphs play an important role in many applications, e.g., analysis of electrical net-
works, analysis of chemical and biological pathways, periodic scheduling, and graph drawing.
From a mathematical point of view, cycles in graphs have a rich structure. Cycle bases are
a compact description of the set of all cycles of a graph and cycle bases consisting of short
cycles or, in weighted graphs, of small weight cycles are interesting mathematically and from
an application view point. In the applications above, sparse descriptions are to be preferred.

The study of cycle bases dates back to the early days of graph theory; MacLane (1937)
gave a characterization of planar graphs in terms of cycle bases. In the last decade, many
new results on cycle bases appeared, most notably a classification of different kinds of cycle
basis, structural results, a-priori bounds on the length and weight of minimum cycle bases,
polynomial time algorithms for constructing exact or approximate minimum cycle bases of
some kinds and hardness results for other kinds of minimum cycle bases.

In this paper, we survey these results and prove new ones. Figure 1 shows the landscape
of cycle bases. We will introduce different kinds of cycle bases in Sections 2 and 3: Directed
cycle bases, undirected cycle bases, integral cycle bases, weakly fundamental cycle basis,
totally unimodular cycle bases, strictly fundamental cycle bases, and 2-bases. In section 3, we
will characterize the different kinds in terms of properties of their cycle matrix. For example,
undirected cycle bases are characterized by the fact that the determinant of their cycle matrix
is odd and integral cycle basis are characterized by the fact that their determinant is ±1. We
will establish the inclusion map and show that the different classes lead to different minimum
cycle basis problems. We will also establish many structural results.
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Section 4 deals with a-priori length and weight bounds on minimum cycle bases. We
will prove results of the following flavor: every graph of n nodes and m edges has a weakly
fundamental cycle basis of length O(m logm/ log(m/n)). We will also show that there are
graphs that do not have a shorter basis.

In Section 5, we will give polynomial time algorithms for constructing minimum weight
directed, undirected and planar cycle basis. We will also discuss approximation algorithms.

Section 6 treats hardness results; in particular, we will show that the minimum cycle
basis problem is APX -hard for weakly fundamental and strictly fundamental bases. Figure 1
summarizes the complexity results. For two classes the complexity is open.

Finally, Section 7 discusses three applications of cycle bases; we will see that they require
different kinds of cycle bases. The analysis of electrical circuits can do with any kind of cycle
basis, periodic scheduling requires integral cycle bases, and graph drawing needs strictly
fundamental bases.

The paper surveys mostly known results, but it also contains several new results. In
particular, we give additional structural and characterization results, we obtain tight length
bounds for weakly fundamental cycle bases for the full spectrum of graph densities, we give a
simplified algorithmic treatment of directed cycle bases, and we present the first algorithms
for minimum cycle bases in the presence of negative edges. In all sections, we also pose open
problems.
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2 Definitions

An (undirected) graph is a pair G = (V,E), where V is a finite set, and E is a family of
unordered pairs of elements of V . The elements of V are called vertices or nodes and the
elements of E are called edges. An edge e = {v, w} is incident to the vertices v and w and v
and w are the endpoints of e. The same pair {v, w} may occur several times in E; we refer to
a pair occurring more than once as a multiple edge. Graphs without multiple edges are called
simple. An edge of the form {v, v} is called a loop. The degree deg(v) of a vertex v is the
number of times v occurs as an endpoint of an edge. Observe, that a loop {v, v} contributes
two to the degree of v. We use δ(v) to denote the set of edges incident to v; a loop {v, v}
appears twice in δ(v).

A (directed) graph is a pair D = G = (V,A), where V is a finite set, and A is a family
of ordered pairs of elements of V . The elements of V are called the vertices or nodes of
G, and the elements of A are called the (directed) edges or arcs of G. We use G = (V,E)
to denote directed and undirected graphs and D = (V,A) to denote directed graphs. The
vertices v and w are called the tail and head of the arc e = (v, w), respectively; e is said
to leave v and to enter w; it is incident to v and w. Every directed graph gives rise to a
unique undirected graph, by ignoring the orientation of the edges. The notions multiple edge,
simple, and loop are defined analogously as for undirected graphs. The outdegree outdeg(v)
and indegree indeg(v) of a vertex v is the number of times v occurs as the tail, respectively,
head of an edge. Observe, that a loop (v, v) contributes one to the indegree and the outdegree
of v. We use δ+(v) and δ−(v) for the edges leaving and entering v, respectively.

We use n and m to denote the number of nodes and edges or arcs, respectively, i.e., n = |V |
and m = |E| or m = |A|. We use the notation e = vw to denote both directed and undirected
edges, i.e., the notation stands for the directed edge (v, w) and the undirected edge {v, w}.
Every undirected graph G gives rise to a directed graph D by orienting the edges arbitrarily;
we call D an orientation of G. In this way, we can view every graph as directed.

A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊆ V and E′ ⊆ E. If V ′ is a subset of
V , G−V ′ denotes the graph obtained by removing all vertices in V ′ and their incident edges
from G. A path P from v to w in G is a subgraph of G with V ′ = {v0 = v, v1, · · · , vk = w}
with vi 6= vj and E′ = {x0x1, x1x2, . . . , xk−1xk}. We write P (v, w) if we want to emphasize
that P is a path from v to w. The length of a path is the number of its edges. An undirected
graph is connected if there exists a path from any vertex to every other vertex. A vertex v in
a connected graph G is called an articulation point, or cut vertex, if G−v is disconnected. An
undirected graph is biconnected if it has no articulation point. A directed graph is connected
if the underlying undirected graph is connected. Any maximal connected subgraph of G is
called a connected component. A graph T is a tree if it is connected and has n − 1 edges.
A subgraph G′ of a connected graph G is called a spanning tree if it constitutes a tree on
all vertices in G. If G is not connected, any union of spanning trees for each connected
component is called a spanning forest.

A cycle in an undirected graph is a vector C ∈ ZE2 such that
∑

e∈δ(v)Ce = 0 for any
vertex v; here Ce denotes the component of C indexed by e, Z2 = GF (2) = {0, 1} is the field
of two elements, and addition is addition in Z2. A cycle may alternatively be viewed as a set
of edges; e belongs to C iff Ce = 1. We use C to denote the vector in ZE2 , the corresponding
subset of E, and also the subgraph (V ′, C) where V ′ is the set of vertices having at least one
edge in E incident to it. Instead of Ce, we will also write C(e). We prefer the latter notation
when C = Ci belongs to an indexed family of cycles. A cycle is an even or Eulerian subgraph,
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Figure 2: The figure shows an orientation D of the undirected wheel graph W5, and four
circuits C1 to C4 in D. The edges of D are numbered from e1 to e8. The circuit C1 uses
the edges e1, e2, e3, and e5 in forward direction and the edge e8 in backward direction. Thus
C1 = (1, 1, 1, 0, 1, 0, 0,−1). The cycles C1 to C4 form a directed cycle basis of D. The cycle C
consisting of edges 1 to 4 is represented as: C = (1, 1, 1, 1, 0, 0, 0, 0) = (C1 +C2 +C3 +C4)/3.
Let G be the underlying undirected graph, let π(Ci) be the undirected cycle corresponding to
Ci, and let π(C) be the undirected cycle corresponding to C. Then π(C1) = (1, 1, 1, 0, 1, 0, 0, 1)
and π(C) = π(C1)⊕ π(C2)⊕ π(C3)⊕ π(C4). The circuits π(C1) to π(C4) form an undirected
cycle basis of G.
The set {C1, C2, C3, 2C4} is also a directed cycle basis of D. However, π(2C4) = 0 and hence
{π(C1), π(C2), π(C3), π(2C4)} is not an undirected cycle basis of G. There are less trivial
reasons for a directed cycle basis not projecting into an undirected cycle basis.

i.e., every vertex has even degree in C. Conversely, any even subgraph is a cycle. A cycle is
a circuit if it is connected and every one of its vertices has degree two. The set

UCG :={C | C is a cycle of G}

forms a vector space over GF (2); UCG is called the (undirected) cycle space of G. Addition
in this vector space corresponds to symmetric set difference. An undirected cycle basis of G
is a set of circuits forming a basis of the cycle space of G.

A (directed) cycle C in a directed graph is a vector in ZE such that for any vertex v we
have

∑
e∈δ+(v)Ce =

∑
e∈δ−(v)Ce. Here, addition denotes addition in Q, the field of rational

numbers. In other contexts, cycles are sometimes referred to as circulations and the constraint∑
e∈δ+(v)Ce =

∑
e∈δ−(v)Ce is called flow conservation. Cycles in directed graphs may use arcs

in forward (Ce > 0) or backward (Ce < 0) direction. If any arc is replaced by Ce copies of
itself and, in addition, the direction of all arcs e with Ce < 0 is reversed, then we end up with
a digraph in which the indegree of every vertex is equal to its outdegree. Observe that if C
is a cycle, then −C is a cycle, too, though a different one. The set

DCG :={λC | λ ∈ Q and C is a directed cycle of G}

forms a vector space over Q; DCG is called the (directed) cycle space of G. A cycle is simple
if Ce ∈ {−1, 0,+1} for all e, and a simple cycle is an circuit if it is connected and for any v,
there are exactly two edges1 e incident to v with Ce 6= 0. A directed cycle basis is a set of
circuits forming a basis of the cycle space.

Let D be a directed graph and let G be the underlying undirected graph. We may refer
to G as G(D). For any directed cycle C of D, let π(C) :=(Ce mod 2)e∈E . Then π(C) is an
undirected cycle in G. We call π(C) the projection of C.

1Recall, that a self-loop counts twice.
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Figure 2 illustrates all these definitions. In addition, it provides a first example showing
that directed cycle bases do not necessarily project onto undirected cycle basis. However, a
set of dependent cycles projects into a set of dependent cycles. Let Ci, i ∈ I, be a family of
dependent directed cycles. Then

∑
i∈I λiCi = 0 with λi ∈ Q, not all zero. Here 0 denote the

zero-vector in ZE . We may assume λi ∈ Z and not all even. Then
∑

i∈I(λi mod 2) π(Ci) =
0 mod 2 and at least one coefficient λi mod 2 is nonzero. Thus the π(Ci), i ∈ I, are dependent.

We use + and Σ to denote addition in Q and in GF (2) (and also in GF (p) for prime p). The
distinction will usually be clear from the context. If both fields occur in the same argument, as
in the paragraph above, we will emphasize the difference by the additional operator mod 2.

We may also lift undirected cycles from an undirected graph G to an orientation D of it.
Let C ′ be a connected undirected cycle2 consisting of k edges. Since an undirected cycle is
a Eulerian subgraph of G, there is a closed traversal (e0, . . . , ek−1) of the edges of C ′, i.e.,
ei = {vi, vi+1} for 0 ≤ i < k and v0 = vk. This traversal defines a simple cycle C in D; we
have Ce = 0 if C ′ does not contain e and Ce = +1 (−1) if the traversal uses e in forward
(backward) direction. We call C a lifting or orientation of C ′. Observe that the lifting is not
unique; it depends on the choice of walk. For a circuit C ′ the lifting is unique up to sign.
Clearly, if C ′ lifts to C then C projects to C ′.

A weighted graph is a graph together with a weight function w : E → R. If the graph is
unweighted, we set w : E → 1 and call w the uniform weight function. The weight of a set of
edges is the sum of the weights of its members. The weight of a cycle C is

w(C) :=
∑
e

|Ce|w(e)

and the length of a cycle is
|C| :=

∑
e

|Ce| .

In an unweighted graph, weight and length are identical. The weight of a cycle basis B is the
sum of the weights of its cycles, i.e.,

w(B) =
∑
C∈B

w(C) .

A minimal cycle basis, or MCB, of G is a cycle basis with minimal weight. We assume that
there are no simple cycles of negative weight; such weight functions are called conservative.
For most of our algorithms, we need to assume that weights are nonnegative, i.e., w : E → R+.

We close this section with a first theorem. Every graph has a (directed and undirected)
cycle basis and the dimension of the (directed or undirected) cycle space is given by the graph’s
cyclomatic number ν :=m−n+CC , where CC denotes the number of connected components
of G. On the way, we get to know a particularly simple set of cycles, the fundamental cycles
with respect to a spanning forest. Let G be an (undirected or directed) graph and let T be a
spanning forest of G. For any nontree edge e, let CT (e) be the circuit consisting of e and the
tree path connecting the endpoints of e. In the case of a directed graph, we use e in forward
direction and traverse the tree path from the head of e to the tail of e, see Figure 3. We call
CT (e) the fundamental circuit defined by T and e.

Lemma 2.1. Let G be a graph and let T be any spanning forest of G. Let C be a cycle that
uses only edges in T , i.e., Ce = 0 for e 6∈ T . Then C = 0.

2Components are lifted independently.
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Figure 3: The figure shows an orientationD of the undirected wheel graphW5 and four circuits
C1 to C4 in D. The edges of are numbered from e1 to e8. The bold edges {e5, e6, e7, e8}
form a spanning tree T of D. The circuit C1 is induced by the nontree edge e2 and uses
the edges e2 and e6 in forward direction and the edge e7 in backward direction. Thus C1 =
(0, 1, 0, 0, 0, 1,−1, 0). As the cycles C2, C3, and C4 are obtained in an analogous way, the
set {C1, C2, C3, C4} is a strictly fundamental cycle basis of D.

Proof. View G and C as undirected. Then C is an even subgraph of G. Since C uses only
edges in T , it is an even subgraph of T . Even subgraphs of forests are empty.

Lemma 2.2. Let B be a set of cycles in G and let T be any spanning forest of G. For any
cycle C ∈ B, let C ′ be its restriction to N :=E \ T . The cycles are linearly independent if
and only if their restrictions to N are linearly independent.

Proof. Clearly, linear dependence of the cycles implies linear dependence of their restrictions.
Conversely, assume that there is a nontrivial linear combination of the restrictions that yields
the zero vector, i.e.,

∑
C∈B λCC

′ = 0N . Here 0N denotes the zero vector over index set N .
Then

∑
C∈B λCC is a cycle that uses only tree edges and hence is equal to 0.

Thus, we may restrict attention to the restricted incidence vectors when discussing ques-
tions of linear independence.

Theorem 2.3 (Dimension of the Cycle Space of a Graph). The dimension of the undirected
and directed cycle space of a graph G is given by its cyclomatic number

ν = m− n+ CC,

where CC denotes the number of connected components of G. Moreover, if T is any spanning
forest of G, the set of fundamental circuits with respect to T forms a basis.

Proof. The number of fundamental circuits is equal to ν, because a connected component
with m′ edges and n′ vertices contributes m′− (n′− 1) fundamental cycles. Let N be the set
of nontree edges. The fundamental cycles are clearly independent since any edge e ∈ N is
contained precisely in CT (e). It remains to prove that the set of fundamental circuits spans
all cycles. Let C be an arbitrary directed cycle and consider the cycle

C̃ :=
∑
e∈N

CeCT (e) .

We claim that C = C̃. Indeed, for any e ∈ N , we have C̃e = Ce and hence C − C̃ is a cycle
using only edges of T . Thus C − C̃ = 0.
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The following Lemma is a first step towards clarifying the relationship of directed and
undirected cycle bases.

Lemma 2.4. Let D be a directed graph, let B = {C1, . . . , Cν} be a set of circuits in D,
let G be the underlying undirected graph, and let π(B) = {π(C1), . . . , π(Cν)}. If π(B) is an
undirected cycle basis of G then B is a directed cycle basis of D.

Proof. We have already shown that a set of dependent cycles projects into a set of depen-
dent cycles. Hence π(B) being an undirected cycle basis implies that the cycles in B are
independent. Also, ν must be equal to the cyclomatic number of D, since π(B) is a basis.
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3 Classification of Cycle Bases

We present seven classes of cycle bases and provide characterizations for them. We will show
that each class gives rise to its own minimum cycle basis problem. The complexity of the
minimum cycle basis problem differs widely. For three classes the problem is polynomial time,
for two classes the problem is NP-complete, and for two classes the status is unknown. This
section is mainly based on Liebchen and Rizzi (2007); the missing proofs can be found there.

Definition 3.1 (classes of cycle bases). A directed cycle basis (D-basis) B = {C1, . . . , Cν} of
a directed graph D is called a

1. undirected or U-basis, if the projections π(Ci) of the basic circuits Ci onto the underlying
undirected graph G(D) constitute a cycle basis of G(D);

2. integral or I-basis, if each cycle C of D can be written as an integer linear combination
of circuits in B, i.e.

∃λi ∈ Z : C = λ1C1 + · · ·+ λνCν ;

3. zero-one or3 TUM-basis, if each cycle C ′ of G(D) has an orientation C that can be
written as a linear combination with coefficients in {−1, 0,+1} of circuits in B, i.e.

∃λi ∈ {−1, 0,+1} : γC = λ1C1 + · · ·+ λνCν ;

4. weakly fundamental or W-basis, if there exists some permutation σ such that

Cσ(i) \ (Cσ(1) ∪ · · · ∪ Cσ(i−1)) 6= ∅, ∀i = 2, . . . , ν;

5. strictly fundamental of F-basis, if there exists some spanning forest T ⊆ E such that
B = {CT (e) | e ∈ E \ T}, where CT (e) denotes the unique circuit in T ∪ {e}; and

6. planar, or 2-basis, if each arc is contained in at most two basic circuits and the basis is
undirected.

Figure 4 visualizes the relationship between these classes: Valid inclusions are established
in Theorem 3.4, and examples for the non-emptiness of the regions will be provided in Sec-
tion 3.4.

3.1 Existence.

Except for 2-bases, every graph has a basis of each type. This follows from the fact that every
graph has a strictly fundamental cycle basis and that all other classes generalize fundamental
cycle bases. In contrast, MacLane (1937) established that a graph has a 2-basis, if and only
if it is planar.

3It will become clear in Theorem 3.4 why zero-one bases are called totally unimodular (TUM).
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Figure 4: Map of directed cycle bases: Ex. 3.X refers to an example that is discussed in
detail later in this section, K3,3 refers to a weighted version of the complete bipartite graph
on 3 × 3 vertices, P7,2 is a weighted version of a generalized Petersen graph, V8 is Wagner’s
graph (cf. Section 6), F3,2 is a fan graph on five vertices, and G1 is a simple graph on eight
vertices, see Liebchen and Rizzi (2007).

3.2 Characterizations.

We define the cycle matrix corresponding to a basis and show that the different classes of
cycle bases can be characterized in terms of simple properties of this matrix. An important
property will be the determinant of the cycle basis. The cycle matrix corresponding to a D-
basis B of D is a m× ν matrix whose columns are the incidence vectors of the basic circuits.
The cycle matrix is determined up to a permutation of the rows and columns.

The cycle matrix Φ of a fundamental basis has a particularly simple form. Let T be a
spanning forest and let N be the set of co-tree arcs. Then, for a suitable permutation of the
columns, the ν × ν submatrix Φ′ selected by the rows corresponding to co-tree arcs is the
identity matrix.

Lemma 3.1 (Liebchen (2003)). Let B be a directed cycle basis of a directed graph G and let
Γ be the corresponding cycle matrix. A ν × ν submatrix Γ′ of Γ is nonsingular if and only if
the rows of Γ′ correspond to the co-tree arcs of some spanning forest of D.

Proof. To prove sufficiency, consider a spanning forest T of D, and let Φ be the cycle matrix
of the fundamental basis with respect to T . As B is a directed cycle basis, any fundamental
cycle is a linear combination of cycles in B. Thus there is a matrix R ∈ Qν×ν with Φ = ΓR.
The restriction of Φ to the co-tree arcs of T is the identity matrix. Hence, R is the inverse
of Γ′.

11



Conversely, assume that the rows which are not in Γ′ do not form a spanning forest. Then
there is a circuit C consisting only of such arcs. As B is a D-basis, we have C = ΓxC for
some xC ; clearly xC 6= 0. Restricting to the rows indexing Γ′ yields 0 = Γ′xC , and hence Γ′

is singular.

Lemma 3.2 (Liebchen (2003)). Let B be a D-basis, let Γ be its cycle matrix, and let A1 and
A2 be two nonsingular ν × ν submatrices of Γ. Then detA1 = ±detA2.

Proof. By Lemma 3.1, the rows of A1 correspond to the co-tree arcs of some spanning forest T .
Let Φ be the cycle matrix of the fundamental basis with respect to T . Then ΦA1 = Γ,
cf. Berge (1962) or see the proof of Theorem 2.3. Considering only the rows of A2, we obtain
Φ′A1 = A2; here Φ′ is the submatrix of Φ selected by the rows of A2. Since Φ is totally
unimodular (Schrijver (1986)), we have det Φ′ = ±1 and hence detA1 = ±detA2.

The above lemma allows us to define the determinant of a directed cycle basis.

Definition 3.2 (Determinant of a set of ν oriented circuits). Let B denote a set of ν circuits
in a directed graph D. Consider the matrix Γ with the incidence vectors of B as columns.
Let Γ′ be the ν × ν submatrix of Γ that arises when deleting the arcs of some spanning forest
of D. We define

detB := |det Γ′|.

The determinants of directed cycle bases are positive integers. The value of the determi-
nant is invariant under reorienting arcs of D or reorienting circuits of B, because this simply
translates to multiplying a row or column by minus one. Thus, starting with a cycle basis
of an undirected graph G, orienting the edges of G arbitrarily, and choosing one of the two
orientations for each circuit, always results in the same determinant.

There are directed cycle bases with quite large determinant although the number of ver-
tices of the corresponding graphs is comparatively small. More precisely there is an infinite
family of graphs with cycle bases with determinants that grow linearly in the number of
vertices.

Lemma 3.3. Consider the generalized Petersen graph Pn,2 with n ≥ 5 odd. Let C denote
the set of circuits each of them containing exactly one inner edge, n− 2 outer edges and two
spokes. C together with the inner circuit CI forms a cycle basis of Pn,2 and its determinant
equals n− 2.

Proof. Pn,2 consists of 2n vertices and 3n edges. Therefore every cycle bases has to consist
of n + 1 cycles which is indeed the number of considered circuits. Additionally it should be
mentioned that the inner circuit CI is indeed a simple cycle since n is odd.

Now let T be a spanning tree of Pn,2 made up of all but one inner edges and all spokes.
Consider the square submatrix Γ′ of the cycle matrix Γ obtained by deleting the rows corre-
sponding to T . The co-tree edges and the circuits in C ∪ {CI} can be oriented and permuted
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such that

Γ′ =



1 · · · · · · 1 0 0 0

0 1
. . . . . . 1 0

0 0 1
. . . . . . 1

...

1 0 0 1
. . .

...
...

. . . . . . . . . . . .
...

1 · · · 1 0 0 1 0
∗ · · · ∗ 1


where the last column and the last row corresponds to the inner circuit and the inner edge,
respectively. The determinant of Γ′ equals the determinant of its n × n submatrix obtained
by deleting the last row and column. The resulting matrix is a circulant matrix whose first
row has n − 2 consecutive ones followed by two zeros. The entries of every other row result
from the row above by a circular shift to the right. We have

det Γ′ = n− 2,

see Ueckerdt (2008) for the calculation of the determinant.

Theorem 3.4. Let B be a directed cycle basis with cycle matrix Γ.

1. B is undirected, if and only if detB is odd.

2. B is integral, if and only if detB is one.

3. B is zero-one if and only if Γ is totally unimodular.

4. B is weakly fundamental, if and only if Γ can be permuted as to have a regular upper
triangular ν × ν matrix in its last ν rows.

5. B is strictly fundamental, if and only if Γ can be permuted as to have the ν × ν unit
matrix in its last ν rows.

6. B is a 2-basis, if and only if B is an undirected cycle basis and Γ has at most two
nonzero entries per row.

Proof. Case 1. The projections π(Ci) of the basic circuits are linearly independent if π(Γ)
has full rank, i.e., if there is a square submatrix π(Γ′) with nonzero determinant over GF(2).
The value of the determinant is (det Γ′) mod 2. We conclude that B is undirected if and only
if detB is odd.

Case 2. Let T be some spanning forest, and let Γ′ be the square submatrix of Γ indexed
by the co-tree arcs of T .

Let Φ be the cycle matrix of the fundamental basis with respect to T . Since B is integral,
there is an integral ν × ν matrix R such that Φ = ΓR. Restriction to the co-tree arcs of T
yields I = Γ′R. We have det Γ′ ∈ Z and detR ∈ Z, because both matrices are integral. Thus
(det Γ′) · (detR) = 1 and hence det Γ′ = ±1.

Let C be an arbitrary circuit. The representation xC of C in terms of B satisfies C = ΓxC .
Restriction to the co-tree arcs of T yields C ′ = Γ′xC or xC = (Γ′)−1C. The inverse of Γ′ is
integral, by Cramer’s rule and since det Γ′ = ±detB = ±1. Thus xC ∈ Zν .
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Case 3. A matrix is totally unimodular if and only if for any subset I of its columns there
are coefficients λi ∈ {−1,+1} such that

∑
i∈I λiCi is a vector with entries in {−1, 0,+1},

see (Schrijver, 1986, Theorem 19.3).
Assume first that B is a zero-one basis. In particular, B is an integral cycle basis and

hence {π(Ci) | Ci ∈ B} is an undirected basis of G(D). Let I be an arbitrary subset of the
columns of Γ and consider the Z2-sum of the projections of the circuits in I, and call the
resulting cycle C ′, ∑

i∈I
π(Ci) = C ′.

Since B is a zero-one basis, C ′ has an orientation C that can be written as a linear combination
with coefficients λi ∈ {−1, 0,+1} of the circuits in B, i.e.,

ν∑
i=1

λiCi = C.

Projecting this equation onto Z2, we obtain

ν∑
i=1

|λi|π(Ci) = C ′.

Since the representation of C ′ with respect to the basis of the projections of the circuits in B
is unique, we have that λi is nonzero if and only if i ∈ I. Thus, in the TUM characterization,
C is the desired linear combination of the columns selected by I.

Assume conversely that Γ is totally unimodular. Then detB = 1 and hence {π(Ci) | Ci ∈
B} is a basis of G(D). Let C ′ be any cycle in G(D). Then C ′ =

∑
i∈I π(Ci) mod 2 for some

index set I ⊆ {1, . . . , ν}. Since Γ is totally unimodular, there are coefficients λi ∈ {−1,+1}
such that

∑
i∈I λiCi is a vector C with components in {−1, 0,+1}. Clearly, π(C) = C ′ and

hence C is the desired orientation of C ′.
Case 4. Order the columns of Γ such that Cσ(i) is in the i-th column for 1 ≤ i ≤ ν.

Order the rows of Γ such that an arc a with a ∈ Cσ(i) \ (Cσ(1) ∪ · · · ∪Cσ(i−1)) corresponds to
row ν − 1 + i.

Case 5. This is nothing but a reformulation of Sys lo’s Sys lo (1979) characterization of a
strictly fundamental cycle basis B, namely any circuit in the basis contains an arc that is
contained in no other circuit of the basis.

Case 6. This is nothing but a reformulation of the definition of 2-bases.

The determinant of a set of ν circuits can be computed over any field k. For directed
bases the determinant is nonzero in Q, for undirected bases the determinant is nonzero in
GF (2). We therefore call directed bases also Q-bases and undirected bases GF (2)-bases. We
call a directed basis a GF (p)-basis, where p is a prime, if its determinant is nonzero modulo
p.

Theorem 3.4 establishes most inclusions of Figure 4: Every fundamental basis is both
weakly fundamental and totally unimodular, every weakly fundamental or totally unimodular
basis is integral, every integral basis is undirected, and every undirected basis is directed. We
shall next relate 2-bases to the other classes.

Lemma 3.5. Every 2-basis is totally unimodular and weakly fundamental.
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Figure 5: A graph and a directed cycle basis. For each of the four circuits, the arcs belonging
to the circuit are shown in bold. Arcs used in reversed direction are shown dotted. Every
arc is used in exactly two circuits. The determinant of this basis is two. Thus the basis is
not totally unimodular. Also, since each arc is used in exactly two circuits, the basis is not
weakly fundamental.

Proof. Let B = {C1, . . . , Cν} be a 2-basis of G. MacLane (1937) showed that a graph having
a 2-basis is planar and that moreover the basic circuits correspond to the bounded face cycles
of some planar embedding of G. Orient the edges of G arbitrarily and let the Ci’s correspond
to counterclockwise traversals of the face cycles. Then every row of Γ has at most two nonzero
entries; if there are two nonzero entries, one is +1 and one is −1. Thus Γ is totally unimodular
((Schrijver, 1986, page 274)).

We next show that B is weakly fundamental. Let C = {e1, . . . , ek} be the boundary
of the infinite face of G. For i = 1, 2, . . . , k, denote by Cei the unique circuit in B that
contains ei ∈ C. In the first iteration, we define

Cσ(v) = Ce1 , Cσ(v−1) = Ce2 , · · · , Cσ(v−k+1) = Cek
.

Then, we remove the edges of C from G and proceed in the same way for the 2-connected
components of the remaining graph.

We required a 2-basis to use every arc at most twice and to be undirected. Figure 5
shows a graph and a directed basis that uses every arc exactly twice and is neither totally
unimodular nor weakly fundamental (Tomasz Jurkiewicz, personal communication).

Open Problem 1. The definition of zero-one bases may seem strange. It would be equally
natural to require that every circuit (every simple cycle) is a linear combination of the basic
circuits with coefficients in {−1, 0,+1}. How do these definitions relate?

3.3 Simple Examples

Figure 6 presents three cycle bases for the wheel graph W5: the strictly fundamental cycle
basis B1 = {C11, C12, C13, C14}, which is also a 2-basis, the weakly fundamental cycle ba-
sis B2 = {C21, C22, C23, C24}, and the undirected basis B3 = {C31, C32, C33, C34}; the latter
is not integral. The strictly fundamental cycle basis B1 corresponds to the spanning tree
T = {e1, e2, e3, e4}. The corresponding cycle matrices are as follows:
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Figure 6: Examples of a strictly fundamental cycle basis that is also a 2-basis, a weakly
fundamental cycle basis, and a non-integral cycle basis in the wheel graph W5. The latter
originates from Hartvigsen and Zemel (1989).

Γ1 =



−1 1 0 0
1 0 0 −1
0 0 −1 1
0 −1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, Γ2 =



−1 0 0 0
1 1 1 0
0 0 −1 0
0 −1 0 0
1 1 1 −1
0 1 1 1
0 0 1 1
0 0 0 1


, Γ3 =



0 0 1 −1
0 1 −1 0
1 −1 0 0
−1 0 0 1

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


.

The first four rows correspond to the arcs of T and the last four rows correspond to the co-tree
arcs. In Γ1, every row has at most two nonzero entries and the last four rows constitute a
4 × 4 unit matrix. Thus B1 is a 2-basis and is strictly fundamental. In Γ2, the last four
rows constitute a regular upper triangular matrix and so B2 is weakly fundamental. Finally,
in Γ3 the determinant of the submatrix formed by the last four rows has determinant three.
Hence B3 is undirected but not integral. As a consequence, it cannot be weakly fundamental
either, and thus its rows and columns cannot be permuted as to provide a triangular matrix.
A direct demonstration that B3 is not integral is provided by the representation of the circuit
C24 as a linear combination of the basis B3, namely

C24 =
1
3
C31 +

1
3
C32 +

1
3
C33 +

1
3
C34.
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3.4 Variants of the MCB Problem

Each of our classes of cycle bases induces its own variant of the MCB problem. Let D be a
directed graph and let B be a class of cycle bases of D. A minimum (weight) cycle basis of
class B is a basis B′ ∈ B such that

w(B′) = min{w(B) |B ∈ B}.

For instance, in the minimum strictly fundamental cycle basis (MFCB) problem we aim at
finding a spanning forest in D such that the sum of the weights of its induced fundamental
circuits is as small as possible.

Our seven classes define seven different minimum cycle basis problems, i.e., for any two
distinct classes B1 and B2 there is a directed graph D and a weight function w such that

min{w(B) |B ∈ B1} 6= min{w(B) |B ∈ B2}.

In the sequel, we show some of these differences; for the others, we refer our readers to Liebchen
and Rizzi (2007) and to Fig. 4. In each case, we will exhibit a graph, a weight function, and
a basis B, argue that the basis belongs to class B1, and finally show that every basis of class
B2 must have larger weight. The three graphs that we present next differentiate between the
following pairs of the MCB problem:

1. strictly fundamental cycle bases vs. 2-bases and weakly fundamental cycle bases

2. weakly fundamental cycle bases vs. integral cycle bases

3. integral cycle bases vs. undirected cycle bases

A graph that distinguishes between the MCB problems for weakly fundamental and totally
unimodular cycle bases is given in Figure 29 of Section 6.

Example 3.1 (F-bases bases vs. 2-bases and W-bases).
The sunflower graph SF(3) in Fig. 7 contains precisely
four circuits with three edges. These are independent
and hence constitute its unique minimum cycle ba-
sis B. Obviously, B is a 2-basis. And, by Lemma 3.5,
B is also weakly fundamental.

However, B is not strictly fundamental, as the cen-
ter triangle contains no edge that is not contained
in any other circuit of the basis; cf. case 5 of Theo-
rem 3.4. This example was inspired by Hubicka and

Figure 7: The sunflower graph SF(3) has
a unique minimum cycle basis that is a 2-
basis.

Sys lo (1975).

Example 3.2 (W-bases vs. I-bases).
Champetier (1987) introduced the graph shown in Fig. 8. The graph is specified as a node
labelled planar graph. The nodes sharing a label are to be identified. The resulting simple
GCh has 17 vertices and 52 edges. There are precisely 36 triangles in GCh; they correspond
to the finite faces of the underlying planar graph.

Claim 3.1 (Gleiss (2001b)). The 36 triangles in GCh constitute the unique minimum cycle
basis B of GCh. B is integral but not weakly fundamental.
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Figure 8: The minimum integral cycle basis of Champetier’s graph Champetier (1987) is
unique and not weakly fundamental. Nodes with the same label are to be identified.

Proof. Consider some orientation D of GCh and orient the circuits in B clockwise, with
respect to Fig. 8. Consider the sum C ′ over Q of all the triangles, C ′ =

∑
C∈B C. In GCh,

all edges except for the ones shown bold in Fig. 8, are part of two triangles. The bold
edges belong to three triangles. Thus C ′ is the 4-circuit that links the labeled vertices. In
the visualization of Fig. 8, this translates to following the outer bold circuit clockwise, or
following its representation as a path from left to right.

We now construct a new basis B′ by replacing an arbitrarily chosen circuit of B by C ′.
Let Γ and Γ′ be the corresponding cycle matrices and consider the transformation matrix R
such that Γ′ = ΓR. With R = [r1, . . . , rν ], we have ri = 1 for some i ∈ {1, . . . , ν}, and rj = ej
for all j 6= i. Hence, R constitutes a unimodular transformation and thus B and B′ have the
same determinant.

The cycle basis B′ is weakly fundamental; as in the proof of Lemma 3.5 one can construct
a suitable ordering of its circuits. Thus detB′ = 1 and hence detB = 1. We conclude that
B is an integral basis. However B is not weakly fundamental as every arc is part of two or
three triangles.

We mention that the minimum cycle basis B of Champetier’s graph is not totally uni-
modular, cf. Liebchen and Rizzi (2007).

Example 3.3 (U-bases vs I-basis).
Consider the generalized Petersen graph P11,4 (cf. Figure 9) with the following weight function

wij =


4, if i and j are outer vertices,
5, if i and j are inner vertices,
12, otherwise.

Claim 3.2. (P11,4, w) has precisely 12 circuits of weight at most 44. These constitute the
unique minimum cycle basis.
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Figure 9: A weighted version of the generalized Petersen graph P11,4 has a unique minimum
cycle basis that is not integral.

Proof. Any cycle basis consists of ν = 33 − 22 + 1 = 12 circuits. We call the edges e with
we = 12 spokes and observe that every circuit contains an even number of spokes. There are
only two circuits with no spokes; the outer circuit has weight 44 whereas the inner circuit has
weight 55. Any circuit with at least four spokes has weight at least 48.

We classify the circuits that contain two spokes according to their number of outer edges.
As there are always two possible choices for the path through the inner edges, we only consider
the shorter one in Table 1. Similarly, we may restrict attention to circuits that use at most 5 =⌊

11
2

⌋
outer edges.

Number of outer edges 1 2 3 4 5
Number of inner edges 3 5 2 1 4
Weight of the shorter circuit 43 57 46 45 64

Table 1: Weights of the circuits in (P11,4, w) that use two spokes.

Let B consist of the outer circuit and of the 11 circuits that use precisely one outer
edge. We claim that B is an undirected cycle basis. Assume otherwise. Then, there exists
a nontrivial linear combination yielding the zero vector, over GF(2). If such a combination
made use of any of the 11 circuits that use precisely one outer edge, then it has to use each
of these circuits in order to cancel out the spokes. The sum of these 11 circuits is the outer
circuit plus the inner circuit. Thus there is no nontrivial linear combination yielding the zero
vector.

It remains to show that B is not an integral cycle basis. Indeed, its determinant is 3 as a
simple calculation shows.

3.5 Directed and GF (p)-Bases

We show that the computation of minimum directed cycle bases can be reduced to the com-
putation of minimum GF (p)-bases for suitable primes p.

Lemma 3.6. Let B be a minimum weight directed cycle basis and let p be a prime. The
weight of a minimum weight GF (p)-basis is no smaller than the weight of B. If p does not
divide the determinant of B, B is also a minimum weight GF (p)-basis.
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Proof. Linear dependence over Q implies linear dependence over GF (p) for any p. Therefore,
any GF (p)-basis is a directed basis. If the determinant of B is not divided by p, detB mod p 6=
0 and B is a GF (p)-basis.

In order to apply the preceding lemma, we need a bound on the determinant of a directed
cycle basis. Consider any directed cycle basis B. Its determinant is the determinant of a ν×ν
matrix with entries in {−1, 0,+1}. Moreover, each column of this matrix contains at most n
nonzero entries.

Lemma 3.7. The determinant of a directed cycle basis is an integer bounded by nm/2.

Proof. The determinant is a sum of ν! terms; each term has absolute value at most one. This
gives a bound of ν! ≤ νν . Hadamard’s inequality yields a slightly better bound. The absolute
value of the determinant is bounded by the product of the `2-norms of the column vectors.
The norm of each column vector is at most

√
n and hence we have the bound

√
n
ν .

Combining the two preceding lemmas, we obtain a characterization of minimum directed
basis in terms of minimum GF (p)-bases.

Theorem 3.8. Let P be a set of m primes each of value at least n. For each p ∈ P , let Bp
be a minimum GF (p)-basis, and let p0 be such that Bp0 has minimum weight among the bases
Bp.

1. Bp0 is a minimum weight directed basis.

2. Let p ∈ P be chosen uniformly at random. Then Bp is a minimum weight directed basis
with probability at least 1/2.

The primes in P can be chosen in O(m logm).

Proof. Let B be any minimum directed basis. No more than m/2 primes in P can divide the
determinant of B.

For an integer s, let π(s) be the number of primes less than or equal to s. Then s/(6 log s) ≤
π(s) ≤ 8s/ log s (Apostol (1997)). Then there are most 8n/ log n primes less than n. If t is
such that t/(6 log t) ≥ 8n/ log n+m then there are at least m primes of value at least n less
than t; t = O(m logm) suffices.

If p = O(m logm) and hence log p = O(logm), arithmetic in GF (p) takes time O(1).

3.6 Circuits versus Cycles.

We defined cycle bases as sets of circuits. Alternatively, we could have defined them as sets of
cycles. Is there always a minimum weight basis that consists only of circuits? Is the minimum
weight basis of a disconnected graph the union of minimum weight bases of the components?
For some of our classes, the answers are yes. For some, the answers to these and related
questions are not known.

Theorem 3.9. Exchange Theorem (Horton (1987)) If B is a D or U-basis of G, C ∈ B and
C = C1 + C2, then either B \ {C} ∪ {C1} or B \ {C} ∪ {C2} is also a cycle basis of G.
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Proof. Let Γ be the cycle matrix for B and let Γi be the cycle matrix for B−C+Ci, i = 1, 2.
Let T be a spanning forest of G and let A and Ai be the respective square submatrices indexed
by the arcs not in T . Then, using the linearity of the determinant function for the column
which corresponds to C, we find that 0 6= detA = detA1 + detA2. .

The family of linearly independent cycles forms a matroid.

Theorem 3.10. The set of (directed) cycles of a graph G forms a matroid. The bases of the
matroid clearly coincide with the (directed) cycle bases of G.

Proof. Let I denote the system of all linear independent sets of cycles in G. It suffices to
show the following.

• ∅ ∈ I.

• A ∈ I and B ⊂ A implies B ∈ I.

• For all sets A,B ∈ I with |A| > |B| there exists an element a ∈ A \ B such that
B ∪ {a} ∈ I.

The listed properties hold since the (directed) cycle space of G forms a vector space.

We will show that Theorem 3.10 does not hold for integral cycle bases, i.e. the system of all
subsets of all integral bases in G does not form a matroid. This will cause the computational
approaches suitable for U-bases and D-bases to fail for I-bases. In section 5.7 will we discuss
these issues. At this point we will examine the validity of Theorem 3.9 for K-bases with K
neither D nor U.

Theorem 3.9 does not hold for totally unimodular bases.

Lemma 3.11 (T. Jurkiewicz, personal communication). There is a graph G and a totally
unimodular bases B of G containing a circuit C and a decomposition C = C1 +C2 of C such
that neither B \ {C} ∪ {C1} nor B \ {C} ∪ {C2} is a totally unimodular bases.

Proof. Figure 10 shows a graph and a TUM-basis of this graph. We invite the reader to verify
that this basis it TUM. Figure 11 shows a decomposition of the first circuit into two circuits.
Replacing the first circuit by either one of the two circuits shown in Figure 11 results in a
basis that is not TUM. In both cases, the cycle matrix of the resulting basis contains a 2 by
2 submatrix of the form (

1 1
1 −1

)
.

This matrix has determinant −2; in a TUM-basis, the determinants of all square submatrices
must be in {−1, 0,+1}.

For weakly fundamental bases, we can show Theorem 3.9 under the additional assumption
that C1 and C2 use only edges that are also used by C.

Lemma 3.12. Let B be W-basis of G, let C ∈ B and C = C1 +C2 where |Ci(e)| ≤ |C(e)| for
all e and Ci 6= C for i = 1, 2. Then at least one of B − C + C1 or B − C + C2 is a W-basis
of G.
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Figure 10: A graph and a totally unimodular cycle basis. For each of the four circuits, the
edges belonging to the circuit are shown in bold.

Figure 11: Decomposition for first element of bases from Figure 10. Edges that are used in
reversed direction are shown dotted.

Proof. If B is a weakly fundamental basis, there is an ordering of the cycles in B such that
every cycle introduces a nontree edge not used in any preceding cycle. Let e be the edge
introduced by C. Then C(e) 6= 0 and hence at least one of C1(e) or C2(e) is nonzero, say
the former. We replace C by C1. Since for any nonzero coefficient of C1, the corresponding
coefficient of C is nonzero, the nontree part of the new cycle matrix is still lower triangular.

Observe that Lemma 3.12 is not true for strictly fundamental cycle bases. To see this,
consider the sunflower graph SF(3), see Fig. 7, and some minimum strictly fundamental cycle
basis B of SF(3). If we decompose the 4-circuit C ∈ B into C = C1 + C2, where both C1

and C2 are triangles, then neither of the B −C +Ci is a strictly fundamental cycle basis. In
the next lemma we show that Lemma 3.12 does not hold for integral bases either.

Lemma 3.13. There is a graph G and an integral basis B of G containing a non-circuit C
such that for any decomposition C = C1 +C2 of C with |Ci(e)| ≤ |C(e)| for all e and Ci 6= C
for i = 1, 2, neither B − C + C1 nor B − C + C2 is an integral basis.

Proof. The graph is P7,3 as shown in Figure 12. It consists of two disjoint cycles of length
7, called the outer and the inner cycle, respectively. We use Oi and Ii, 0 ≤ i < 7, to denote
the nodes on the outer and inner cycle, respectively. The outer and inner cycles have edges
(Ii, Ii+1) and (Oi, Oi+4), 0 ≤ i < 7, respectively. All indices are modulo 7. Furthermore, we
have the edges (Oi, Ii), 0 ≤ i < 7, called spokes. To summarize, n = 14, m = 21, and the
cyclomatic number ν is thus eight.

The basis B consists of the following cycles. For 0 ≤ i < 7, we have the cycle Ci consisting
of the edges (Oi, Oi+1), (Oi+1, Oi+2), (Oi+2, Ii+2), (Ii+2, Ii+6), (Ii+6, Ii+10), (Ii+10, Ii+14), and
(Ii+14, Oi). Observe that the sum of the Ci’s is the nonsimple cycle consisting of two copies
of the outer circuit and three copies of the inner circuit. We also have the cycle Da,b that
consists of a copies of the outer circuit and b copies of the inner circuit, where a, b ∈ Z. We
will fix a and b later.

We next determine the determinant of the set of cycles above as a function of a and b.
We fix a spanning tree T consisting of the spokes and all inner edges except for edge (I2, I6).
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Figure 12: The generalized Petersen graph P7,3. We provide an integral cycle basis of P7,3

which features a nonsimple cycle, but cannot be decomposed into a basis which only consists
of circuits.

We obtain the following square part of the cycle matrix:

C0 C1 C2 C3 C4 C5 C6 Da,b

(O0, O1) 1 1 a
(O1, O2) 1 1 a
(O2, O3) 1 1 a
(O3, O4) 1 1 a
(O4, O5) 1 1 a
(O5, O6) 1 1 a
(O6, O1) 1 1 a
(I2, I6) 1 1 1 b

Observe that the edge (Ij , Ij+4) is used by the cycles Cj−2, Cj−6 and Cj−10. The determinant
of the matrix above is 2b − 3a as a little calculation, e.g., Gaussian elimination, shows. For
a = b = 1, the determinant is −1 and hence the basis is integral. The cycle D1,1 is not
a circuit and uses the outer O and the inner circuit I in the forward direction. The only
decomposition of D is O + I. The determinant of the basis B −D +O is −3 (use a = 1 and
b = 0 in the formula for the determinant) and the determinant of the basis B − D + I is 2
(use a = 0 and b = 1 in the formula for the determinant). Thus neither basis is integral.

The next two lemmas provide us with properties of minimum cycle bases which are ex-
tremely valuable in practice. These properties are an immediate consequence of Lemma 3.12,
and turn out to be true for strictly fundamental cycle bases, too.

Theorem 3.14. For K ∈ {D,U,W,F}, any graph G has a minimum K-basis consisting only
of circuits.

Proof. The cycles in fundamental bases are circuits by definition. For any of the other K’s,
consider a basis B containing a cycle C that is not a circuit. We may decompose C into a
sum of circuits Ci, 1 ≤ i ≤ k. By the preceding lemmas, some B − C + Ci is a K-basis of G.
Also w(Ci) ≤ w(C).

Theorem 3.15. For K ∈ {D,U,W,F}, a minimum weight K-basis of a graph can be obtained
as the union of minimum weight K-bases of its maximal 2–connected components.
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Proof. By the preceding theorem, there is a minimum weight K-basis consisting only of cir-
cuits. A circuit uses edges only from one 2–connected component.

Open Problem 2. Does Theorem 3.14 or Theorem 3.15 hold for integral basis or totally
unimodular bases? Does Lemma 3.12 hold for totally unimodular bases?

3.7 Reductions.

We study some simplification rules. At first sight, all might appear quite natural. However,
for certain classes of cycle bases, we do not know whether these rules are valid.

For example, is there a simple way to deal with parallel edges? Is there a simple way of
handling edges of weight zero?

Let g = (u, v) be a zero weight edge without parallel edges. Let G′ be obtained from G
by removing g and identifying u and v, i.e., replacing endpoints u and v in edges in E(G) by
a new vertex uv. The edges of G′ correspond to the edges in E − g. Let B′ be a basis of G′,
where K ∈ {D,U, I,W,TUM,F}. Consider the following set B of cycles in G: for any C ′ ∈ B′
we add a cycle C to B that is obtained from C ′ by adding g with appropriate multiplicity;
the appropriate multiplicity guarantees flow conservation at u and v.

Lemma 3.16. Let G′ be obtained from G by contracting an edge of cost zero not having any
parallel edges, let B′ is a minimum weight K-basis of G′, and let B be obtained from B′ as
described above. Then B is a minimum weight K-basis of G for K ∈ {D,U, I,W,TUM,F}.

Proof. Let T ′ be a spanning forest of G′ and let Γ′ be the cycle matrix corresponding to B′.
Let A′ be the square submatrix selected by the rows not in T ′. Then T :=T ′+g is a spanning
tree of G. We obtain the cycle matrix for B by adding a row for g and setting the entries
in this row appropriately. Observe that A′ stays the square matrix selected by the nontree
edges. Thus B is a K-basis of G. The weight of B is the weight of B′.

Conversely, let B be any K-basis of G and let B′ be obtained from B by identifying u and
v. The matrix Γ′ for B′ is obtained from the matrix Γ for B by deleting the row corresponding
to g.

Let C ′ be any cycle in G′. We lift C ′ to a cycle C in G. The representation of C with
respect to B translates into a representation of C ′ with respect to B′. Thus B′ is also of type
K. Also w(B′) ≤ w(B).

Lemma 3.17. Let K ∈ {D,U} and let e be any edge. For any minimum weight circuit F
containing e, there is a minimum weight K-basis containing F . Any minimum weight K-basis
contains a minimum weight circuit containing e.

Proof. Let B be a minimum weight K-basis. Then F =
∑

C∈B λCC. Clearly, there must
be a C ∈ B such that e ∈ C and λC 6= 0. Then w(F ) ≤ w(C) and B′ :=B \ C + F is a
K-basis of weight no larger than the weight of B. Hence B′ is a minimum weight K-basis. If
w(F ) < w(C), B was not a minimum weight K-basis.

Lemma 3.17 is not true for strictly fundamental cycle bases, already for the sunflower
graph SF(3). In particular, for the edge e which induces the only 4-circuit in a minimum such
basis B, the unique shortest circuit through e is not contained in B.
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Lemma 3.18. Let g and f be parallel edges with w(g) ≤ w(f). For K ∈ {D,U,W} a
minimum weight K-basis of G can be obtained from a minimum weight K-basis B′ of G′ :=G−
f by adding a cheapest circuit through f ; call it C.

Proof. C is clearly independent from B′. Also, C introduces an edge that is not used in any
of the other cycles. Thus, if B′ is a K-basis of G′, B := B′ ∪ C is a K-basis of G with
w(B) = w(B′) +w(C). Assume, for the sake of a contradiction, that G has a K-basis B̂ with
w(B̂) < w(B). We will show that this implies that G′ has a K-basis of weight less than w(B′).

Assume first that K ∈ {D,U}. The cheapest circuit containing f is either the circuit4

g ◦ f−1 or has the form f ◦ P where P is a cheapest path connecting the endpoints of f in
G \ {f, g}. In the latter case, g ◦ P is a cheapest cycle containing g. By Lemma 3.17 we may
assume that B contains the circuit g◦f−1 in the first case or the circuits g◦P and f ◦P in the
latter case. Assume now, that B̂ contains another circuit, say f ◦Q, containing f . Replacing
this circuit by g ◦ Q yields a basis of weight no larger than B̂ as g ◦ Q = f ◦ Q + g ◦ f−1 in
the former case and g ◦ Q = f ◦ Q + g ◦ P − f ◦ P in the latter case. We conclude that G
has a basis of weight no larger than B̂ in which g ◦ f , respectively f ◦ P is the only circuit
containing f . Deleting this circuit from the basis gives us a basis of G− f .

For K = W, we have to argue differently. Let Γ̂ be the cycle matrix for B̂. We may assume
that Γ̂ has an upper triangular matrix in its last ν rows, and the arcs of some spanning forest T
placed above.

Assume first that the row for g is above the row for f . Then f must be a co-tree arc,
because otherwise g and f form a circuit in T . Hence there is a circuit Cf ∈ B̂ “introducing”
f , i.e., the diagonal entry in the row indexed by f belongs to Cf . We delete Cf from the basis
and replace, in the other basic circuits, occurrences of f by g. Removing the row of f , too, we
obtain the cycle matrix of a W-basis for G′ of weight w(B̂)−w(Cf ) < w(B)−w(C) = w(B′),
a contradiction.

Assume next that the row for f is above the row for g. Then g must be a co-tree arc
and hence there is a circuit Cg introducing g; f may be a tree arc or a co-tree arc. If f is a
tree arc, we make g a tree arc, replace f by g in all circuits and delete f and Cg. If f is a
co-tree arc, the circuit Cf introducing f does not use the arc g, because g was assumed to
be arranged below f . We replace f by g in all circuits and delete f and Cg. The circuit C ′f
obtained from Cf by replacing f by g now introduces g. In either case, we obtain the cycle
matrix of a W-basis for G′ of weight w(B̂)−w(Cg) < w(B)−w(C) = w(B′), a contradiction.

Open Problem 3. Extend statements 3.12 to 3.18 to types of cycle bases not covered by the
statements.

Open Problem 4. Let e = {u, v} be a non-metric edge of a biconnected graph G, i.e.,
distG(u, v) < w(e). Each minimum K-basis B has precisely one circuit C ∈ B with e ∈ C.
This is true for K ∈ {D,U}. Is is true for any other type?

3.8 Selected Properties.

We consider the sequence of weights of circuits in a minimal K-basis in non-decreasing order.
Let K ∈ {D,U} and B and B′ be distinct K-bases of G both of minimal weight. Then their
ordered sequences of weights coincide. This is not true for integral bases.

4We assume that g and f are oriented in same way; f−1 is the reversal of f and runs anti-parallel to g.
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Lemma 3.19. For K ∈ {D,U}, let w and w′ be the non-decreasing sequences of weights of
circuits of two minimal K-bases B and B′ respectively. Then w = w′.

Proof. This is true since both the undirected and the directed cycle space form a vector space
over GF (2) and Q respectively. Hence the cycles together with linear independence form a
matroid (cf. Theorem 3.10). Finally, it is a well known fact that the non-decreasing weight
sequences of minimal bases in matroids coincide.

b

i

Figure 13: A graph G featuring minimal integral cycle bases with different weight sequences.

11x 11x 1x

w1 w2
w3

Figure 14: A minimal I-basis B of G with weight sequence w = (38, . . . , 38, 42, . . . , 42, 42, 46).

11x 10x 1x 1x

w1 w2 w3
w4

Figure 15: A minimal I-basis B′ of G with weight sequence w′ = (38, . . . , 38, 42, . . . , 42, 44, 44).

Lemma 3.20. There is a graph G and two minimal integral bases B and B′ of G whose
non-decreasing weight sequences do not coincide.
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Proof. Consider the graph G depicted in Figure 13. It arises from the generalized Petersen
graph P11,3 by the addition of an extra set of 11 spokes. We give weight four to all inner and
outer edges and weight 15 to all spokes. Let B and B′ be the two sets of circuits in G shown
in Figures 14 and 15, respectively. Either set forms an integral cycle basis of G as the reader
might check. To see minimality of B and B′ note that the first 22 circuits in B are in fact
the only ones in the graph whose weight does not exceed 42. Beside them there are only two
more circuits, the inner one and the outer one, whose weight is at most 44. Replacing the
last circuit in B by either of them yields a cycle basis that is not integral, i.e. its determinant
equals 2 or 3, respectively. Every circuit in G other than the so far considered ones has weight
at least 46. Hence there are exactly two sets of 23 circuits whose weight is less than 926. Both
form a cycle basis of G, but neither is integral.
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Graph class minimum W-basis minimum F-basis

Weighted

General O(W log n), Thm 4.4
General O(n ·W (MST) +W ), Thm 4.2 O(W log2 n log log n), Thm 4.11
Planar Θ(W )

Unweighted

General O(m log n log(m/n)), Thms 4.1 and 4.5 O(n2), Thm 4.12
Planar O(n

√
nφ), Thm 4.7

Outerplanar Θ(n) Reich (2007)
d-dim grids Θ(n) Θ(n log n), Thm 4.8

Table 2: Bounds for minimum weight W- and F-bases. W denotes the total edge weight and
W (MST) is the weight of a minimum spanning tree. Bounds for unweighted graphs are only
stated if they are better than the bound derived for weighted graphs with W = m. In the
bound for planar graphs, φ is the maximal size of any face.

4 Length and Weight of Cycle Bases

In this section we discuss a-priori bounds on the length and weight of minimum cycle bases.
We state the bounds as functions of the number n of vertices, the number m of arcs, and the
total weight W of the edges. Many applications benefit from small length or small weight
bases as we will see in Section 7; algorithms for computing minimum or nearly minimum
weight bases will be discussed in Section 5. Table 2 summarizes the results. It is interesting
to note that all upper bounds have been shown for either weakly or strongly fundamental
bases. Although we know that general bases are not always fundamental (see Example 3.3),
it seems that fundamentality gives sufficient structure to the problem to make an analysis of
their length achievable or at least easier than for general bases.

Open Problem 5. Derive a-priori bounds on the weight (length) of directed, undirected,
integral, and totally unimodular bases.

Open Problem 6. For K,K ′ ∈ {D,U, I,TUM,W,F} and a graph G with weight function
W , let

rK,K′(G) =
weight of a minimum K-basis
weight of a minimum K ′-basis

and

rK,K′(n,m) = max{rK,K′(G) | G is a graph with n nodes and m edges} .

Derive upper bounds on rK,K′(n,m). For example, rW,D(n,m) = O(log n) since every graph
with n nodes has a W-basis of weight O(W log n) and since every D-basis has weight at least
W .

The bounds given in Table 2 are obtained by different methods. There are essentially four
approaches:
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1. Use of special graph properties like planarity.

2. Induction.

3. Use of clusters, partitions, and spanners.

4. Results of extremal graph theory.

We start with some obvious bounds. Throughout this section, we restrict attention to
biconnected graphs. There are m − n + 1 circuits in a basis and each circuit has length at
most n. Thus any basis has length at most mn and weight at most mW . Throughout this
section, W =

∑
e∈E w(e) denotes the total weight of the edges. Obvious lower bounds are

Ω(m) and Ω(W ), since in biconnected graphs every edge has to belong to at least one circuit
of any basis. Extremal graph theory provides a nontrivial lower bound.

Theorem 4.1. For any integer h = 2 mod 4 and h ≥ 6, there is a graph Gh(n) with n nodes
and m = hn/2 edges, such that any cycle basis for Gh(n) has length Ω(m log n/ log(m/n)).
In particular, there is a graph family where m = Θ(n) and any basis has length Ω(m log n),
and for any integer k, there is graph family where m = Θ(n1+1/k) and any basis has length
Ω(mk).

Proof. For any integer h with h = 2 mod 4 and h ≥ 6, there exists an infinite family
of h-regular graphs, i.e., m = hn/2, in which every cycle has length Ω(log n/ log(m/n)),
see Lubotzky et al. (1988). Since a basis consists of m− n+ 1, circuits, any basis has length
Ω(n log n/ log(m/n)). For h = 6, we obtain graphs with m = Θ(n), for which every basis has
length Ω(m log n). For h = n1/k, we obtain graphs with m = Θ(n1+1/k), for which every basis
has length Ω(mk).

Open Problem 7. Prove a nontrivial lower bound for weighted graphs.

4.1 Weakly Fundamental Bases

The first result for general graphs was given by Horton in 1987; Liebchen observed that
the construction yields a weakly fundamental basis and not only an undirected basis. We
generalize Horton’s proof to yield an upper bound for weighted graphs.

Theorem 4.2 (Horton (1987); Liebchen (2003)). Every simple graph G has a W-basis of
length at most 3(n − 1)(n − 2)/2 and weight at most 2nW (MST) + 2W , where W (MST) is
the weight of a minimum spanning tree.

Proof. We prove only the weight upper bound. For the case of uniform weights, we have
W (MST) = n − 1 and W = m. This gives a bound of 2n2 + 2n2/2 = 3n2 for the uniform
case.

Let T be a MST of G. The claim clearly holds for n ≤ 3. So assume that G has more
than three vertices and let v be a leaf of T . Our W-basis for G consists of two parts: first, a
W-basis B(G−v) of G−v constructed recursively, and second, d(v)−1 cycles passing through
v. Observe, that a basis for G−v has cardinality m−d(v)− (n−2) = m− (n−1)− (d(v)−1)
and hence we are adding the right number of cycles. The graph consisting of T plus the
d(v) − 1 non-tree edges incident to v is planar. We form d(v) − 1 circuits by taking all but
one face cycle of this planar graph. The resulting set of circuits is weakly fundamental as an
argument similar to the one used in the proof of Theorem 3.5 shows.
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It remains to argue the weight bound. By the induction hypothesis, B(G− v) has weight
as most 2(n− 1) ·W (MST− v) + 2W (G− v). The circuits added in the induction step have
weight at most 2W (MST) + 2W (v) where W (v) denotes the sum of the weights of the edges
incident to v. Thus the weight of our basis is at most 2nW (MST) + 2W .

The upper bound is tight. Consider the complete graph on n nodes. It has m = n(n−1)/2
edges. Since any circuit in any basis contains at least three edges, any cycle basis has length
at least 3(m−n+1) = 3(n−1)(n−2)/2. For sparse graphs, a much better bound is possible.
Rizzi (2007) proved that every graph has a weakly fundamental basis of length O(m log n).
In fact, he even showed that every weighted graph has a W-basis of weight O(W log n). The
proof given here is due to T. Kavitha and R. Rizzi. The proof makes use of the fact that
every graph of minimum degree three contains a logarithmic length cycle.

Lemma 4.3 (Bollobás (1978)). Any graph with minimal degree at least three contains a cycle
of length at most 2 dlog2 ne. Moreover such a cycle can be found in time O(n).

Proof. Let G be our graph and let v be an arbitrary vertex. Grow a breadth-first search
tree rooted at v. As long as only tree edges are encountered, every vertex has at least two
children. Thus if 20 + 21 + . . . 2k > n, there must at least one non-tree edge incident to a
vertex of depth k − 1 and hence a cycle of length 2k exists. This proves the bound on the
length of a shortest cycle. With respect to the time bound, we observe that the first non-tree
edge encountered yields the desired cycle.

Theorem 4.4 (Rizzi (2007)). Any weighted graph G with total weight W has a weakly fun-
damental basis of weight O(W log n). Such a basis can be determined in time O(nm).

Proof. We build the basis and a spanning tree concurrently. Initially, the basis and the
spanning tree are empty. Let G be our current graph that is initially set to the input graph.
If G is empty, we stop. If G has a vertex of degree zero, we delete the vertex, if G has a vertex
of degree one, we delete the vertex and add the incident edge to the spanning tree. So assume
that every vertex has degree two or more. We call a maximal path whose interior vertices
have degree two a super-edge; an edge whose endpoints have both degree three or more is
also a super-edge. The weight of a super-edge is the sum of the weights of the edges forming
the super-edge. The endpoints of super-edges have degree three or more in G, see Figure 16.
The graph consisting of the vertices of degree three or more and the super-edges joining them
contains a circuit C consisting of O(log n) super-edges. Let p be the heaviest super-edge in
C and let C be the cycle in G represented by C. Then w(C) = O(w(p) log n). We add C to
our basis. We also delete all edges belonging to p from G, designate an arbitrary edge of p as
a non-tree edge, and add all other edges of p to T . If p consists of k edges, m decreases by k
and n decreases by k − 1. So ν decreases by 1 as it should.

The basis constructed in this way is weakly fundamental because the edge of p designated
as a non-tree edge is not used in any cycle constructed later. Also, its weight is O(W log n)
as the cost of the cycle added in an iteration is at most O(log n) times the weight of the edges
deleted in this iteration.

For graphs with m = O(n) edges, the result is tight as Theorem 4.1 establishes the
corresponding lower bound. Kaufmann and Michail (2008) have recently shown that the
lower bound can also be matched for larger values of m. The improvement uses the fact that
graphs with at least n1+1/k edges contain a cycle of length at most 2k, see Bollobás (1978).

30



2
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fe

Figure 16: In the graph on the left, all edge weights are equal to one. In the graph in the
middle, the two indicated super-edges have weight two. The dashed line indicates a short
cycle. It consists of three super-edges and has weight four. The heaviest super-edges has
weight two. We delete its edges from the graph and make e a non-tree edge and f a tree edge
(or vice-versa).

We now proceed as follows. As long as m ≥ n1+1/k for a constant k still to be determined,
we find cycles of length at most O(2k). We delete one of its edges and charge the cost of
the cycle to it. As soon as m ≤ n1+1/k, we switch to the construction in Theorem 4.4. We
construct cycles consisting of O(log n) super-edges, delete the edges in the heaviest super-edge
and charge O(log n) to each edge removed. The total charge is

O(mk + n1+1/k log n)
k=2(logn)/ log(m/n)

= O

(
m

log n
log(m/n)

)
.

Theorem 4.5 (Kaufmann and Michail (2008)). Every graph has a weakly fundamental basis
of length O(m log n/ log(m/n)). For m = Θ(n1+1/k), the bound is O(mk) and for m = n logc n
and c > 0 constant, the bound is O(m log n/ log logn). Finally, for m = cn, the bound gives
O(m log n).

We close our discussion of weakly fundamental bases with some remarks on planar graphs.
Every planar graph has a 2-basis and 2-basis are weakly fundamental by Theorem 3.5. Thus
every planar graph has a W-basis of length O(n) and weight O(W ).

4.2 Fundamental Bases

Upper bounds for strictly fundamental bases are obtained by constructing spanning trees of
small diameter or, more generally, spanning trees of small stretch. Clearly, a spanning tree T
of diameter D or with

∑
e=(u,v)∈E dT (x, y)/m ≤ D gives rise to an F-basis of length O(Dm).

Here, dT (x, y) is the length of the path in T connecting x and y. We review results for planar
graphs and for general graphs. The constructions make use of graph separators and graph
partitions with nice properties.

Definition 4.1. A set S ⊂ V is an (α, β)-separator if |S| ≤ β
√
n and any connected compo-

nent of G− S contains no more than αn vertices.

Lemma 4.6 (Miller (1986)). Any biconnected planar graph with n vertices, m edges and
maximal face size φ has an (α, β)-separator with α = 2/3 and β = 2

√
φ/2. Moreover, the

separator constitutes a simple cycle and is thus called a simple cycle separator (SCS).
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Figure 17: Stern’s and Vavasis’ construction of an F-basis for planar graphs.

Cycle separators are the basis for the following theorem.

Theorem 4.7 (Stern and Vavasis (1990)). Any planar graph G with maximal face size φ has
an F-basis of length O(n

√
φn).

Proof. We may assume that G is biconnected. Figure 17 illustrates the construction. Let
S be a simple cycle separator of size β

√
n in G. We contract S into a single vertex v.

Clearly, v becomes an articulation point in the resulting graph. Let G1, G2, . . . , Gk denote
the components that would result if v were deleted. We make k copies v1 to vk of v, one for
each component, and connect vi with v’s neighbors in Gi. Each Gi has at most αn vertices
and the maximal face size is no more than φ. A spanning tree of G is obtained by taking the
cycle S minus one edge plus spanning trees of the components. The spanning trees of the
components are constructed recursively. We stop when the components have constant size
and use any spanning tree for them.

Let D(n) be the diameter of the spanning tree constructed in this way. Then D(n) ≤
O(
√
φn) +D(αn) = O(

√
φn).

Outerplanar graphs have strictly fundamental bases of linear size (Reich (2007)).

Theorem 4.8. For grid graphs of fixed dimension the minimal length of a fundamental basis
is Θ(n log n).

The upper bound for two-dimensional grids was first shown by Stern and Vavasis (1990).
A simplified construction that, in addition, applies to any fixed dimension was found by Alon
et al. (1995). It is illustrated in Fig. 18 and yields a basis of length no more than (4/3)n log n
as shown by Köhler et al. (2009)). The lower bound was also established by Alon et al. (1995);
Köhler et al. (2009) paid attention to the constant factor and proved, with a different method,
that any strictly fundamental basis for the planar grid has length at least (1/12)n log2 n−O(n).
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Figure 18: A spanning tree for d-dimensional grid graphs with length 2i in all dimensions Alon
et al. (1995). The construction is shown for d = 2. If i = 1, an optimal spanning tree for the
structure is returned. If i > 1, the graph is partitioned into 2d cubes of length 2i−1 and trees
for the subgraphs are constructed recursively. The set of 2d vertices in the center of the graph
is connected such that they form the same tree that is used at the base of the recursion.

The first upper bound on the length of strictly fundamental cycle bases in general graphs
was given by Alon et al. (1995). We follow the very descriptive explanation of their technique
by Peleg (2000). The construction relies on partitioning a given graph into clusters such that
the diameter of the clusters and the number of edges between clusters (intercluster edges) are
controlled at the same time.

Lemma 4.9 ((Peleg, 2000, p.153)). Given an unweighted graph G = (V,E), |V | = n, and a
parameter x > 1, there is a partition P of G into clusters Ci such that

1. the radius of each cluster is at most x lnm, and

2. the number of intercluster edges is at most m/x.

Proof. The clusters are grown one by one. As long as there is a vertex not assigned to any
cluster, choose one such node and grow a cluster C around it in discrete steps. Initially, C
consists only of the vertex. Let Eout(C) be the set of edges with exactly one endpoint in C, let
Nout be the endpoints outside C of the edges in Eout(C), and let Ein(C) be the edges with both
endpoints in C. We add Nout to C if |Eout(C)|/|Ein(C)| ≥ 1/x. If |Eout(C)|/|Ein(C)| < 1/x,
the growth of C is stopped, C is added to the partition and deleted from G, and the next
cluster is grown.

Clearly, any edge of G is contained in at most one cluster. Thus the number of intercluster
edges is at most m/x. Consider the growth of any particular cluster C. We start with a single
node v and no edge. In the first iteration all neighbors of v (that are not assigned to any
previous cluster) are added to the cluster. Let mi be the number of edges added in the i-th
iteration. Then mi ≥ (m1 + . . .+mi−1)/x. For the analysis of the growth of the mi’s assume
equality. Then mi −mi−1 = mi−1/x and hence mi = (1 + x)mi−1/x. We conclude

m1 + . . .+mi ≥ mi = Ω

((
1 + x

x

)i)
.

Thus i ≤ (lnm)/ ln(1 + 1/x) ≤ x lnm and we have also established the first property.
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Figure 19: Alon et al.’s approach to constructing a spanning tree with average stretch in
exp(O(

√
log n log logn)). Shown is the first level: (a) A partition in 8 clusters C1 to C8 with

the properties described in Theorem 4.9; (b) Red edges denote the spanning tree with radius
≤ x lnm for each cluster. All red edges are part of the resulting tree T ; (c) Each cluster is
contracted to one vertex, possibly introducing multiple edges between clusters. The resulting
graph has less than m/x edges. This graph is the starting point for the next level.

We now come to the construction of the small stretch spanning tree. Figure 19 illustrates
the construction. Let P be a partition of G1 = G as described in the above theorem. For every
cluster Ci let Ti be a spanning tree of diameter 2x lnm. Such a tree exists by construction.
The union of the Ti form a forest F in G. Any intracluster edge, and there are at most m of
them, will give rise to a fundamental circuit of length no larger than 1 + 2x lnm. Only the
m/x intercluster edges can give rise to longer fundamental circuits.

We contract every cluster Ci to a single vertex vi and obtain the multi-graph G2 formed
by the intercluster edges. We apply the theorem to G2 and obtain spanning trees of diameter
2x ln(m/x) ≤ 2x lnm for the clusters of G2. We add these spanning trees to the forest F .
Consider any intracluster edge of G2. It gives rise to a cycle of length 1+2x lnm in G2. With
respect to F , this cycle may have length up to (1 + 2x lnm)2 as any vertex representing a
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cluster of G1 must be expanded to a path of length 1 + 2x lnm. We conclude that we might
have m/x fundamental circuits of length (1 + 2x lnm)2. There are at most m/x2 intercluster
edges in G2.

The construction continues until graphs of constant size are obtained. The recursion depth
is at most logxm. The total length of the fundamental circuits constructed in this way is∑

0≤i≤logx m

m

xi
(1 + 2x lnm)i+1 ≈ mx(2 lnm)logx m.

With x = exp(c(
√

lnn ln lnn)) for an appropriate constant c, we obtain:

Theorem 4.10 (Alon et al. (1995), (Peleg, 2000, p. 215)). Every multi-graph has a strictly
fundamental basis of length m exp(O(

√
log n log log n)).

A much improved result was obtained recently.

Theorem 4.11 (Elkin et al. (2008)). Every graph has a strictly fundamental cycle basis of
length O(W log2 n log log n).

The key ingredient for the improved result is a more refined partitioning procedure, called
star-decomposition. We refer the reader to Elkin et al. (2008) for details. We observe in
passing that exp(O(

√
lnn ln lnn) = o(nε) for any ε > 0 and hence even for planar graphs, the

bounds given in Theorems 4.10 and 4.11 are better than the bound given in Theorem 4.7.
For dense graphs with m = Θ(n2), optimal bounds can be achieved. Already in 1982,

Deo et al. Deo et al. (1982) conjectured that every simple graph has a fundamental basis of
length O(n2). It took 25 years to settle the conjecture.

Theorem 4.12 (Elkin et al. (2007)). Every simple graph on n vertices has a fundamental
cycle basis of length O(n2).

Proof. Abraham et al. (2007) showed that any graph5 G with n vertices contains a spanning
tree T with constant average stretch, averaged over all pairs of vertices, i.e.,∑

x,y∈(V
2)

dT (x, y)
dG(x, y)

= O(n2).

Here dG(x, y) and dT (x, y) is the distance between x and y in G and T , respectively. Restrict-
ing the sum to the edges of G establishes∑

e=(x,y)∈E

dT (x, y) = O(n2).

Since the length of a fundamental cycle closed by a non-tree edge e = (x, y) is dT (x, y) + 1,
the theorem follows.

Open Problem 8. Improve upon Theorem 4.11 or prove a lower bound that is asymptotically
larger than W log n (n log n in the uniform case).

5The result even holds for weighted graphs; we only need it for unweighted graphs here.
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Exact algorithms, nonnegative weights
undirected bases directed bases

deterministic Monte-Carlo
O(m

2n
logn +mn2) O(m3n) O(m2n)
Thm 5.13 Thm 5.14 Thm 5.15

Exact algorithms, conservative weights
undirected bases directed bases

deterministic Monte-Carlo
O(n3 log n+ m2n

logn +mn2) O(m3n) O(n3 log n+m2n)
Thm 5.16 Thm 5.17 Thm 5.18

(2k − 1)-approximation, integer k > 1, nonnegative weights
undirected bases directed bases

deterministic Monte-Carlo
O(n

3+2/k

logn + n3+1/k) and O(n4+3/k) O(n3+2/k)
O(kmn1+2/k +mn(1+1/k)(ω−1))

Thms. 5.27 and 5.29 Thm. 5.30 Thm. 5.30
2-approximation, nonnegative weights

undirected bases directed bases
expected expected

O(m2
√
n/ log n+ n2m+mω) O(m2

√
n log n+ n2m+mω)

Thm 5.34 Thm 5.34

Table 3: Polynomial time algorithms for undirected and directed minimum cycle bases.

5 Polynomial Time Algorithms for Minimum Cycle Bases

We will present polynomial time algorithms for computing undirected and directed minimum
cycle bases. All algorithms have running time Ω(m2n/ log n + mn2) and therefore cannot
be used for very large graphs. Therefore, we will also present techniques for computing
approximate minimum cycle bases at much improved running times. Table 3 contains a
summary of the best running times. The hard variants of the minimum cycle basis problem
will be discussed in Section 6.

Open Problem 9. Most algorithms discussed in this chapter have space requirement Ω(m2).
Derive algorithms with reduced space requirement (and maybe increased running time). Derive
algorithms for external memory.

Recall that a directed basis is a set of ν circuits that are independent over Q and that an
undirected basis is a set of ν circuits that are independent over GF (2). We use k to denote
either Q or GF (p) where p is a prime and formulate most of the algorithms in terms of the
field k.

5.1 The Greedy Algorithm and the Horton Set

A minimum (directed or undirected) cycle basis can be constructed by a simple greedy algo-
rithm. This is almost a direct consequence of Thm 3.9. We start with an empty basis and
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process the circuits of G in order of nondecreasing weight; ties are broken arbitrarily. We add
a circuit to the partial cycle basis if it is linearly independent from the circuits in the partial
basis. We continue until we have obtained ν linearly independent circuits. Checking linear
independence can be easily done by Gaussian elimination.

Theorem 5.1. The greedy algorithm constructs a minimum weight cycle basis.

Proof. We could appeal to the fact the the greedy algorithm works for matroids (Korte and
Vygen (2005)) and that the set of circuits of a graph from a matroid. We prefer to give a
self-contained proof.

Assume otherwise and consider the first time in the execution of the algorithm that the
partial basis cannot be extended to a minimum weight basis. Say, this happens after the
addition of the circuit C. Before adding C, we had a partial basis B that can be extended to
a minimum weight basis Bopt . Let us write C as a linear combination of the circuits in Bopt ,
say C =

∑
D∈Bopt

λDD. Since C is linearly independent of B, there must be a D ∈ Bopt \B
with λD 6= 0. Also, since this D is linearly independent of B, we must have w(C) ≤ w(D).
Thus Bopt −D + C is also a minimum weight basis, a contradiction.

As a graph may have an exponential number of circuits, the performance of the greedy
algorithm in its basic form is miserable. Horton (1987) showed that the search for a basis can
be restricted to a set of O(nm) circuits. For a vertex v, let Tv be a shortest path tree in G
rooted at v. We assume that the collection (Tv)v∈V is consistent, i.e., if a vertex x lies on the
path to w in Tv, then the subpath from x to w appears in Tx. If shortest paths are unique,
consistency is guaranteed.6 For any two nodes u and v, we use pu,v to denote the shortest
path from u to v contained in Tu. A circuit C is called isometric if for any two vertices u and
v on C, puv is contained in C.

Lemma 5.2 (Horton (1987)). Cycles in minimum D- and U-bases are isometric.

Proof. Let B be a minimum D- or U-basis and assume that B contains a circuit C that is
not isometric. Then there are vertices u and v on C such that C does not contain puv. Split
C at u and v to obtain a path p1 from u to v and a path p2 from v to u. Consider the cycles
C1 = p1pvu and C2 = p2puv. Then C = C1 +C2 and hence B \C ∪C1 or B \C ∪C2 is also a
basis. Both sets of cycles have lower cost than B.

Lemma 5.3 (Horton (1987)). Let C be any isometric circuit and let x be an arbitrary vertex
of C. Then there is an edge e = (u, v) on C such that C = pxuepvx. Conversely, if for any
x ∈ C, there is such an edge, then C is isometric.

Proof. Let C = (x = v0, v1, . . . , vk = x). Since the empty path is the shortest path from x to
x and C is not the shortest path from x to x, there must be an i such that pxvi = (v0, v1, . . . , vi)
but pxvi+1 6= (v0, v1, . . . , vi, vi+1). Then pxvi+1 = (vk, vk−1, . . . , vi+1) and hence e = (vi, vi+1)
is the desired edge.

For the converse, consider any two nodes x and z on C and let e = uv be such that
C = pxuepvx; z lies on one of the paths and hence the shortest path from x to z is contained
in C.

6Shortest path can be made unique by a suitable tie breaking rule, e.g., by numbering the edges from 1 to

m and by changing w(ei) into w(ei) + ε2
i

where ε > 0 is infinitesimal.
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Figure 20: The three cases in the proof of Lemma 5.4 (not showing symmetrical cases).

Definition 5.1 (Horton (1987)). For a vertex v and an edge e = (x, y), let C[v, e] be the cycle
consisting of the tree path from v to x in Tv, followed by e, followed by the reversal of the tree
path from v to y. The Horton set H consists of all cycles C[v, e] such that the endpoints of e
lie in different subtrees of Tv (in other words, the least common ancestor of the endpoints of
e is the root v).

We will next show that H contains an MCB. For a circuit C let z(C) ∈ V ∩C be a vertex
that minimizes the number of non-tree edges of C w.r.t Tv. We call z(C) the base node of C.

Lemma 5.4 (Horton (1987); Mehlhorn and Michail (2008); Liebchen and Rizzi (2005)). H
contains a minimum cycle basis. Moreover, when the greedy algorithm is executed with H, it
extracts a minimum cycle basis.

Proof. Consider the greedy algorithm run on the set of all circuits. Circuits are ordered
lexicographically according to

(weight of C,number of edges outside Tz(C), number of edges in C) .

Observe that the circuits in H have second coordinate equal to one and hence come first
among cycles of equal weight.

Let C be the first circuit outside H that is selected by the greedy algorithm. Let z = z(C)
and let e = (u, v) be a nontree edge (with respect to Tz) on C. Write C = C[z, u]◦(u, v)◦C[v, z]
and let p and q be the tree path in Tz connecting z to u and v, respectively. The cost of
p is at most the cost of either cycle path from z to u and the cost of q is at most the cost
of either cycle path from z to v. Consider the cycles C1 = C[z, u] ◦ prev , C2 = p ◦ e ◦ qrev ,
C3 = q ◦ C[v, z], see Figure 20. The weight of C1, C2 and C3 is at most the weight of C and
C = C1 + C2 + C3.

We now distinguish cases. Assume first that e is the only nontree edge on C. Then C[z, u]
and C[v, z] are contained in Tz. Since C is a circuit and z lies on C, u and v must lie in
distinct subtrees of Tz; thus C = C[z, e] ∈ H, a contradiction. Assume next that C contains
more than one nontree edge. Then at least one of the cycles C1 or C3 is non-trivial. Also,
with respect to Tz all three cycles have at least one fewer nontree edge than C and hence this
is also true with respect to their respective base vertices.

Thus all three cycles are considered before C by the greedy algorithm. Also, at least
one of them is independent of the current basis. So it was independent at the time is was
considered and hence should have been added. This either contradicts our definition of C
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(first cycle outside H added to the basis) or the operation of the greedy algorithm (a cycle
not added although it is independent).

For undirected cycle bases, Lemma 5.4 was first shown by Horton (1987). Mehlhorn and
Michail (2008) observed that it suffices to consider a slightly smaller set of circuits. Let Z
be a feedback vertex set of G, i.e., any circuit in G must contain at least one vertex in Z.
Then it suffices to consider the circuits C[z, e] where z ∈ Z and the endpoints of e belong to
different subtrees of Tz. Computing a minimum feedback vertex set is known to be APX-hard,
however, a 2-approximation can be computed efficiently (Bafna et al. (1999)). Liebchen and
Rizzi (2005) extended Lemma 5.4 to directed bases.

Lemma 5.4 implies polynomial time algorithms for finding a minimum undirected and
directed cycle basis. We first construct H by solving n single-source shortest path problems.
In the case of non-negative weights, this amounts to n runs of Dijkstra’s algorithm and takes
time O(nm+ n2 log n). We treat the case of conservative weights in Section 5.5. The Horton
set consists of O(mn) circuits and a partial basis consists of at most ν circuits. For any
circuit in H, we must decide whether it is independent of the current partial basis. Gaussian
elimination performs this task with O(νm) = O(m2) arithmetic operations per circuit. Let Γ
be the cycle matrix of the current basis. We keep the nontree part of Γ in upper triangular
form. Then independence of a circuit can be checked with O(νm) arithmetic operations
and, in the case of independence, the cycle matrix can be extended by an additional column
with the same number of arithmetic operations. We conclude that a minimum basis can be
constructed with O(m3n) arithmetic operations. The number of arithmetic operations can
be reduced to O(mωn) (Golynski and Horton (2002); Liebchen and Rizzi (2005)), where ω
denotes the exponent of matrix multiplication, i.e., m ×m matrices can be multiplied with
O(mω) arithmetic operations. It is known that ω < 2.376.

Arithmetic operations over GF (2) take constant time. We conclude that a minimum
weight undirected cycle basis of a nonnegatively weighted graph can be computed in time
O(mωn). For directed cycle bases the situation is more difficult. We appeal to Theorem 3.8.
Let P be a set of m primes of value at least n. The primes p ∈ P are in O(m logm) and hence
arithmetic in GF (p) takes constant time. Computing a minimum GF (p)-basis for all p ∈ P
is guaranteed to find a minimum directed basis. This takes time O(m1+ωn). Computing a
minimum GF (p)-basis for a random p ∈ P takes time O(mωn). It finds a minimum directed
basis with probability at least 1/2.

5.2 De Pina’s Approach

We will describe an alternative approach for computing minimum cycle bases introduced
by de Pina (1995) and later refined by Berger et al. (2004); Kavitha et al. (2004); Hariharan
et al. (2006); Kavitha et al. (2007); Mehlhorn and Michail (2008). It operates in phases.
Starting with an empty set of circuits, it adds one circuit per phase. It does not necessarily
add the circuits in order of increasing weight. This increased flexibility results in faster
running time.

For two vectors C and S, we use 〈C, S〉 to denote their inner product. Two vectors are
orthogonal to each other, if there inner product is zero. The following theorem is the basis
of de Pina’s approach; the version given here is due to Mehlhorn and Michail (2008). In the
original version (de Pina (1995)), the third condition asked for a minimum weight circuit in
G.
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Algorithm 1 An algebraic framework for computing an minimum cycle basis.
1: for i← 1, . . . , ν do
2: Determine a nonzero vector Si orthogonal to C1 to Ci−1.
3: Compute a minimum weight cycle Ci ∈ H with 〈Ci, Si〉 6= 0.
4: end for

Theorem 5.5 (de Pina (1995); Mehlhorn and Michail (2008)). Circuits C1, . . . , Cν form a
minimum k-basis, where k = Q or k = GF (p), if there are vectors S1, . . . , Sν ∈ kE such that
for all i, 1 ≤ i ≤ ν:

1. Prefix Orthogonality: 〈Cj , Si〉 = 0 for all 1 ≤ j < i.

2. Non-Orthogonality: 〈Ci, Si〉 6= 0 .

3. Shortness: Ci is a minimum weight circuit in H with 〈Ci, Si〉 6= 0 .

Proof. We first show linear independence. Let C :=
∑

i λiCi be a nontrivial linear combinata-
tion and assume that i0 is the largest index for which λi 6= 0. Then 〈C, Si0〉 = λi0〈Ci0 , Si0〉 6= 0.

We next show that the circuits form a minimum cycle basis of G. Suppose not. Then
consider the smallest i such that C1, . . . , Ci are not contained in any minimum cycle basis
consisting only of circuits in the Horton set H. Let B be a minimum weight basis consisting of
circuits in the Horton set that contains C1 to Ci−1. We may write Ci as a linear combination
of the circuits in B, Ci =

∑
C∈B λCC. Since 〈Ci, Si〉 6= 0, there exists some C ∈ B with

〈C, Si〉 6= 0. Since Ci is a minimum weight cycle inH with 〈Ci, Si〉 6= 0, we have w(Ci) ≤ w(C).
Also C 6= Cj for j < i since 〈Cj , Si〉 = 0 for j < i.

Let B′ = B ∪ {Ci} \ {C}; B′ is a basis by Thm 3.9 and w(B′) ≤ w(B). So B′ is
also a minimum cycle basis. It consists only of circuits in H and contains C1 to Ci, a
contradiction.

Theorem 5.5 leads to Algorithm 1. The algorithm operates in ν phases. In each phase, a
nonzero vector S orthogonal to all cycles in the partial basis is determined and then a shortest
circuit C ∈ H with 〈S,C〉 6= 0 is computed and added to the basis. We still need to show
that there is always a vector S of the desired form and a circuit to add.

Lemma 5.6. Let T be a spanning tree of G. For each phase i, 1 ≤ i ≤ ν: There is a nonzero
vector Si ∈ kE such that 〈Si, Cj〉 = 0 for j < i and Si(e) = 0 for e ∈ T and there is at least
one cycle C ∈ H with 〈C, Si〉 6= 0.

Proof. Let C ′j be the restriction of Cj to N :=E \ T . The space spanned by C ′1 to C ′i−1 has
dimension i − 1 and i − 1 < ν. Thus there is a vector S′ ∈ kN with 〈C ′j , S′〉 6= 0 for j < i.
Define Si by Si(e) = S′(e) for e ∈ N and Si(e) = 0 for e ∈ T .

Let e be any edge with Si(e) 6= 0 and let Ce be the fundamental circuit defined by e.
Then 〈Ce, Si〉 = Si(e) 6= 0. Since the Horton set contains a basis, Ce can be written as a
linear combination of circuits in H. Thus there must be at least one circuit C ∈ H with
〈C, Si〉 6= 0.

In the next sections we describe how to implement the two main steps of Algorithm 1.
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Algorithm 2 Maintaining a Basis of the Orthogonal Space
1: Initialize Sj by Sj(ei) = δij for 1 ≤ j ≤ ν and 1 ≤ i ≤ m.
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci ∈ H with 〈Ci, Si〉 6= 0
4: for j ← i+ 1, . . . , ν do
5: Sj = Sj − 〈Ci,Sj〉

〈Ci,Si〉Si
6: end for
7: end for

5.3 Maintaining the Orthogonal Space

The vector Si is a nontrivial solution of the linear system 〈Cj , Si〉 = 0 for 1 ≤ j < i. The naive
way would be to solve this linear system with Gaussian elimination with O(mω) arithmetic
operations. Since we need to solve one linear system per phase, the total number of arithmetic
operations required would be O(m1+ω).

However, the linear systems to be solved are not independent. Each phase adds one
additional equality. de Pina (1995) and later Berger et al. (2004) observed that it pays off to
maintain a basis of the solution space of this linear system. The basis is easily updated from
one phase to the next.

Let T be an arbitrary spanning tree of G and let e1 to eν be the nontree edges. We set
Si(ei) = 1 and Si(ej) = 0 for j 6= i. This corresponds to the standard basis of the space
kN . At the beginning of phase i, we have Si, Si+1, . . . , Sν that form a basis of the space C⊥
orthogonal to the space C spanned by cycles C1, . . . , Ci−1. We use Si to compute Ci (see
Section 5.4) and update vectors {Si+1, . . . , Sν} to a basis {S′i+1, . . . , S

′
ν} of the subspace of

C⊥ that is orthogonal to Ci. The update step is as follows. For i+ 1 ≤ j ≤ ν, let

S′j = Sj −
〈Ci, Sj〉
〈Ci, Si〉

Si.

Lemma 5.7. The set {S′i+1, . . . , S
′
ν} forms a basis of the subspace orthogonal to {C1, . . . , Ci}.

Proof. We will first show that S′i+1, . . . , S
′
ν are orthogonal to to C1, . . . , Ci. Let j ≥ i+ 1 and

` ≤ i. We have

〈S′j , C`〉 = 〈Sj , C`〉 −
〈Ci, Sj〉
〈Ci, Si〉

〈Si, C`〉.

For ` < i, 〈Sj , C`〉 = 〈Si, C`〉 = 0. For ` = i, the terms on the right hand side cancel.
Now we will show that S′i+1, . . . , S

′
ν are linearly independent. Consider a linear combina-

tion
0 =

∑
j≥i+1

λjS
′
j =

∑
j≥i+1

λjSj − (
∑
j≥i+1

λj
〈Ci, Sj〉
〈Ci, Si〉

)Si.

Since the Sj , j ≥ i, are independent, we conclude that λj = 0 for all j.

Let us now bound the number of arithmetic operations. In each iteration, we update no
more than ν vectors at a cost of O(ν) arithmetic operations each. Thus the total number of
arithmetic operations is O(ν3) = O(m3). For undirected bases, this is also the running time.

The vector Si is only needed in the i-th phase. In particular, the second half of the vectors
is only needed in the second half of the computation. Let k = bν/2c. Can we save time by
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Algorithm 3 Maintaining a Basis of the Orthogonal Space with Bulk Updates
1: Initialize Sj by Sj(ei) = δij for 1 ≤ j ≤ ν and 1 ≤ i ≤ m.
2: MinimumCycleBasis(1, ν)
3: where
4: procedure MinimumCycleBasis(`, u) . Adds Circuits C` to Cu
5: if ` = u then
6: compute a minimum weight cycle Ci ∈ H with 〈Ci, Si〉 6= 0;
7: else
8: k ← b(`+ u)/2c;
9: MinimumCycleBasis(`, k);

10: C ← [C`, . . . , Ck];
11: A← (CT [S`, . . . , Sk])−1CT [Sk+1, . . . , Su];
12: [Sk+1, . . . , Su]← [Sk+1, . . . , Su]− [S`, . . . , Sk]A; . now CT [Sm+1, . . . , Su] = 0
13: MinimumCycleBasis(m+ 1, u);
14: end if
15: end procedure

not updating the vectors Sk+1 to Sν in the first k phases at all and computing the cumulative
effect of these update after phase k? We will see that we can use fast matrix multiplication
for the cumulative update. What is the effect of the first k phases on the vectors Sk+1 to Sν?

For column vectors v1 to v`, we use [v1, . . . , v`] to denote the matrix with columns v1 to
v`. Let S1 to Sν denote our vectors before phase 1 and let S′1 to S′ν be the vectors after phase
k. Then

[S′k+1, . . . , S
′
ν ] = [Sk+1, . . . , Sν ]− [S′1, . . . , S

′
k]A

for some k × (ν − k) matrix A. We want 〈C`, S′j〉 = 0 for 1 ≤ ` ≤ i and i + 1 ≤ j ≤ ν. Let
C = [C1, . . . , Ck]. Then

0 = CT [S′k+1, . . . , S
′
ν ] = CT [Sk+1, . . . , Sν ]− CT [S′1, . . . , S

′
k]A

and hence
A = (CT [S′1, . . . , S

′
k])
−1CT [Sk+1, . . . , Sν ].

Since 〈C`, S′i〉 = 0 for 1 ≤ ` < i ≤ k and 〈Ci, S′i〉 6= 0, the matrix CT [S1, . . . , Sk] is lower
triangular with nonzero entries on the diagonal and hence invertible. We need to compute
three matrix products and one matrix inversion. Each of them can be performed with O(mω)
arithmetic operations. We conclude that the cumulative update of Sk+1 to Sν at the end of
phase k requires only O(mω) arithmetic operations instead of the Θ(m3) operations for the
continuous update. We can carry this idea further by applying it recursively, for example, we
do not update Sbk/2c+1 to Sk in the first bk/2c phases, but do a bulk update of these vectors
after phase bk/2c. We obtain Algorithm 3.

Consider a call of procedure MimimumCycleBasis which is not innermost and let r =
u − ` + 1, s = k − ` + 1 and t = u − k. In the update of the vectors Sk+1 to Su we perform
(s,m, s), (s,m, t), (s, s, t), (m, s, t) matrix multiplications7, one inversion of an s × s matrix
and one addition of two m×t matrices. If we split all matrices into blocks of s×s matrices and

7An (a, b, c) matrix multiplication multiplies a a× b matrix with a b× c matrix.

42



use fast matrix methods for the blocks, the update requires O((m/s)sω) arithmetic operations.
The total number U of arithmetic operations for all updates follows the recursion

U(r) =

{
0 if r = 1
O((msω−1) + U(s) + U(r − s) if r > 1 and s = dr/2e.

This recurrence solves to U(r) = O(mrω−1). In our outermost call r = ν = O(m). We
conclude that the total number of arithmetic operations in the update steps is O(mω).

Lemma 5.8. The total number of arithmetic operations spent in lines 10 to 12 of Algorithm 3
is O(mω). In a computation over GF (p) with log p = O(logm), the time spent in lines 10 to
12 is O(mω).

5.4 Computing the Circuits

We now come to the second main ingredient of the minimum cycle basis algorithm. Given
a nonzero vector S, compute a minimum weight circuit C with 〈S,C〉 6= 0. We know from
Theorem 5.5 that the search can be restricted to H. We will exploit this fact in Section 5.4.
Now, we will show how to find C without this additional knowledge.

We first consider the undirected case and nonnegative edge weights and reduce the com-
putation to n shortest path computations. Over GF (2), the vector S is zero-one and therefore
corresponds to a subset of E; 〈S,C〉 6= 0 if and only if C uses an odd number of edges in
S. The following construction is well known (Barahona and Mahjoub (1986); Grötschel et al.
(1988)). The signed graph GS is defined from G = (V,E) and S in the following manner. GS
has two copies for each vertex v ∈ V . Call them v+ and v−. Let e = (u, v) be any edge of
G. If e 6∈ S, we put the edges (v+, u+) and (v−, u−) into GS and if e ∈ S, we put the edges
(v+, u−) and (v−, u+) into GS . In either case, the edges inherit the weight of e. Figure 21
illustrates the construction. The vertices of GS naturally split into a + level and a − level.
Edges of GS corresponding to edges in E \ S connect vertices in the same level, and edges
corresponding to edges in S connect vertices in opposite levels. each level we have edges of
E \ Si.

A path in G starting at a node v lifts to two paths in GS , one starting in v+ and one
starting in v−. The path ends in the other level if and only if it uses an odd number of edges
in S. So a circuit passing through v and using an odd number of edges in S lifts to a simple
path of the same weight connecting v+ and v−. The lifted path does not use both copies
in GS of an edge of G. Conversely, consider a path p connecting v+ to v− in GS . It may
use both copies of an edge of G. In our example, the path 〈3+, 4+, 1+, 2−, 4−, 3−〉 uses both
copies of (3, 4). We split

p = 〈v+, . . . , x∗〉(x∗, y†)〈y† . . . y−†〉(y−†, x−∗)〈x−∗, . . . , v−〉

at the two copies of an edge, say (x, y) such that the “middle part” q = 〈y† . . . y−†〉 does not
use both copies of any edge; q connects y+ and y− and w(q) ≤ w(p) since edge weights are
nonnegative. We summarize the discussion in:

Lemma 5.9. For each v ∈ V , let pv be a minimum weight minimum cardinality path8 from
v+ to v− in GS. Let v0 be such that pv0 has minimum weight among the paths pv. Break ties

8A minimum weight minimum cardinality path from v+ to v− is a minimum weight path from v+ to v−.
Among the minimum weight paths, it has a minimum number of edges.
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Figure 21: An example of the graph GS , where S = {(1, 2)}. Since the edge (1, 2) belongs to
S we have the edges (1−, 2+) and (1+, 2−) going across the − and + levels. The edges not in
S, i.e., (1, 4), (2, 4), and (3, 4) have copies inside the + level and the − level.

in favor of the path containing fewer edges. Let C = Cv0 be the projection of pv0 into G. C
is a minimum weight cycle in G using an odd number of edges in S.

The computation of the path pv0 can be performed by computing n shortest (v+, v−) paths,
one for each vertex v ∈ V , each by Dijkstra’s algorithm in GS and taking their minimum,
or by one invocation of an all pairs shortest paths algorithm in GS . This computation takes
O(n(m + n log n)). Note that depending on the relation between m and n, we may choose
which shortest paths algorithm to use. For example, in the case when the edge weights are
integers or the unweighted case it is better to use faster all pairs shortest paths algorithms
than run Dijkstra’s algorithm n times.

Computation over GF (p): The signed graph technique extends to computations over
GF (p) (Kavitha and Mehlhorn (2005)). The entries of the vector S are now in {0, . . . , p− 1}.
Accordingly, we have p levels and p copies v0 to vp−1 of each edge. An edge e ∈ E with
s = S(v) gives rise to edges (vi, vi+s) for 0 ≤ i < p. Superscripts are to be read modulo
p. Everything else is as before. Because of the larger graph, the cost of the shortest path
computation is multiplied by p.

Hariharan et al. (2006) were able to remove the factor of p in the running time. Consider
a shortest path computation starting at v0. The algorithm outlined in the previous paragraph
computes for each w and each i ∈ {0, . . . , p−1} a shortest path to wi. The improved algorithm
computes for any w only two paths. Let i0 be such that the path from v0 to wi0 is no longer
than to any wi and let i1 be such that the path from v0 to wi1 is no longer than to any wi with
i 6= i0. The algorithm computes the paths to wi0 and wi1 . This can be done in Dijkstra-time.

We do not go into more detail as the following section presents a simpler and faster
approach. Furthermore, the technique is the same for all GF (p).

Labelled Trees: We know from Theorem 5.5 that the search for a shortest circuit Ci with
〈Ci, Si〉 6= 0 in line 6 of Algorithm 3 may be restricted to the circuits in H. A compact
representation of the circuits in H is given by the shortest path trees Tv, v ∈ V . For v ∈ V ,
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each edge e = (x, y) connecting vertices in distinct subtrees of Tv gives rise to the circuit
C[v, e] ∈ H.

How can we compute 〈C[v, e], Si〉 efficiently? The idea (Mehlhorn and Michail (2008)) is
to precompute most of the inner product. For any v and w, let pv,w be the path from v to w
in Tv. We label w in Tv with `v,w = 〈pv,w, Si〉. For fixed v, the labels `v,w can be computed
in O(n) arithmetic operations. It takes O(n2) arithmetic operations to label all trees. Once,
the labels are available, 〈C[v, e], Si〉 can be computed with a constant number of arithmetic
operations. If e = (x, y),

〈C[v, e], Si〉 = `v,x + Si(e)− `v,y.

Lemma 5.10. If the shortest path trees Tv, v ∈ V , are available, the minimum weight cycle
C ∈ H with 〈C, Si〉 6= 0 can be found with O(nm) arithmetic operations.

5.5 Computing Shortest Path Trees

For nonnegative edge weights, we use Dijkstra’s algorithm and obtain:

Lemma 5.11. If edge weights are nonnegative, the shortest path trees Tv, v ∈ V , can be
computed in time O(n(m+ n log n)).

For conservative edge weights, heavier machinery needs to be used. It is known that
computing all pairs shortest paths in undirected graphs with real edge weights but no negative
cycles can be computed by solving a sequence of general weighted matching problems.

Lemma 5.12. If edge weights are conservative, the shortest path trees Tv, v ∈ V , can be
computed in time O(n2m+ n3 log n).

Proof. The single-sink-single-source shortest path problem in a conservatively weighted undi-
rected graph reduces to a weighted perfect matching problem in a graph with O(n) vertices
and O(m) edges ((Korte and Vygen, 2005, page 278)) and hence can be solved in time
O(n(m + n log n)) (Gabow (1990)). The construction of the perfect matching problem con-
sists of n “searches”; each search takes time O(m + n log n). The all-pairs shortest path
problem can be reduced to a perfect matching problem plus n2 searches ((Korte and Vygen,
2005, page 279).

5.6 Putting it Together

We can now put the pieces together.

Theorem 5.13 (Kavitha et al. (2004); Mehlhorn and Michail (2008)). For nonnegative weight
functions, a minimum weight undirected cycle basis can be computed in time O(m2n/ log n+
mn2).

Proof. It takes O(nm + n2 log n) to compute the shortest path trees (Lemma 5.11, time
O(mω) (Lemma 5.8 to compute the Si, 1 ≤ i ≤ ν, and time O(nm2) to determine the cycles
Ci, 1 ≤ i ≤ ν. The total running time is O(m2n).

Mehlhorn and Michail (2008) have shown that word-parallelism on words of lengthO(log n)
can be used to extract the cycles in time O(m2n/ log n) at the cost of increasing preprocessing
time to O(mn2).

45



Theorem 5.14 (Hariharan et al. (2006); Mehlhorn and Michail (2008)). For nonnegative
weight functions, a minimum weight directed cycle basis can be computed in time O(m3n).

Proof. By Theorem 3.8, it suffices to compute the minimum GF (p)-basis for m primes larger
than n. The best such basis is a minimum weight directed cycle basis.

For each fixed p, it takesO(nm+n2 log n) to compute the shortest path trees (Lemma 5.11),
time O(mω) (Lemma 5.8) to compute the Si, 1 ≤ i ≤ ν, and time O(nm2) to determine the
cycles Ci, 1 ≤ i ≤ ν. The total running time is O(m2n) for each p and hence O(m3n),
altogether.

Theorem 5.15 (Hariharan et al. (2006); Mehlhorn and Michail (2008)). For nonnegative
weight functions, a minimum weight directed cycle basis can be computed in time O(m2n)
with probability at least 1/2.

Proof. By Theorem 3.8, it suffices to compute the minimum GF (p)-basis for a prime p chosen
randomly from a set of m primes larger than n. For such a prime the minimum GF (p)-basis
can be computed in time O(m2n).

Theorem 5.16. For conservative weight functions, a minimum undirected cycle basis can be
computed in time O(n3 log n+m2n/ log n+mn2).

Proof. Follows from Lemmas 5.12, 5.8, 5.10, and the remark made in the proof of Theo-
rem 5.13.

Theorem 5.17. For conservative weight functions, a minimum directed cycle basis can be
computed in time O(m3n).

Proof. Follows from Theorem 3.8, Lemmas 5.12, 5.8, and 5.10.

Theorem 5.18. For conservative weight functions, a minimum directed cycle basis can be
computed in time O(n3 log n+m2n) with probability at least 1/2.

Proof. Follows from Theorem 3.8, Lemmas 5.12, 5.8, and 5.10.

5.7 A Greedy Algorithm for Integral Cycle Bases?

Both the Greedy Algorithm (Section 5.1) and De Pina’s Approach (Section 5.2) fundamentally
rely on Theorem 3.10, namely the fact that all subsets of K-bases in G constitute a matroid
for K ∈ {D,U}. This is not true for integral bases.

Theorem 5.19. (Liebchen and Rizzi (2005)) The system of all subsets of integral cycle bases
in G is not a matroid.

Proof. We exhibit a graph with two integral cycle bases B1 and B2 and a circuit C1 ∈ B1 \B2

such that for no circuit C2 ∈ B2 \B1, B1 \ {C1} ∪ {C2} is again an integral basis.
Consider the directed envelope graph shown in Figure 22 and the spanning tree T indicated

by the bold edges. The bases B1 and B2 are given by the cycle matrices (only the parts
corresponding to non-tree edges are shown)

Γ1 =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 and Γ2 =


1 0 1 1
1 1 0 0
1 1 1 0
1 1 0 1

 .
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Figure 22: The envelope graph.

The bases are integral since | det Γ1| = |det Γ2| = 1. Now choose the circuit in the first column
of Γ1, call it C1, to exit the basis. Of course neither the third nor the forth circuit in B2 can
replace C1 since both already appear in B1 \ {C1}. But adding the first or the second circuit
of B2 results in a cycle basis of determinant 2 and 3, respectively.

Theorem 5.19 does not yet imply the failure of the greedy algorithm nor of De Pina’s
approach, since the weights of cycles in G cannot be chosen independently for each cycle.
A greedy algorithm for integral basis would consider consider circuits in order of increasing
weight. It would maintain a partial basis that can be extended to an integral basis and add a
circuit to the current basis if this property is maintained. It is not known how to implement
this strategy efficiently. It would not work, anyhow.

Theorem 5.20. The greedy algorithm may end up with a non-optimal cycle basis of G.

Proof. We again consider the graph introduced in Lemma 3.20 together with the same two
integral bases B1 and B2 depicted in Figure 23 and Figure 24. In contrast to Lemma 3.20 we
assign other weights to the edges. Let every inner and outer edge have a weight of 5 whereas
every spoke has a weight of 19. Then the first 22 cycles in B1 are the only ones in G whose
weights do not exceed 53. Moreover there are exactly two cycles, the inner cycle CI and the
outer cycle CO, with weight 55 and the weight of every other cycle is at least 58. Under this
assignment of weights B1 has a total weight of 1169 whereas the weight of B2 equals 1168.

11x 11x 1x

w1 w2
w3

Figure 23: An integral cycle basis B1 of G with total weight 1169.
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w4

Figure 24: The (unique) minimum integral cycle basis B2 of G with total weight 1168.

As a consequence, B2 is the unique minimum integral cycle basis. On the other hand, the
Greedy Algorithm performs by first picking the 22 cycles of weight at most 53. These cannot
be extended to an integral basis by adding CI nor CO and hence the Greedy Algorithm will
end up with a bases similar to B1 and thus with a non-optimal basis.

Finally we observe that the basis B1 in the preceding proof constitutes a non-optimal but
locally optimal integral cycle basis of G, i.e. B1 cannot be improved by an exchange of a single
cycle in G. This is true since the only two exchanges which would decrease the weight of B1

are the replacement of the 58-circuit by either CI or CO but both results in a non-integral
basis. Hence a Local-Search-Procedure fails in general; de Pinas approach can be interpreted
as such a Local-Search.

5.8 Planar Graphs

For planar graphs, a minimum undirected cycle basis in time O(n2 log n), a minimum 2-basis
can be computed in linear time, and the notions of minimum directed, undirected, integral,
and weakly fundamental basis coincide.

Let G be a plane graph, i.e., a planar graph that is embedded into the plane. A plane
graph divides the plane into maximal open connected sets of points that we call faces. Any
circuit C divides the plane into two maximal open connected sets of points, one bounded and
one unbounded. We use interior(C) to denote the bounded set. If interior(C) agrees with
one of the faces of G, we call C a face cycle. A collection of circuits is called nested if for any
two circuits C and D in the collection, the interiors are either disjoint or the interior of one
is contained in the interior of the other.

For a collection B of circuits, let FB be the face circuits that do not belong to B. We
define the directed inclusion graph DB with vertex set B ∪ FB as follows. Let C and C ′ be
circuits in B ∪ FB. We have an edge from C to C ′ if interior(C) ⊂ interior(C ′) and there is
no circuit C ′′ ∈ B ∪ FB such that interior(C) ⊂ interior(C ′′) ⊂ interior(C ′). The inclusion
graph is acyclic; the sources of the inclusion graph are precisely the faces circuits of G. The
inclusion graph is a forest if and only if B is nested.

Theorem 5.21 (Hartvigsen and Mardon (1994)). Let G a (directed) plane graph. G has a
minimum (directed or undirected) cycle basis that is nested. The number of isometric cycles
is at most twice the number of facets of G.

48



Proof. The circuits in a basis are isometric (Lemma 5.2). In a plane graph, any two isometric
circuits have either disjoints interiors or the interior of one is contained in the interior of the
other.

Let B be the set of all isometric circuits. The inclusion graph DB is a forest with f leaves,
where f is the number of facets of G. Each nonleaf has indegree at least two. Thus the
number of nonleaves is at most f − 1.

Theorem 5.22 (Hartvigsen and Mardon (1994)). Let G be (directed) plane graph. A nested
collection B of circuits is a minimum (directed or undirected) cycle basis iff B is a minimum
weight collection of circuits satisfying the following three properties:

1. the inclusion graph DB is a forest,

2. every nonleaf in DB has exactly one child in FB, and

3. the circuits in FB have parents in DB.

Proof. Assume first that B is a basis. We first observe that the number of circuits in B that
are not face circuits is equal to the number of face circuits that do not belong to B since the
face circuits form a basis and all bases have the same cardinality.

If B is nested, the inclusion graph is a forest. Consider any nonleaf C of DB. If no child
of C belongs to FB, C is the sum of its children and B is not a basis. Thus any nonleaf C
has at least one child in FB. The nonleaves of the inclusion graph are precisely the circuits in
B that are not face circuits. Thus, any nonleaf has exactly one child in FB and every circuit
in FB must have a parent.

Conversely, assume that B is a minimum cost collection of circuits satisfying (1) to (3).
Since DB is a forest, B is nested. Since the circuits in FB have parents in DB and these
parents are distinct, the number of nonleaves in DB is exactly the number of circuits in FB.
So B has the right number of circuits for a basis. Finally, any face circuit is representable as
a sum of circuits in B. This is obvious for the face circuits that belong to B. For the face
circuits in FB, it follows from (2) and (3).

We come to the algorithm for finding a minimum weight basis. We start by computing
the shortest paths trees Tv for all vertices v; this can certainly be done in time O(n2 log n)
(Frederickson (1987)). The Horton set consists of O(n2) circuits. The set of isometric cycles
can be extracted from the Horton set in time O(n2 log n) (Hartvigsen and Mardon (1994)).
The number of isometric circuits is O(n) (Theorem 5.21) and so sorting them by weight takes
time O(n log n).

Next we construct the incidence matrix A between isometric circuits and the facets of G.
The entry corresponding to a circuit C and a facet F is one if F ⊆ interior(C). This matrix
can clearly be computed in time O(n2).

We initialize the basis B to the empty set and set up the corresponding inclusion graph
DB. The vertices of DB are the face circuits and there are no edges. As long as B does
not have the right number of circuits and hence DB does not satisfy (2) and (3), we do the
following.

If there is a nonleaf node C that has two children in FB (case 1), let R1 and R2 be two
face circuits in FB having C as their common parent. If there is no such nonleaf node, there
must be a face circuit in FB without a parent (case 2). Let R1 be this face and let R2 be the
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unbounded face. In either case, we find the least weight circuit D containing exactly one of
R1 or R2 in its interior. We can find D in time O(n) by scanning the columns of A.

We add D to B and update DB. If D is a face circuit, we only have to remove D from FB.
The inclusion graph stays the same. So assume that D is not a face circuit. Starting from
the face circuits in interior(D) (we can find them in matrix A), we determine the maximal
subtrees of DB that are contained in interior(D). They become children of D. D either
becomes a root (in case 2) or a child of C (in case 1). Updating DB takes time O(n). We
conclude that we spend time O(n) per base circuit for a total of O(n2).

Theorem 5.23 (Hartvigsen and Mardon (1994)). A minimum (directed or undirected) circuit
basis of a planar graph can be found in time O(n2 log n).

Theorem 5.24. The algorithm by Hartivgson and Mardon constructs a minimum cycle basis
that is weakly fundamental.

Proof. The algorithm constructs a basis B that it nested. We show that B is weakly funda-
mental. Let DB be the inclusion graph corresponding to B. If FB is empty, every face circuit
belongs to B, and the construction of Theorem 3.5 works. So assume that FB is non-empty.
Since every circuit in FB has a parent, we have a non-leaf node C in DB all of whose children
are face circuits. One of these face circuits, say F belongs to FB and the others belong to
B. There must be at least one edge on the boundary of F that does not belong to C as,
otherwise, C = F . Let F ′ be the other face circuit incident to e and let p be the maximal
path containing e and having all interior vertices of degree two. We remove the edges of p
from the graph, assign F ′ to e, delete F ′ from B, and add the edges of p \ e to the spanning
tree. Removal of p merges F and F ′ and B \F ′ is a basis for the modified graph. Continuing
in this way constructs an elimination order for the edges.

We close this section with a discussion of 2-bases of planar graphs. Every planar graph
has a 2-basis (take the boundary of each finite face), and, conversely, only planar graphs have
2-bases. A linear time algorithm for solving the minimum 2-basis problem on planar graphs,
possibly with weights on the edges, was given in Liebchen and Rizzi (2007). This is based
on the use of SPQR-trees, a data structure able to represent in a compact way all possible
combinatorial embeddings of a 2-connected planar graph.

5.9 Approximation

Minimum directed and undirected cycle bases can be computed in polynomial time. However,
the running times are fairly high degree polynomials, too high for applications, e.g., circuit
analysis, that need to find cycles bases of graphs with several million vertices and edges.
However, in these applications, a nearly optimal basis is almost as good as an optimal basis. It
is therefore natural to explore approximation algorithms. The results presented in this section
are based on Kavitha et al. (2004, 2007). We will present two approximation techniques.
The first technique uses de Pina’s approach but replaces shortest path computations by
approximate shortest path computations. The second technique uses Horton’s approach and
replaces the Horton set H by a smaller set of circuits that is guaranteed to contain a 2-
approximate cycle basis. We start with lower bounds that we will use in our quality estimates.

Lemma 5.25 (de Pina (1995)). Let R1, . . . , Rν be linearly independent vectors in kν and let
Ai be a shortest cycle in G such that 〈Ai, Ri〉 6= 0. Then

∑ν
i=1w(Ai) is a lower bound on the

weight of any k-basis.
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Proof. Let {C1, . . . , Cν} be a k-basis. We may assume without loss of generality that the Ai’s
and Ci’s are sorted by weight, that is, w(A1) ≤ w(A2) ≤ . . . ≤ w(Aν) and w(C1) ≤ w(C2) ≤
. . . ≤ w(Cν). The former may require a renumbering of the Ri’s. We will show w(Ai) ≤ w(Ci)
for all i.

Consider a fixed i and observe that 〈Ck, R`〉 6= 0 for some k and ` with 1 ≤ k ≤ i ≤ ` ≤ ν.
Otherwise, the ν− i+ 1 linearly independent vectors Ri, Ri+1, . . . , Rν belong to the subspace
orthogonal to C1, . . . , Ci; however, this subspace has dimension only ν − i. Thus, w(A`) ≤
w(Ck) since A` is a shortest cycle with 〈A`, R`〉 6= 0 and hence w(Ai) ≤ w(A`) ≤ w(Ck) ≤
w(Ci).

Corollary 5.26. Let G be a graph. For any edge e, let SCe be the minimum weight cycle
containing e. Then

∑
e∈E w(SCe) is a lower bound on the weight of any cycle basis.

Proof. Let Re be the unit vector whose entry corresponding to e is one. The vectors Re,
e ∈ E, are clearly independent (over Q and over GF (p)) and 〈Re, SCe〉 = 1 6= 0. Clearly SCe
is the shortest cycle C with 〈Re, C〉 6= 0.

5.9.1 Approximate Shortest Paths

De Pina’s approach works in phases. In each phase, we compute a support vector S and a
shortest circuit C with 〈S,C〉 6= 0. If instead of searching for a shortest circuit, we search for
a t-approximation of it, we should obtain an t-approximate cycle basis. We next show how
to realize this idea for any integer k > 1 and t = 2k − 1.

A t-spanner of an undirected graph G is a subgraph G′ of G such that for any two vertices
u and v, the distance from u to v in G′ is at most t times their distance in G. Althöfer et al.
(1993) showed that every weighted undirected graph on n vertices has a (2k − 1)-spanner
with O(n1+1/k) edges. Such a spanner is easily constructed incrementally. We start with an
empty graph G′ and consider the edges of G in non-decreasing order of weight. When an edge
is considered, we add it to G′, if its endpoints are not already connected by a path using at
most 2k−1 edges of G′; otherwise, we discard it. At any stage, G′ is a (2k−1)-spanner of the
edges already considered, and its unweighted girth9 is at least 2k+1, so it has only O(n1+1/k)
edges. The above procedure can be implemented to run in time O(mn1+1/k). From now on,
G′ = (V,E′) denotes a t-spanner of G. Let λ = |E \E′| and m′ = |E′| = m−λ. Observe that
ν ′ = m′ − n+ 1 = m− n+ 1− λ = ν − λ.

For each edge e = (v, w) ∈ E \ E′, let Ce be the circuit consisting of e and the shortest
path, say p, in G′ connecting v and w. Then

w(Ce) = w(e) + w(p) ≤ w(e) + t distG(u, v) ≤ t w(SCe).

The circuits Ce, e ∈ E \ E′, are clearly independent and form the first λ circuits in our
t-approximate basis. The cost of constructing these λ circuits is the cost of λ shortest path
computations in G′ and hence bounded by O(λ · (n1+1/k + n log n)). Since λ ≤ m we can
compute both the spanner and the λ circuits in time O(mn1+1/k).

We need an additional ν−λ circuits for a basis. We outline one approach and then discuss a
second approach in more detail. The first approach now switches to the recursive algorithm in
Section 5.3. It first computes a basis Sλ+1, . . . , Sν of the subspace orthogonal to Ce, e ∈ E\E′
and then proceeds as in Section 5.3, see Algorithm 4. Instead of computing a shortest cycle in

9The girth of a graph is the minimum number of edges in any circuit.
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Algorithm 4 Approximation algorithm. Best performance for sparse graphs.
1: procedure SPANNER-APPROX-SPARSE(Graph G)

2:
Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . , eλ be the edges
of G \G′.

3:
For 1 ≤ i ≤ λ let Ci = ei+pi where ei = (ui, vi) and pi is a shortest path in G′ from
ui to vi.

4:
Find linearly independent Sλ+1, . . . , Sν in the subspace orthogonal to cycles
C1, . . . , Cλ.

5:

Call the recursive algorithm in Section 5.3 with input: the graph G, sets
{C1, . . . , Cλ}, {Sλ+1, . . . , Sν} and ν − λ to compute (2k − 1)-approximate cycles
Cλ+1, . . . , Cν .

6: Return {C1, . . . , Cλ} ∪ {Cλ+1 . . . , Cν}.
7: end procedure

Algorithm 5 Approximation algorithm. Best performance for dense graphs.
1: procedure SPANNER-APPROX-DENSE(Graph G)

2:
Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . , eλ be the edges
of G \G′.

3:
For 1 ≤ i ≤ λ let Ci = ei + pi where ei = (ui, vi) and pi is the shortest path in G′

from ui to vi.
4: Call the best exact algorithm to find an MCB ofG′. Let these cycles be Cλ+1, . . . , Cν .
5: Return {C1, . . . , Cλ} ∪ {Cλ+1, . . . , Cν}.
6: end procedure

each phase, it computes a t-approximate shortest path using the approximate distance oracle
of Thorup and Zwick (2001a). This data structure answers (2k − 1)-approximate shortest
path queries in time O(k). The structure requires space O(kn1+1/k) and can be constructed
in expected time O(kmn1/k).

Theorem 5.27 (Kavitha et al. (2007); Mehlhorn and Michail (2008)). For any integer
k ≥ 2, Algorithm 4 computes a (2k − 1)-approximate undirected cycle basis in expected time
O(kmn1+2/k +mn(1+1/k)(ω−1)).

The second approach is even simpler. We complete the basis by computing a minimum
cycle basis of the t-spanner G′, see Algorithm 5. The dimension of the cycle space of G′ is
ν ′ = ν − λ and thus we have the right number of circuits. Let Cλ+1, . . . , Cν be a minimum
cycle basis of G′. Circuits {C1, . . . , Cλ}∪{Cλ+1, . . . , Cν} are by definition linearly independent
and we are also going to prove that they form a t-approximation of an MCB of G.

For 1 ≤ i ≤ λ, we have Ci = ei + pi, where pi is a shortest path in G′ between the
endpoints of ei. In order to show that cycles C1, . . . , Cν are a t-approximation of the MCB,
we again define appropriate linearly independent vectors S1, . . . , Sν ∈ km and use Lemma 5.25.
Consider the exact algorithm in Section 5.3 executing with the t-spannerG′ as its input. Other
than the cycles Cλ+1, . . . , Cν , the algorithm also returns the vectors Rλ+1, . . . , Rν ∈ km

′
such

that 〈Ci, Rj〉 = 0 for λ+ 1 ≤ i < j ≤ ν and Ci is a shortest cycle in G′ such that 〈Ci, Ri〉 6= 0
for λ+ 1 ≤ i ≤ ν. Moreover, the (ν −λ)×m′ matrix whose j-th row is Rj is lower triangular
with 1 in its diagonal. This implies that the Rj ’s are linearly independent. Given any vector
S ∈ km let S̃ be the projection of S onto its last m′ coordinates. In other words, S̃ is the
restriction of S to the edge set of G′. We define Sj for 1 ≤ j ≤ ν as follows. Let S1, . . . , Sλ
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be the first λ unit vectors of km. For λ+ 1 ≤ j ≤ ν define Sj as:

Sj = (−〈C̃1, Rj〉, . . . ,−〈C̃λ, Rj〉, Rj,1, Rj,2, . . . , Rj,m′),

where Rj,1, . . . , Rj,m′ are the coordinates of the vector Rj ∈ km
′
. Note that the vectors Sj for

1 ≤ j ≤ ν, defined above, are linearly independent. This is because the ν × ν matrix whose
j-th row is Sj is lower triangular with nonzeros in its diagonal. The above definition of Sj ’s is
motivated by the property that for each 1 ≤ i ≤ λ, we have 〈Ci, Sj〉 = −〈C̃i, Rj〉+〈C̃i, Rj〉 = 0,
since the cycle Ci has 0 in all first λ coordinates, except the i-th coordinate, which is nonzero.
Lemma 5.28, shown below, together with Lemma 5.25, implies the correctness of our approach.

Lemma 5.28. Consider the above defined Sj for 1 ≤ j ≤ ν and let Dj be a shortest cycle in
G such that 〈Dj , Sj〉 6= 0. Cycle Cj returned by the algorithm in Figure 5 has weight at most
t times the weight of Dj.

Proof. This is obvious for 1 ≤ j ≤ λ since Dj is a shortest cycle in G which uses edge ej
and Cj = ej + pj , where pj is a t-approximate shortest path between the endpoints of ej .
Consider now Dj for λ + 1 ≤ j ≤ ν. If Dj uses any edge ei for 1 ≤ i ≤ λ we replace it with
the corresponding shortest path in the spanner. This is the same as saying consider the cycle
Dj − Ci instead of Dj . Let D′j = Dj −

∑
1≤i≤λ(ei ∈ Dj)Ci where (ei ∈ Dj) is 1 if ei ∈ Dj

and 0 if ei /∈ Dj . Then

〈D′j , Sj〉 = 〈Dj , Sj〉+
∑

1≤i≤λ
(ei ∈ Dj)〈Ci, Sj〉.

But recall that our definition of Sj ensures that 〈Ci, Sj〉 = 0 for 1 ≤ i ≤ λ. This implies that
〈D′j , Sj〉 = 〈Dj , Sj〉 6= 0. But D′j by definition has 0 in the first λ coordinates and S̃j = Rj ,
which in turn implies that

〈D̃′j , Rj〉 = 〈D̃′j , S̃j〉 = 〈D′j , Sj〉 6= 0 .

Cj is a shortest cycle in G′ such that 〈Cj , Rj〉 6= 0. Thus, Cj has weight at most the
weight of D̃′j (which is the same cycle as D′j), and by construction, D′j has weight at most t
times the weight of Dj .

Thus, we have shown that the cost of our approximate basis is at most t times the
cost of an optimal basis. As a t-spanner we will again use a (2k − 1)-spanner. The best
time bound in order to compute a minimum undirected cycle basis is O(m2n/ log n + mn2)
and since a (2k − 1)-spanner has at most O(n1+1/k) edges, the total running time becomes
O(n3+2/k/ log n+ n3+1/k).

Theorem 5.29 (Kavitha et al. (2007); Mehlhorn and Michail (2008)). For any integer k ≥ 2,
Algorithm 5 computes a (2k−1)-approximate undirected cycle basis in time O(n3+2/k/ log n+
n3+1/k).

Directed graphs: Algorithm 5 readily extends to the directed case. For the spanner com-
putation we view our directed graph G as undirected and we compute a (2k− 1)-spanner G′.
We then give to the edges of G′ the orientation that they have in G.

As in the undirected case we return two sets of cycles. The first set is constructed as
follows. For each edge ei ∈ E \ E′ for 1 ≤ i ≤ λ we compute the cycle ei + pi where pi
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is the shortest path in G′ between the endpoints of ei when G′ is viewed as an undirected
graph. Then, we traverse each such cycle in an arbitrary orientation and form our directed
cycles based on the direction of the edges in G. The second set is simply the set of cycles of
a directed MCB of G′. The resulting running time is O(n4+3/k) deterministic and O(n3+2/k)
randomized, depending on the exact algorithm that we use.

Theorem 5.30 (Kavitha et al. (2007); Mehlhorn and Michail (2008)). For any integer k ≥ 2,
a (2k−1)-approximate directed cycle basis can be computed in time O(n4+3/k) by a determin-
istic and in time O(n3+2/k) by a Monte Carlo algorithm.

5.9.2 2-approximation

A direct consequence of the technique in Section 5.4 is that any reduction in size of the
candidate collection H would immediately imply better algorithmic bounds. In this section
we show that a set of O(m

√
n log n) cycles, which is a subset of H, contains a 2-approximate

minimum cycle basis. Again, the basis is extracted from the set by determining the least
weight ν linearly independent cycles in it.

Definition 5.2. For v, x ∈ V and S ⊂ V , bunch(v, S) consists of all vertices closer to v than
to any vertex in S and cluster(x, S) consists of all vertices v with x ∈ bunch(v, S).

Lemma 5.31 (Thorup and Zwick (2001b)). Given a weighted graph G = (V,E) and 0 < q <
1, one can compute a set S ⊂ V of size O(nq log n) in expected time O(m/q log n) such that
|cluster(x, S)| ≤ 4/q for all x ∈ V .

We take q = 1/
√
n log n and first compute, as given in Lemma 5.31, a set S of O(

√
n log n)

vertices. This takes expected time O(m
√
n log3/2 n) and ensures that cluster(v, S) has size√

n log n for all v ∈ V . Also, bunch(v, S) for all v can be computed in expected time O(m/q)
(Thorup and Zwick (2001a)), which is O(m

√
n log n). We use two types of cycles:

• the O(m
√
n log n) cycles C[s, e] for all s ∈ S and e ∈ E,

• the cycles C[u, e] for each u ∈ V and e = (v, w) ∈ E and either v or w in bunch(u, S).
The number of such cycles is

∑
u∈V

∑
v∈bunch(u,S) deg(v). Rewritting this sum, we

obain
∑

v∈V deg(v) · |cluster(v, S)|, which in turn is at most
√
n log n

∑
v∈V deg(v) =

m
√
n log n.

Thus, our collection has O(m
√
n log n) cycles. We need to show that it contains a 2-

approximate cycle basis. Let B1, . . . , Bν be the minimum cycle basis of G determined by
Horton’s algorithm in order of non-decreasing weight, i.e., w(B1) ≤ w(B2) ≤ · · · ≤ w(Bν).

Lemma 5.32. For all 1 ≤ i ≤ ν we have Bi =
∑

C∈Ci C where Ci is a subset of our collection
and each cycle in Ci has cost at most 2 · w(Bi).

Proof. Consider any Bi. If Bi belongs to our collection, we set Ci = {Bi}. Otherwise,
Bi = C[u, e] where e = (v, w) and neither v nor w is in bunch(u, S). Let s ∈ S be the nearest
vertex in S to u. Then, w(SP(s, u)) ≤ w(SP(u, v)) and w(SP(s, u)) ≤ w(SP(u,w)).

For any edge f ∈ Bi, the cycle C(s, f) is in our collection and Bi =
∑

f∈Bi
C(s, f) since

the paths from s to the endpoints of the edges in Bi appear twice in this sum and cancel out.
We set Ci = {C(s, f) | f ∈ Bi}. It remains to show w(C(s, f)) ≤ 2w(Bi) for all f ∈ Bi. We
distinguish cases.
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Assume first that f 6= e. Then f ∈ SP(u, v) or f ∈ SP(u,w). We may assume w.l.o.g. that
the former is the case. Then w(C(s, f)) ≤ w(SP(s, u)) + w(SP(u, v)) + w(SP(v, s)) since
C(s, f) consists of f and the shortest paths from s to the endpoints of f and w(SP(v, s)) ≤
w(SP(s, u)) + w(SP(u, v)) by the triangle inequality. Thus w(C(s, f)) ≤ 2(w(SP(s, u)) +
w(SP(u, v))) ≤ 2w(Bi) since w(SP(s, u)) ≤ w(SP(u,w)).

Assume next that f = e. Then

w(C(s, f)) = w(SP(s, v)) + c(e) + w(SP(w, s))
≤ w(SP(s, u)) + w(SP(u, v)) + c(e) + w(SP(s, u)) + w(SP(u,w))
≤ 2w(SP(u, v)) + c(e) + 2w(SP(u,w))
≤ 2w(Bi).

Lemma 5.33. The collection defined above contains ν linearly independent cycles A1, . . . , Aν
with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , ν.

Proof. The lemma follows from Lemma 5.32. Assume otherwise and let j be minimal such
that ∪i≤jCi contains less than j linearly independent vectors with w(Ai) ≤ 2 · w(Bi) for
i = 1, . . . , j. Then j ≥ 1 and ∪i≤j−1Ci contains at least j − 1 linearly independent vectors
with w(Ai) ≤ 2·w(Bi) for i = 1, . . . , j−1. Also, ∪i≤jCi spans {B1, . . . , Bj} and hence contains
at least j linearly independent vectors. Thus, it contains a vector Aj linearly independent of
{A1, . . . , Aj−1}. Furthermore, Aj ∈ Ci for some i ≤ j and hence w(Aj) ≤ 2w(Bi) ≤ 2w(Bj),
a contradiction.

It is now straightforward to extract the 2-approximate MCB using the techniques that
we have discussed so far. This can be done in expected time O(m2

√
n log n + mn2 + mω).

Similarly for directed graphs, we get the same running time if we do computation module
some small random prime number. Moreover, in the undirected case we can achieve an
O(m2

√
n/ log n + mn2 + mω) running time by using the bit packing technique in Mehlhorn

and Michail (2008).

Theorem 5.34 (Kavitha et al. (2007); Mehlhorn and Michail (2008)). A 2-approximate
undirected basis can be constructed in expected time O(m2

√
n/ log n + mn2 + mω) and a 2-

approximate directed basis can be constructed in expected time O(m2
√
n log n + n2m + mω)

with high probability.

5.10 Algorithm Engineering

Exact and also the approximate algorithms for minimum cycle bases have a fairly large worst-
case running time. In this section, we discuss heuristic improvements and algorithm engineer-
ing issues. The hope is that heuristics and algorithm engineering techniques improve upon
the worst-case running time in many cases. We restrict attention to computing minimum
undirected bases. Implementations of cycle basis algorithms are described in Gleiss (2001a);
Huber (2003); Berger (2004); Bauer (2004); Mehlhorn and Michail (2006).

The first decision to be made is to choose between the two main approaches. Horton’s
approach first computes O(nm) cycles and then uses Gaussian elimination to find an optimum
basis. No heuristics are known that improve upon the worst-case in many cases. The situation
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is different for the algebraic approach of Algorithm 1 where in each phase first a support vector
and then a cycle is computed.

How should we represent cycles and support vectors, as sparse or as dense vectors? There
are two arguments in favor of a sparse representation. The theoretical argument is that we
know of the existence of bases of weight O(W log n); in such a basis, we expect most circuits
to have o(n) edges. The engineering argument is that a dense representation immediately
introduces an Ω(m2) lower bound; we are constructing m vectors of length m. Thus, the
sparse representation is preferred.

The next major question is how to compute each cycle. In Algorithm 1 each cycle is
computed after a support vector is found. However, there are two possible ways for doing
this: (a) use the candidate set H or some other collection that contains an minimum cycle
basis and the labelled trees representation, or (b) use the signed graph approach.

Although the labelled trees approach is faster for sparse graphs by a logarithmic factor as
well as for dense graphs in case the extra technique of bit-packing from Mehlhorn and Michail
(2008) is used, it has a major practical drawback which needs to be addressed. It introduces
a lower bound on the best case of the algorithm. The labelled trees approach maintains n
shortest path trees. In each of the ν phases of the algorithm, each of these shortest path
trees is traversed, in order to update the labels based on the current support vector. Thus,
the technique introduces an Ω(mn2) lower bound. For this reason we believe that the signed
graph approach is better.

The signed graph approach constructs a graph Gi(Si) where Si is the support vector
during phase i of the algorithm. In this graph it executes n single source shortest path
computations. There are however some heuristics that can be used to reduce the number of
such computations. During phase i we might perform up to n shortest path computations in
order to compute the shortest cycle Ci with an odd intersection with the vector Si. We can use
the shortest path found so far as an upper bound on the shortest path. This is implemented as
follows; a node is only added in the priority queue of Dijkstra’s implementation if its correct
upper distance is not more than our current upper bound.

We come to the most important heuristic. In each of the ν phases we are performing n
shortest path computations. This results to Ω(mn) shortest path computations. Let S =
{e1, e2, . . . , ek} be a support vector at some point of the execution. We need to compute
the shortest cycle C such that 〈C, S〉 = 1. We can reduce the number of shortest path
computations based on the following observation.

Let C≥i be the shortest cycle in G such that 〈C≥i, S〉 = 1, C≥i ∩ {e1, . . . , ei−1} = ∅, and
ei ∈ C≥i. Then

C = min
i=1,...,k

C≥i.

We can compute C≥i in the following way. We delete edges {e1, . . . , ei} from G and the
corresponding edges from the signed graph Gi. Let ei = (v, u) ∈ G. Then we compute a
shortest path in Gi from v+ to u+. The path computed will have an even number of edges
from the set S, and together with ei an odd number. Since we deleted edges {e1, . . . , ei}, the
resulting cycle does not contain any edges from {e1, . . . , ei−1}.

Using the above observation we can compute each cycle in time O(k · SP(n,m)) when
|S| = k < n and in time O(n · SP(n,m)) when |S| ≥ n. Here SP(n,m) is the time of a
single-source shortest path computation in a graph with n nodes and m edges. In this way,
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the total cost of computing the basic circuits becomes

SP(n,m) ·
∑

i=1,...,ν

min(n, |Si|).

Another issue that needs to be discussed is the use of fast matrix multiplication when
computing the support vectors. Experiments in Mehlhorn and Michail (2006) with random
graphs suggest, that the use of fast matrix multiplication is not necessary even for medium to
large instances. The reason is that the cycles computation part of the algorithm dominates
the running time, although in theory it is the other way around. The reason is that support
vectors are typically sparse. Thus, the technique of Algorithm 2 which has a worst case bound
of O(m3), is sufficient. Moreover, due to its simplicity, it is very easy to be implemented
efficiently.

Moving to the approximation algorithms of Section 5.9, we note that they improve signif-
icantly the running times. This is not only a theoretical observation but is true in practice
as well. Algorithm 5 reduces the computation of an approximate MCB to the computation
of: (a) a spanner of the input graph, and (b) the MCB of a sparse graph (the previously
computed spanner). Depending on the properties of the graph and how sparse spanners ex-
ist, this approximation algorithm is much faster than any exact algorithm. Moreover, the
approximation algorithms do not really require fast matrix multiplication. Algorithm 5 re-
quires O(n3+2/k/ log n+n3+1/k) time in order to compute a (2k−1)-approximate MCB. If we
do not use fast matrix multiplication the running time increases to O(n3+3/k). We conclude
that Algorithm 5 where the support vectors are maintained as in Algorithm 2 and the cycles
are computed using the signed graph approach of Section 5.4 will be an effective way for
computing approximate minimum cycle bases.

5.11 Relevant Cycles

In general, minimum cycle bases are not unique. In some applications, e.g. in chemistry
(Gleiss (2001b)) it is useful to know all minimum cycle bases. A cycle that belong to some
minimum cycle basis are called relevant. As their number could be exponential, the goal
is to compute a set of prototype cycles from which all relevant cycles can then be derived
easily. Vismara (1997) presented an algorithm that in a similar fashion to Horton’s algorithm
extracts these prototypes from a polynomially sized set of candidate cycles using Gaussian
elimination. Vismara’s algorithm runs in time O(m4). From these prototypes, relevant cycles
can be computed in O(n|CR|) time where CR denotes the set of relevant cycles.
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6 Hardness Results

We will show that the minimization problems for strictly and weakly fundamental cycle bases
areAPX -hard. A minimization problem belongs to classAPX if it has a (1+ε) approximation
algorithm for some ε > 0. A minimization problem is APX -hard if any problem in APX
can be reduced to it by an L-reduction; APX -hard problems do not have polynomial time
approximation schemes unless P = NP (Papadimitriou (1994); Trevisan (2004)).

An L-reduction from a optimization problem P1 to a optimization problem P2 consists of
two polynomially computable functions t1 and t2 with the following properties:

(i) t1 maps instances of P1 to instances of P2 such that

optP2(t1(I)) ≤ β1 optP1(I)

for any instance I of P1. Here optPi(X) denotes the optimum value for instance X of
problem Pi and β1 is some constant.

(ii) t2 associates to any instance I of P1 and any feasible solution S′ of the corresponding
instance I ′ := t1(I) of P2 a feasible solution S := t2(I, S′) of I such that

|optP1(I)− valP1(I, S)| ≤ β2 |valP2(I ′, S′)− optP2(I ′)|

Here, valPi(X,Y ) denotes the objective function value of the feasible solution Y for
instance X of problem Pi and β2 is some constant.

L-reductions preserve approximability. If S′ is an ε-approximation to the optimum solution of
I ′, i.e., |optP2(I ′)−valP2(I ′, S′)| ≤ ε·optP2(I ′), then |optP1(I)−valP1(I, S)| ≤ β2 ·ε·optP2

(I ′) ≤
β1 · β2 · ε · optP1

(I), i.e., S is a β1β2ε-approximation to the optimum solution of I.

6.1 Strictly Fundamental Cycle Bases

Recall that a strictly fundamental cycle basis consists of the fundamental circuits with respect
to some spanning tree. We saw in Theorem 4.11 that any graph has a strictly fundamental
basis of weight O(W log2 n log log n) and of length O(n2). Deo et al. (1982) showed the
NP-hardness of the minimum strictly fundamental cycle basis problem. We will now sketch
a proof for its APX -hardness (Galbiati et al. (2007)). The proof consists of an L-reduction
from the following special case of the maximum satisfiability problem.
Max-3SAT-NAE-UN-9: Given a set X = {x1, ..., xn} of Boolean variables and a collection
C = {C1, ..., Cm} of disjunctive clauses with exactly 3 variables per clause, where all variables
appear unnegated and each variable occurs in at most 9 clauses, find a truth assignment to
the variables maximizing the number of clauses containing both a true variable and a false
variable.

Max-3SAT-NAE-UN-9 is a Not All Equal version of Max-3SAT restricted to instances
with UNnegated variables, each variable having at most 9 occurrences. In Galbiati et al.
(2007), Max-3SAT-NAE-UN-9 was shown to be APX-hard by means of a sequence of
standard L-reductions starting from Max CUT-3, the problem of finding a cut containing
the maximum number of edges in an undirected graph where all vertices have degree at most
3. In turn, Max CUT-3 has been shown to be APX-hard in Alimonti and Kann (2000).
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The Main Reduction. We now describe the L-reduction from Max-3-SAT-NAE-UN-9
to MSFCB. Let q and M be integer constants. We will fix q and M later. Let I be an
instance of Max-3-SAT-NAE-UN-9 with variable set X = {x1, ..., xn} and clause collection
C = {C1, ..., Cm}. We construct an instance I ′ of MSFCB, i.e. a weighted graph GI , as
follows. The set of vertices is

V (GI) = {r, cA1 , cA2 , . . . , cAm, cB1 , cB2 , . . . , cBm, xA1 , xA2 , . . . , xAn , xB1 , xB2 , . . . , xBn },

and the edges in E(GI) together with the corresponding weights are:

• for each i = 1, 2, . . . , n, we have one edge {r, xAi } and one edge {r, xBi } both of weight
1;

• for each i = 1, 2, . . . , n, we have 2q + 1 parallel edges connecting vertices xAi and xBi ,
and all of them have weight 1;

• for each j = 1, 2, . . . ,m and for each variable xi occurring in Cj , we have the edges
{cAj , xAi } and {cBj , xBi } of weight M .

We remark that edges of weight M may be replaced by a path of length M and parallel
edges may be split by an additional intermediate vertex. In other words, the graph GI could
also be constructed as an unweighted simple graph. The following easy-direction lemma
indicates the intention behind the reduction.

Lemma 6.1. Let Φ : {x1, x2, . . . , xn} 7→ {true, false}n be a truth assignment such that there
are t clauses in C containing both a variable with value true and a variable with value false.
Then GI has a fundamental cycle basis of weight n(4q + 3) +m(8M + 12)− t.

Proof. By relabeling the clauses, we can assume w.l.o.g. that, for j = 1, 2, . . . , t, clause Cj
contains a variable with value true as well as a variable with value false. So, for t < j ≤ m,
all variables in Cj have the same truth value under Φ. Construct a spanning tree T as follows,
see Figure 25:

• for each i = 1, 2, . . . , n, include in T a single parallel edge connecting xAi and xBi ;

• for each i = 1, 2, . . . , n, if Φ(xi) = true then include in T the edge {r, xAi }; otherwise, if
Φ(xi) = false, include in T the edge {r, xBi };

• for each clause Cj , with 1 ≤ j ≤ t, select one variable x with Φ(x) = true and one
variable x̃ with Φ(x̃) = false, and include the edges {cAj , xA} and {cBj , x̃B};

• for each clause Cj , with j = t+ 1, . . . ,m, select a single arbitrary variable xi occurring
in Cj and include in T both edges {cAj , xAi } and {cBj , xBi }.

We next compute the costs of the fundamental cycles induced by the cotree edges. We
distinguish the following cases.

• For each i = 1, 2, . . . , n, T contains exactly one of the two edges {r, xAi } and {r, xBi }.
The other edge induces a fundamental cycle of cost 3, for a total of 3n.

• For each i = 1, 2, . . . , n, 2q edges connecting vertices xAi and xBi are not in T . Each of
them induces a fundamental cycle of cost 2, for a total cost of 4qn.
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Figure 25: The graph GI associated to the Max-3-SAT-NAE-UN-9 instance I with variable
set X = {x1, x2, x3, x4, x5} and clause collection C = {x1∨x2∨x3, x3∨x4∨x5}. The spanning
tree T of GI derived from the truth assignment Φ = (true, false, true, true, true) is shown in
bold.

• For each j = 1, 2, . . . , t, the four co-tree edges incident in cAj or cBj induce four cycles.
Exactly one of these cycles has cost 2M + 2, while the others have cost 2M + 3. The
corresponding costs sum to t(8M + 11).

• For each j = t + 1, . . . ,m, each one of the two co-tree edges incident in cAj induces a
cycle of cost 2M + 2 (respectively 2M + 4) if all variables in Cj are true (respectively
false). Analogously, each one of the two co-tree edges incident in cBj induces a cycle of
cost 2M + 4 (respectively of cost 2M + 2) if all variables in Cj are true (respectively
false). These costs sum to (m− t)(8M + 12).

Therefore the fundamental cycle basis induced by T has a cost of

3n+ 4 qn+ t(8M + 11) + (m− t)(8M + 12) = n(4 q + 3) +m(8M + 12)− t .

A key property of the reduction is that the type of spanning tree considered in the lemma
above, gives rise to a minimum strictly fundamental basis.

Definition 6.1. A spanning tree T of GI is well-behaved if it satisfies the following properties:

1. for each j = 1, 2, . . . ,m, the vertices cAj and cBj have degree 1 in T ,

2. for each i = 1, 2, . . . , n, exactly one edge of the 2q + 1 edges {xAi , xBi } belongs to T ,

3. for each j = 1, 2, . . . ,m, either for some i both edges {cAj , xAi } and {cBj , xBi } belong to
T or for some i1 and i2, with 1 ≤ i1 ≤ n, 1 ≤ i2 ≤ n and i1 6= i2, both edges {cAj , xAi1}
and {xAi1 , r} as well as both edges {cBj , xBi2} and {xBi2 , r} belong to T .
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Lemma 6.2 (Galbiati et al. (2007)). Assume q ≥ 9 and M ≥ 4. For any spanning tree T of
graph GI , we can in polynomial time derive from T a well-behaved spanning tree T ′ such that
the weight of the basis induced by T ′ is no larger than the weight of the basis induced by T .

We can now state the main result of the section.

Theorem 6.3 (Galbiati et al. (2007)). The minimum strictly fundamental cycle basis problem
is APX-hard.

Proof. It suffices to verify that the reduction presented is an L-reduction. For any instance I =
(X, C) of Max-3-SAT-NAE-UN-9, the corresponding instance I ′ of MSFCB can obviously
be constructed in polynomial time.

The simple randomized argument implying that any Max-SAT instance with m clauses
admits a truth assignment satisfying at least m/2 clauses, is also valid for Max-3-SAT-NAE-
UN-9. Thus opt(I) ≥ m/2.

According to Lemma 6.1, where q = 9, we have opt(I ′) ≤ n(4 q + 3) + m(8M + 12).
Since we may assume that n ≤ 3m (otherwise some variable would occur in no clause),
opt(I ′) ≤ 3m(4 q+ 3) +m(8M + 12) = m(12 q+ 8M + 21) ≤ m(24 q+ 16M + 42)opt(I). We
set β1 = 24 q + 16M + 42.

By Lemma 6.2, from any spanning tree T of GI we can derive a well-behaved spanning
T ′ without increasing the weight of the associated fundamental cycle basis. Now the three
properties characterizing well-behaved spanning trees make sure that it is possible to reverse
the construction described in the proof of Lemma 6.1. Therefore, to derive a truth assignment
Φ from any spanning tree T of GI , it suffices first to derive a well-behaved spanning tree T ′

from T and then to set Φ(xi) = true when {xAi , r} ∈ T ′, and Φ(xi) = false when {xBi , r} ∈ T ′.
Condition (ii) of an L-reduction is then satisfied with β2 = 1.

We close this section with some open problems.

Open Problem 10. Is there an O(log n) approximation algorithm for minimum F-bases? Is
there one for planar graphs? The approximability of the bottleneck version, in which one looks
for a strictly fundamental cycle basis where the weight of the maximum cycle is minimum,
has been addressed in Galbiati (2003).

Open Problem 11. Is the minimum F-basis problem in APX?

Open Problem 12. What is the complexity of the minimum F-basis problem for planar
graphs? The related problem of computing a spanning tree with shortest fundamental circuit
is NP-complete for planar graphs (Fekete and Kremer (2001)).

6.2 Weakly Fundamental Cycle Basis

We know from Thm 4.4 that any graph has a weakly fundamental cycle basis (W-basis) of
weight O(W log n). Thus the weight of a minimum W-basis can be approximated within a
factor of O(log n); no better approximation factor is known. Rizzi (2007) has shown that the
minimum W -basis problem is APX -hard and we will sketch his proof in this section.

Open Problem 13. Is the minimum W-basis problem in APX?
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We first introduce a compact way for representing W -bases. For T a spanning tree of G,
any ordering e1, e2, . . . , eν of the cotree edges is called a removal sequence.

Let C be a W-basis of a connected graph G. If C 6= ∅, that is, if G is not a tree, then
there exists an edge e of G that is contained in precisely one circuit of C. Let Ce be the
only circuit in C that contains e. Notice that G \ e is connected and C \ Ce is a W-basis of
G \ e. If this process is iterated over G \ e, we finally end up with a spanning tree T of G.
Furthermore, if we label as ei the i-th edge that has been removed in the process, then the
sequence s = e1, e2, . . . , eν is a removal sequence having the edges in T as tree edges and
certifying that C is a W-basis according to Definition 3.1. We say that the spanning tree T ,
the ordering e1, e2, . . . , eν , and the W-basis C from which we started, are compatible. Notice
that at any iteration of the edge removal process it may be possible that more than one edge
of the current graph is contained in precisely one circuit of C. Actually, there is always some
freedom of choice when removing the last edge. Thus, in general, a W-basis of G may be
compatible with more than one spanning tree of G. Furthermore, even w.r.t. any particular
tree T of G, a W-basis may be compatible with more than one ordering of the edges of
G \ T . On the converse, any removal sequence e1, e2, . . . , eν of G, might be compatible with
more than one W-basis of G. However, among the W-basis of G which are compatible with
the ordering e1, e2, . . . , eν , we can efficiently find one of minimum cost by resorting to any
shortest path algorithm as a subroutine. And we can also enforce this W-basis to be unique
by possibly adopting a lexicographic scheme to resolve ties among circuits of the same weight.
Indeed, given any removal sequence e1, e2, . . . , eν of G, the unique W-basis of G associated to
the sequence e1, e2, . . . , eν is obtained as described in Algorithm W-Decoder.

Algorithm W-Decoder(e1, e2, . . . , eν)
start with G′ := G, C = ∅, and,

for i = 1, 2, . . . , ν, do,
add to C the unique10 cheapest circuit of G′ containing edge ei;
remove edge ei from G′.

return C.
Notice that not every W-basis of G admits a removal sequence encoding it. We say that

a W-basis C of G is locally-optimal if there exists a removal sequence s of G such that the
execution of Algorithm W-Decoder(s) produces C. Indeed, the above remarks inspire a
natural local search approach for the minimum W-basis problem, where, given any WFCB C
of G, we first obtain a removal sequence s compatible with C and then substitute C with the
W-basis C′ produced by Algorithm W-Decoder(s). Notice that C′ is locally-optimal and its
cost never exceeds the cost of C.

A Fundamental Gadget: Our APX -hardness proof is based on a single gadget. The
gadget is derived from an graph first described by Liebchen and Rizzi (2007); every W-basis
of this graph is strictly more expensive than the cheapest undirected cycle basis. Indeed, since
the minimum U-basis problem is in P, the graphs produced by a reduction from a generic
APX -hard optimization problem to the minimum W-basis problem are bound to involve such
graphs.

Although, the inapproximability result also holds in the unweighted case, we find it conve-
nient to allow the use of small natural weights (actually, all in {1, 2, 3}) in the constructions
and in the gadgets to follow. Clearly, an edge of weight w may be replaced by a path of

10uniqueness is enforced by the adoption of a lexicographic scheme.
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w edges and w − 1 new intermediate nodes without changing the essence of the cycle basis
problem. The transformation is polynomial as long as the weights are polynomially bounded.
So there is no harm in using small integer weights.
We start by describing a graph for which
no minimum U-basis is weakly fundamental.
Consider first the graph V8 in Fig. 26. Here,
m = 12, n = 8, ν = 5 and the circuits
C1 = 2 − 3 − 7 − 6, C2 = 3 − 4 − 0 − 7,
C3 = 4 − 5 − 1 − 0, C4 = 5 − 6 − 2 − 1,
C5 = 6 − 5 − 4 − 3 − 2 form a W-basis of
V8. Indeed, C1 (resp. C2, C3, C4) is the
only circuit to contain the edge {6, 7} (resp.
{0, 7}, {0, 1}, {1, 2}). However, for later con-
venience, we also certify the independence of
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Figure 26: Wagner’s graph V8.

C1, C2, C3, C4, C5 by giving five sets Σ1 to Σ5 such that 〈Σi, Cj〉 = 1 if and only if i = j.

Σ1 = {{2, 6}, {5, 6}} with odd intersection only with C1 (see Fig. 27 on the left);

Σ2 = {{2, 6}, {5, 6}, {3, 7}} with odd intersection only with C2 (see Fig. 27 on the right);

Σ3 = {{1, 5}, {2, 3}, {2, 6}} with odd intersection only with C3 (mirror image of Σ2);

Σ4 = {{2, 3}, {2, 6}} with odd intersection only with C4 (mirror image of Σ1);

Σ5 = {{2, 3}, {2, 6}, {5, 6}} with odd intersection only with C5 (see Fig. 27 in the middle).
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Figure 27: Certificates of independence for C1 (left), C2 (right), and C5 (middle).

We call petal the weighted graph obtained from V8 when edges {6, 7}, {7, 0}, {0, 1}, {1, 2},
also called glue edges, are assigned cost 2, and all other edges, called internal edges, receive
cost 1. Notice that all circuits of the petal have cost at least 5, and C1, C2, C3, C4, C5 are
actually its only 5 circuits of cost precisely 5, whence they form the unique minimum basis
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Figure 28: A removal sequence of a W-basis of weight 25.
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Figure 29: A weighted graph F whose unique minimum U-basis is not weakly fundamental.

of the petal. A removal sequence compatible with this locally-optimal W-basis of the petal is
illustrated in Fig. 28.

Consider now the weighted graph F obtained by gluing together 6 distinct petals as shown
in Fig. 29. Stated in words - let petal i, 0 ≤ i ≤ 5, be on nodes {vi0, vi1, . . . , vi7}; we glue the
petals through the following node identifications: v0

0 ↔ v1
0 ↔ v2

0 ↔ v3
0 ↔ v4

0 ↔ v5
0, and

vi+1 mod 6
1 ↔ vi7 and vi+1 mod 6

2 ↔ vi6 for 0 ≤ i ≤ 5. Edges that become parallel through this
identification process are replaced by a single edge of weight 2.
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Figure 30: The removal sequence of a W-basis of weight 26. Notice that all glue edges are
tree edges.

Clearly, nF = 31, mF = 60, and νF = 30. The six copies of the circuits C1, C2, C3, C4, C5

form a collection of 30 circuits in F whose independence can be established by taking the 6
corresponding copies of each of the odd sets Σ1,Σ2,Σ3,Σ4,Σ5. Hence, these 30 circuits form
a U-basis basis of F . Each of these 30 circuits has weight 5. Every other circuit of F has cost
at least 6; hence these 30 circuits form the unique minimum U -basis of F . This cycle basis is
not weakly fundamental since each edge of F is contained in at least 2 of these circuits.

It is also relevant to our discussion to exhibit a cheap W-basis of F . In fact, F has a
W-basis whose weight is only one larger than the weight of the unique minimum W-basis
introduced above. Indeed, consider first one single petal of F and its W-basis as encoded by
the removal sequence displayed in Fig. 30. This W-basis has weight 26 and leaves all glue
edges as tree edges. It is easy to extend this removal sequence for one petal, say petal 0, to a
removal sequence for F that encodes a W-basis of weight 151: simply append to it, for each
one of the other 5 petals taken in clockwise clockwise order , a removal sequence like the one
in Fig. 28 (see in the proof of Fact 6.1 for the details).

Fact 6.1. There are precisely 30 circuits of cost 5 in F . These 30 circuits constitute the
unique minimum U-basis of F . This basis has weight 150 and is not weakly fundamental.
Furthermore, F admits a W-basis of weight 151.

Proof. The W-basis associated by Algorithm WFCB-Decoder to the following removal
sequence has weight 151: first, within petal 0, remove v0

5v
0
6, v0

2v
0
6, v0

3v
0
7, v0

0v
0
4, v0

4v
0
5 in this

order, next, for i = 1, 2, 3, 4, 5 and in sequence, within petal i remove vi1v
i
2, vi0v

i
1, vi0v

i
4, vi3v

i
7,

vi2v
i
3 in this order.

We are now ready to produce a weighted graph G (the gadget) with the following prop-
erties. (1) G contains 4 nodes x, y, z and w, and the edges wx, wy and wz, all of weight 1;
(2) The minimum U-basis of G has weight B and G has a W-basis of weight B. (3) Let T
be any spanning tree of G compatible with some W-basis of weight B. Then, the distance in
T between any two of the 4 nodes x, y, z and w is at least 3; (4) G has a W-basis of weight
B + 1, for which wx,wy,wz ∈ T .
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The intended functioning of the gadget is as follows. Several copies of the gadget will be
part of the graph GH representing the minimum W-basis problem instance constructed by the
L-reduction eventually proposed in Section 6.2. Each such gadget (copy) is attached to the
rest of GH by means of the 4 nodes x, y, z and w, and, actually, occurs as an induced subgraph
of GH . Each removal sequence for GH contains, in a natural way, a removal sequence for each
one of these gadgets. Indeed, a set of edges whose removal makes GH acyclic also intersects
all circuits of any given subgraph of GH . Notice that, after the removal of the sole edges
prescribed by a removal sequence for a gadget, the nodes of that gadget are still connected
within the gadget. In order to intersect all circuits of GH , a removal sequence for GH will
need to include further edges. When obtaining a short W-basis of GH , the following boolean
choice has to be taken for each one of these gadgets.

either locally pay B + 1: pay the extra price of +1 by locally applying a removal sequence
avoiding the “cheap” edges wx, wy, and wz, hence allowing to disconnect cheaply the
4 nodes w, x, y, and z with later removals;

or locally pay B: pay just the minimum B, but then these 4 nodes will remain connected
within the gadget since disconnecting them later would cost significantly more than
than the +1. Indeed, by points (3) and (1) above, the cost of disconnecting any two
nodes among the 4 nodes w, x, y will be at least 3− 1 = 2.

The above informal description will make full sense only later, after all the pieces of the
proposed reduction will be in place. We now give our gadget. It is depicted in Fig. 31.

The weighted subgraph of G induced by the nodes a, b, c, y and w is called the chamber.
The gadget graph G is similar to the flower F from Fig. 29 but it has 14 petals and 1 chamber,
plus two edges wx and wz, dubbed the jump edges. In Fig. 31, the 14 petals are only hinted
at for reasons of legibility. The numbers that label some of the nodes represent the distances
from node w within the weighted graph G \ {wx,wz} and, as such, certify the truth of the
last two properties listed in the following lemma.

Lemma 6.4. The graph G in Fig. 31 has 14 petals, one chamber, n = 73, m = 147, and
ν = 75. It has has a unique minimum U-basis Cmin; this basis is weakly fundamental and has
weight B := 377. The edges wx, wy, and wz are all cotree edges w.r.t. any removal sequence
encoding Cmin. There exists a W-basis of G of weight B+1, and a removal sequence encoding
this basis, w.r.t. which the edges wx, wy, and wz are all tree edges. The distance between w
and y in G \ yw is 4. The distance between w and x in G \ xw is 5. The distance between w
and z is 5 in G \ zw and 6 in G \ {zw, xw}. The distance among any two nodes in {x, y, z}
is at least 4 in G \ {xw, yw, zw}.

Proof. All claims in the first sentence are readily verified. As for the last four sentences, their
truth can be readily verified through shortest path computations, and the distance values
reported in Fig. 31 may partially support the reader in this task.

The remaining properties follow from the properties of the petals and from the structure
of G. However, even if we hope that the reader might now possibly believe all these properties
do hold, assessing them would be out of scope and we refer to Rizzi (2007) for more exhaustive
arguments.

The source problem of the L-reduction: Hypergraphs generalize graphs. A hypergraph
is a pair H = (V,E), where V is a finite set of nodes and E is a finite set of hyperedges. A
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Figure 31: A gadget graph G with 11 petals, one chamber, and two jump edges wx and wz.

hyperedge is a set of nodes. When all hyperedges have size t, H is called t-uniform. Graphs
are 2-uniform hypergraphs. A circuit in a hypergraph is an alternating sequence of nodes
and edges v0, e0, v1, e1, v2, . . . , vk, ek such that, for every i = 0, 1, 2, . . . , k, we have vi ∈ ei and
vi+1 mod k ∈ ei. The length of the circuit is k, the number of edges comprising it. The girth
γH of a hypergraph H is the minimum length of a circuit in H. A hypergraph is acyclic if
it contains no circuit. A feedback hyperedge set (FHS) of a hypergraph H = (V,E) is a set
F ⊆ E such that (V,E \ F ) is acyclic. Given a hypergraph H, the Minimum Feedback
Hyperedge Set (MFHS) problem seeks for a minimum cardinality FHS in H.

Lemma 6.5 (Rizzi (2007)). There exists a constant α > 0 such that the MFHS problem is
APX -hard even when restricted to 4-uniform hypergraphs with γ ≥ 6 in which a minimum
cardinality FHS has size at least α |E|.
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The main reduction: The main L-reduction is from the MFHS problem to the minimum
W basis problem. Let H = (V,E) be a 4-uniform hypergraph with γH ≥ 6. Consider the
weighted graph GH obtained as follows.

1. start from node set V ;

2. add a further node r adjacent to all nodes in V through edges of weight 3;

3. for each hyperedge e = {v1, v2, v3, v4} ∈ E, add a new and private copy Ce of the gadget
graph and perform the following 4 node identifications: v1 ↔ x, v2 ↔ y, v3 ↔ z, and
v4 ↔ w.

The following lemma establishes that the above poly-time construction is an L-reduction
from the MFHS problem restricted to instances conforming to the properties as in Lemma 6.5
to the minimum W-basis problem. As a consequence, the MWFCB problem is APX -hard.

Lemma 6.6. The hypergraph H = (V,E) admits an FHS of size t iff GH admits a W-basis
of weight (21 +B)m+ t, where n = |V |, m = |E|.

Proof. Assume first that the hypergraph H = (V,E) admits an FHS F ⊆ E with |F | = t. We
construct a W-basis CF of GH and a removal sequence s encoding CF . We start with CF := ∅
and s := ∅ and set G′ :=GH .

For each e ∈ F , we proceed as follows. First, at cost (B + 1), we put in CF all circuits of
the W-basis of Ce of weight (B + 1). By Lemma 6.4, this basis can be encoded by a removal
sequence with respect to which the edges xw, yw, and zw of Ce are all tree edges. Append
this removal sequence to s meanwhile removing from G′ the 75 edges it prescribes. After the
removal of these edges Ce is acyclic. Furthermore, the only edges of Ce which are not bridges
of G′ are the edges xw, yw, and zw. Next, at cost 7 + 7 + 7 = 21, remove from G′ these three
edges of component Ce, meanwhile appending them to s and adding to CF the three triangles
they form together with node r. Each of these triangles costs 7 = 3 + 3 + 1. Clearly, after the
removal of these three edges, no circuit of G′ can go through an edge of Ce. After this has
been performed for each e ∈ F , we have payed (B + 1 + 21) t = (21 +B) t+ t in total.

At his point, the number of connected components of (V,E \ F ) is n− 3(m− t); for each
connected component C of (V,E \F ), remove from G′ all edges of the form rc, c ∈ C, except
one. Each removal has cost 7 = 3+3+1 (explained in more detail below) and adds a triangle
through node r to CF . Once these edges have been removed, no circuit of G′ contains r.
We now explain in more detail how the removal of these edges can be performed within the
claimed costs. First, select a node a of C and a spanning tree A of G′[C]. Then act as follows.
Let A′ := A. Consider A′ as a tree rooted at a. While A′ 6= {a}, consider any leaf q of A′

and let p be the father of q in A′; remove from G′ the edge qr and append it to s, meanwhile
inserting in CF the triangle q − r − p (of cost 7 = 3 + 3 + 1); remove node q from the rooted
tree A′. In this way, we remove a total of n − (n − 3(m − t)) = 3(m − t) edges, for a total
cost of 21(m− t). Until here, we have payed (B + 1) t+ 21m in total.

Finally, for each e ∈ E \ F , put in CF all circuits of the W-basis of Ce of weight B. Also,
append to s and remove from G′ all cotree edges of Ce w.r.t. any removal sequence encoding
this W-basis of Ce. After this, G′ is a spanning tree of GH . In particular, the acyclicity of G′

follows from the acyclicity of E \ F . Thus, CF is a W-basis of GH . In total, in this last step
has cost (m− t)B and hence the total cost of CF is (21 +B)m+ t.
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For the reverse direction, let C be a W-basis of GH of cost at most (21+B)m+t. We may
assume C to be locally-optimal and encoded by means of a removal sequence s. Let T be the
spanning tree of GH made of the tree edges w.r.t. s. Let E′ be the set of those hyperedges
e ∈ E such that Ce∩T is a spanning tree of Ce. Notice that the hypergraph (V,E′) is acyclic
since T is acyclic. Let F := E \ E′. It follows that F is an FHS of the hypergraph H. Let
f := |F |. We will show |F | ≤ t.

Let ν denote the cyclomatic number of GH . By Lemma 6.4, the cyclomatic number of
each gadget Ce is 75. Therefore ν = 75m+3m = 78m since in order to make GH acyclic, we
need to remove 3m further edges after having made each Ce acyclic. Let G0 :=GH , and, for
i = 1, 2, . . . , ν, let Gi be the weighted graph obtained from Gi−1 by removing the i-th edge ei
of the removal sequence s. For every e ∈ E, we denote by Ve the nodes of the gadget Ce, and
we say that edge ei is pertinent to Ce if ei is an edge of Ce and if the induced graphs Gi[Ve]
and Gi−1[Ve] have the same number of connected components. Clearly, the removal sequence
s = e1, e2, . . . , eν contains precisely νCe = 75 edges pertinent to Ce and the subsequence se of
s comprising these 75 edges encodes a W-basis of Ce. Since the girth of H is at least 6, every
circuit of GH which is not a circuit of some Ce costs at least 7. As a consequence, for every
e ∈ E, the total cost of the circuits in C associated to the edges in se is at least B. Besides the
ν = 75m removals considered until now (which in number are precisely enough to make each
Ce gadget acyclic), we have 3m further removals. None of these further removals can cost
less than 7, since none of the corresponding circuits in C is entirely contained in one single Ce
gadget. Furthermore, for every e ∈ F , the best edge removal for making GH [Ve] acyclic and
disconnecting the subgraph GH [Ve] ∩ T has cost B + 1. Indeed, for every e ∈ F , there exists
an ei in s such that Gi[Ve] and Gi−1[Ve] have the same number of connected components. As
a consequence, the corresponding circuit Ci in C contains an edge (the edge ei) in Ce but is
not entirely contained in Ce. Now, if ei is neither the xw, nor the yw, nor the zw edge of Ce,
then the cost of Ci is strictly bigger than 7 (actually, at least 10); otherwise, the total cost of
the circuits in C associated to the edges in se is at least B + 1. In total, the cost is at least
(m − f)B + f(B + 1) + 21m = mB + 21m + f . Since we know that this cost is at most
(21 +B)m+ t, we conclude f ≤ t.
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7 Applications

Cycle bases arise in a wide range of engineering applications, we discuss three. They require
different kinds of cycle basis. The analysis of electrical circuits can do with any kind of cycle
basis, periodic scheduling problems in traffic planning require integral bases, and a graph
drawing method requires strictly fundamental bases.

7.1 Kirchhoff’s Voltage Law

Kirchhoff’s circuits laws are the basis for the analysis of electrical circuits.

“The directed sum of the electrical potential differences around any closed circuit
must be zero.”
(Wikipedia, page “Kirchhoff’s circuit laws” as of Jan 04, 2009; Kirchhoff (1847))

Any system of differential (algebraic) equations which models an electrical system has to
satisfy this property. Fortunately, it suffices to guarantee the zero-sum property for the
elements of a directed cycle basis. Indeed, consider the cycle matrix Γ of some directed cycle
basis and some arbitrary cycle C. Then C = Γλ for some coefficient vector λ. Now, if some
vector x of potential differences satisfies Kirchoff’s law for every circuit in the basis, i.e.,
xTΓ = 0, then xTC = xT(Γλ) = (xTΓ)λ = 0Tλ = 0. For a more detailed exposition of
this application of cycle bases we refer to Bollobás (2002). An in-depth presentation of how
cycle bases can be used for index reduction of differential algebraic systems is given in Bächle
(2007).

7.2 Periodic Scheduling in Traffic Planning

Periodic scheduling problems arise frequently in traffic planning. Two examples are scheduling
traffic lights and timetabling in public transport. They share a common mathematical model
that can be traced back to early work by Gartner et al. (1975) and Rüger (1986) and was put
into its final form by Serafini and Ukovich (1989).

In the Periodic Event Scheduling Problem (PESP) we are given a directed graph D =
(V,A), vectors ` and u on the arcs, and a scalar T called cycle time or period. For an arc
a, `(a) and u(a) are lower and upper bounds for the travel time across a, respectively. In
the feasibility version of the problem, the question is, whether a node potential π exists, such
that

`a ≤ πj − πi + Tpa ≤ ua, ∀a = (i, j) ∈ A, (1)

where p constitutes an integral vector on the arcs. The πi is the event time at node i modulo
the period T . It is a simple observation that PESP generalizes K-Vertex Colorability (Odijk
(1996)). One may further add an objective function, which will depend on the application. We
will next discuss the two applications in somewhat more detail and then make the connection
to cycle basis.

Traffic Light Coordination. The task is to plan the red/green timings of traffic lights.
We assume that the cycle time has already been determined, e.g., a 60 second cycle time
is desired, and that minimum durations for the green phases of the individual signal groups
(left turn lane, straight traffic etc.) have been derived from the traffic loads of the origin-
destination pairs. It is then necessary to schedule the events for each signal group, i.e., when
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Rockaway Blvd

Aqueduct

104 St./Oxford Blvd

Figure 32: Excerpt of the New York City subway network in the area of JFK airport: The line
plan, the track map, and the PESP graph. In the latter, light gray dotted arcs model passenger
transfers or turnarounds of trains, and dark gray solid arcs model minimum headways and/or
coordinated departures. A circuit in the PESP graph is highlighted.

signals turn from green to red and from red to green. Typical objectives are the minimization
of the number of red-light stops of cars and the total travel time in the network. Wünsch
(2008) discusses the traffic light coordination problem and related problems in detail.

Periodic Timetabling in Public Transport. The German train system runs essentially
on either a one or a two hour period. Main lines runs on a one hour period, secondary lines
operate on a two hour period. Of course, the period is not maintained during night hours.
The Sunday schedule of the Berlin subway runs on a 10 minute period. Shorter periods are
used on weekdays, in particular during rush hours. The process of timetabling in its full
generality is highly complex, in particular when different train operation companies intend
to use the same track for the very same time slot. We concentrate here on purely periodic
schedules.

A periodic timetable assigns arrival and departure times to all pairs of lines and stations:
Berlin metro line U9 leaves Zoo station southbound at minute 02, and arrives at the next
station, Kurfürstendamm at minute 03. Many constraints have to be respected. These include
minimum headways between two trains of different lines using the same track, collision-free
service on a single track, and maximum durations for stops in intermediate stations of lines.
Among the most important objectives are short transfer times for the passengers as well as
short turnaround times for the trains in their terminus stations, where both have to respect
certain minimum time durations, too. In Figure 32, these types of arcs are shown for a small
part of New York City.

Cycle Bases for PESP. The practical performance of MIP solvers on PESP instances
based on Equation (1) is rather poor. We next describe a more efficient problem formulation
that makes use of integral cycle bases.
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Given an (in-) feasible solution (π, p) of the PESP, consider the function x(a) on the arcs,

x(a) := πj − πi + Tpa, a = (i, j). (2)

The vector x is sometimes referred to as periodic tension, and models the time duration
between its two events i and j. Summation of this equality for the arcs of any circuit C yields
the cycle periodicity property

1
T

∑
a∈C+

xa −
∑
a∈C−

xa

 ∈ Z; (3)

the important observation is that the sum on the left must have an integral value for all
circuits C. Nachtigall (1996) observed that the cycle periodicity property for the circuits
in some strictly fundamental basis implies it for all circuits. Liebchen and Peeters (2009)
generalized this result to integral cycle bases.

Theorem 7.1 (Liebchen and Peeters (2009); Nachtigall (1996)). Let x be some vector on the
arcs of a directed graph. There exists a pair (π, p) having (2), i.e., x is a periodic tension,
if and only if the cycle periodicity property (3) is satisfied for the elements of some integral
cycle basis.

Indeed, assume that (3) holds for all the circuits in an integral basis and let C be an
arbitrary circuit. Then C =

∑
i λiCi, where the Ci’s are the basic circuits and the λi are

integral. Then

∑
a

C(a)xa =
∑
a

(∑
i

λiCi(a)

)
xa =

∑
i

λi

(∑
a

Ci(a)xa

)
=
∑
i

λiqCiT

and hence the net travel time along C is an integral multiple of the period. For this argument
to hold, it is essential that C is an integral linear combination of the basic circuits.

Practical Use. For both applications, the mathematical model sketched above made its
way into practice – including the computation of short (fundamental) cycle bases as a pre-
processing subroutine. For the traffic light scheduling problem, Wünsch (2008) reports that
since 2008 the method is commercially available as a module in one of the major software
suites in traffic planning. In periodic timetabling, Liebchen (2008) reports that the first
mathematically optimized railway timetable went into service in 2005, for the Berlin subway
network. About two years later, even a national railway company reports that their new
timetable was designed with the help of combinatorial algorithms (Kroon et al. (2008)).

7.3 Graph Drawing

Graph drawing is concerned with embedding graphs into the plane in an aesthetically pleasing
way. A position is assigned to each vertex and each edge is drawn as a (poly-)line. The goal
is to obtain a clear, easily interpretable drawing of the graph. Lehmann and Kottler (2007)
have shown that minimum or near minimum strictly fundamental cycle bases are very useful
in this context.

They start with the observation that many real-world graphs, such as social networks, are
sparse and simultaneously clustered in the sense, that the neighbors of a vertex are frequently
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Figure 33: On the left side the graph is drawn by a refined version of a classic force-directed
layout approach, on the right by computing an F -basis first that is then used to draw the
whole graph as described in Lehmann and Kottler (2007). The edges of the spanning tree are
marked in red.

also connected directly to each other. These edges will then form triangles. More generally,
most edges of real-world graphs belong to triangles or at least short cycles. This is in contrast
to sparse random graphs. However, there are usually also some edges that connect seemingly
random vertices with each other (Watts and Strogatz (1998)). Edges of the first category are
often called local edges and edges of the second category are called global edges. Although
there is no clear definition for either of these categories, it is frequently desirable to show
either the local structure or the global structure of the graph. The spanning tree underlying
a (near) minimal cycle basis will provide the right scaffold. Moreover, it can easily be drawn
in linear time with a tree drawing method (Kaufmann and Wagner (2001)).

With this spanning tree as a scaffold, global edges can now be defined as those edges that
connect vertices with at least a given threshold distance in the tree. By adding them to the
spanning tree the global structure of the graph can be emphasized. Analogously, by adding
the other, non-global edges to the spanning tree, the local, clustered structure is prominently
displayed. Thus, this method provides a neat way to show both, the local and global structure
of a given graph, next to each other. Figure 33 shows an example.
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chen Chemie 72 (12), 497–508.
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