
New Approximation Algorithms for Minimum Cycle Bases of
Graphs∗

Telikepalli Kavitha† Kurt Mehlhorn‡ Dimitrios Michail‡§

Abstract

We consider the problem of computing an approximate minimum cycle basis of an undirected
non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs
is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the
vector space over F2 generated by these vectors is the cycle space of G. A set of cycles is called a
cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights
of the cycles is minimum is called a minimum cycle basis of G.

Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical
networks, structural engineering, chemistry, and surface reconstruction. Although in most such
applications any cycle basis can be used, a low weight cycle basis often translates to better per-
formance and/or numerical stability. Despite the fact that the problem can be solved exactly in
polynomial time, we design approximation algorithms since the performance of the exact algo-
rithms may be too expensive for some practical applications.

We present two new algorithms to compute an approximate minimum cycle basis. For any in-
teger k≥ 1, we give (2k−1)-approximation algorithms with expected running time O(kmn1+2/k+
mn(1+1/k)(ω−1)) and deterministic running time O(n3+2/k), respectively. Here ω is the best expo-
nent of matrix multiplication. It is presently known that ω < 2.376. Both algorithms are o(mω)
for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with
a guarantee drops below the Θ(mω) bound.

We also present a 2-approximation algorithm with expected running time O(mω
√

n logn), a
linear time 2-approximation algorithm for planar graphs and an O(n3) time 2.42-approximation
algorithm for the complete Euclidean graph in the plane.

1 Introduction

Let G = (V,E) be an undirected connected graph with m edges and n vertices. A cycle of G is any
subgraph of G where each vertex has even degree. Associated with each cycle C is an incidence vector
x, indexed on E, where for any e∈E, xe is 1 if e is an edge of C and 0 otherwise. The vector space over
F2 generated by the incidence vectors of cycles is called the cycle space of G. It is well known that this
vector space has dimension N = m−n+1, where m is the number of edges of G and n is the number
of vertices. A maximal set of linearly independent cycles is called a cycle basis. The edges of G have

∗A preliminary version of this paper appeared in the 24th International Symposium on Theoretical Aspects of Computer
Science [20].

†Indian Institute of Science, Bangalore, India; kavitha@csa.iisc.ernet.in
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany; {mehlhorn,michail}@mpi-inf.mpg.de
§Corresponding address: Dimitrios Michail, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123

Saarbrücken, Germany. email: michail@mpi-inf.mpg.de

1

non-negative weights assigned to them. A cycle basis where the sum of the weights of the cycles is
minimum is called a minimum cycle basis of G. We use the abbreviation MCB to refer to a minimum
cycle basis. Minimum cycle bases are of considerable practical importance and therefore the problem
of computing an MCB has received considerable attention. An early paper is by Stepanec [29]. Hor-
ton [16] presented the first polynomial time algorithm. Faster and/or alternative algorithms were later
presented by de Pina [10], Golynski and Horton [12], Berger et al. [4], and Kavitha et al. [21]. The
current fastest algorithm [21] has running time O(m2n+mn2 logn). Implementations are discussed
in [17, 9, 26].

One of the most important areas of application of the MCB problem is electrical networks [30,
10, 4]. Many problems arising in the design and analysis of electrical networks can be formulated
in graph-theoretic terms. In fact, in the analysis of complex electrical networks by graph theoret-
ical methods, a basic problem is to determine the solvability of the “network equation”, a system
of algebraic differential equations that describes the relation of currents and voltages in a network
as functions of time. In order to check structural solvability of that system quickly by a heuristic
matching approach, fast algorithms are needed that compute sparse representations. The equations
corresponding to the Kirchhoff voltage law are critical, since for the remaining equations, a sparse
representation is readily available. Hence the central problem is that of computing a sparse cycle
basis to describe the “voltage law” part of the system.

Other applications are in structural engineering [6], chemistry and biochemistry [11, 23], and
surface reconstruction from point clouds [31]. In most applications, the computation of an MCB is
a preprocessing step. The use of an MCB ensures sparseness and translates into faster running times
of the main algorithm. Unfortunately, even the fastest exact minimum cycle basis algorithm has a
running time of Θ(m2n+mn2 logn). This may dominate the running time of the application.

However, most applications can work with any cycle basis and any constant factor approximate
minimum cycle basis may be substituted for a minimum cycle basis without much affect on the ap-
plication. In [21] an α-approximation algorithm for any α > 1 is presented for the MCB problem; its
running time is o(m2n+mn2 logn)+Θ(mω), where ω is the exponent of matrix multiplication. It is
known [7] that ω < 2.376. The time bound of Θ(mω) is still prohibitive for some of the applications.
It results from Gaussian elimination on m×m linear systems.

We present a new approximation approach which leads to vastly improved time bounds. In par-
ticular, for any integer k ≥ 1 we give two (2k− 1)-approximation algorithms with expected running
time O(kmn1+2/k +mn(1+1/k)(ω−1)) and deterministic running time O(n3+2/k), respectively. Both al-
gorithms are o(mω) for sufficiently dense graphs, the first algorithm for m > max(n1+1/k,

ω−1
√

kn1+2/k)

and the second algorithm for m > n
3
ω
+ 2

kω > n1.26+ 0.84
k . The first algorithm is faster for sparser and the

second algorithm for denser graphs. More precisely, the second algorithm is faster for m > n4−ω+ 3−ω

k

which with the current upper bound on ω is m > n1.624+ 0.624
k .

Our algorithms work in two phases. The first phase is a very fast computation of a large number
of cycles (all but O(n1+1/k) cycles) in an approximate MCB. The second part is a more expensive
computation of the remaining cycles. We present two different ways for computing these remaining
cycles, leading to the above two algorithms, each faster for different graph densities. Only the second
phase needs a null space computation; it is a null space computation of a square system of size
O(n1+1/k). Our new algorithms are fast even when implemented without fast matrix multiplication.
Furthermore, by combining the techniques of both the algorithms, we get an even faster algorithm at
the expense of a larger approximation factor.

We also present a 2-approximation algorithm with an expected running time of O(mω
√

n logn).
For sparse graphs, this is subcubic. Moreover, we develop very fast approximation algorithms for

2

some special graph classes. For planar graphs we give a linear time 2-approximation algorithm and
for the complete Euclidean graph in the plane we give a 2.42-approximation algorithm with running
time O(n3). In higher dimensions we give a k-approximation algorithm for any k > 1 with running
time O(sdn3 logn) where s = 4(k+1)/(k−1) and d is the fixed dimension.

The minimum cycle basis problem for directed graphs is less studied. Polynomial time algorithms
are given in [19, 24, 13, 18]. The fastest deterministic algorithm [13] has running time O(m3n+
m2n2 logn) and there is a Monte Carlo algorithm [18, 13] with running time O(m2n +mn2 logn).
Some of our algorithms generalize to directed graphs. We give a deterministic (2k−1)-approximation
algorithm with running time O(n4+3/k), a Monte Carlo (2k−1)-approximation algorithm with running
time O(n3+2/k), and a 2-approximation algorithm with expected running time O(mω

√
n logn).

The paper is organized as follows. Section 2 contains some necessary background and a sim-
ple lower bound for the weight of an MCB. Section 3 presents our approach for computing fast a
large number of cycles of an approximate MCB. Section 4 contains two different algorithms in or-
der to compute the remaining cycles. In these sections we also extend our techniques to directed
(Section 4.4) and some special classes (Section 4.5) of graphs. Practical issues are discussed in Sec-
tion 5. In Section 6 we present our 2-approximation algorithm. We conclude with open problems in
Section 7.

2 Preliminaries

Let T be any spanning tree in G(V,E), let e1, . . . ,eN be the edges of E \T in some arbitrary but fixed
order, and let eN+1, . . . ,em be the edges in T in some arbitrary but fixed order. We frequently view
cycles in terms of their restricted incidence vectors1, that is, each cycle is a vector in {0,1}N .

We use S and R to denote subsets of E \T . Each such subset gives rise to an incidence vector in
{0,1}N . We use 〈C,S〉 to denote the standard inner product of vectors C and S. We say that a vector S
is orthogonal to C if 〈C,S〉= 0. In the field F2, 〈C,S〉= 1 if and only if C contains an odd number of
edges of S.

For a cycle C, we use w(C) = ∑e∈C w(e) to denote its weight. We use wG(MCB) to denote the
weight of a minimum cycle basis of graph G. When it is clear by the context we omit G and write
w(MCB). The following lemma gives us a lower bound on w(MCB). We include the proof given
in [21].

Lemma 2.1 (de Pina [10]). Let R1, . . . ,RN be linearly independent vectors in {0,1}N and let Ai be a
shortest cycle in G such that 〈Ai,Ri〉= 1. Then ∑

N
i=1 w(Ai)≤ w(MCB).

Proof. Let C1, . . . ,CN be the cycles of an MCB. We may assume without loss of generality that the Ai

vectors and the Ci vectors are sorted by weight, that is, w(A1) ≤ w(A2) ≤ . . . ≤ w(AN) and w(C1) ≤
w(C2) ≤ . . . ≤ w(CN). The former may require a renumbering of the Ri vectors. It suffices to show
w(Ai)≤ w(Ci) for all i.

Consider a fixed i. We have that 〈Ck,R`〉 = 1 for some k and ` with 1 ≤ k ≤ i ≤ ` ≤ N. Other-
wise, the N− i+ 1 linearly independent vectors Ri,Ri+1, . . . ,RN belong to the subspace orthogonal

1For a cycle C, use C to denote its incidence vector in {0,1}N and C∗ to denote its incidence vector in {0,1}m. Consider
a set of cycles C1, . . . , Ck. Clearly, if the vectors C∗1 to C∗k are dependent, then so are the vectors C1 to Ck. Conversely,
assume that ∑i λiCi = 0. Then C = ∑i λiC∗i contains only edges in T . Moreover, since C is a sum of cycles, each vertex has
even degree with respect to C. Thus, C = 0 and hence linear dependence of the restricted incidence vectors implies linear
dependence of the full incidence vectors. For this reason, we may restrict attention to the restricted incidence vectors when
discussing questions of linear independence.

3

to C1, . . . ,Ci; however, this subspace has dimension only N− i. Thus, w(A`) ≤ w(Ck) since A` is a
shortest cycle such that 〈A`,R`〉= 1. But by the sorted order, w(Ai)≤ w(A`) and w(Ck)≤ w(Ci). This
implies w(Ai)≤ w(Ci).

The sets Ri = {ei}, 1 ≤ i ≤ N, are clearly independent. The shortest cycle C with 〈C,Ri〉 = 1
consists of the edge ei plus the shortest path in G\{ei} connecting its endpoints. We use SCi to denote
this cycle. The cycle exists, since there is always the spanning tree path in E \ {ei} connecting the
endpoints of ei. Let SC= {SCi | 1≤ i≤N} be the shortest cycle multiset and let w(SC) =∑C∈SC w(C)
be its weight. Thus, we obtain Corollary 2.2.

Corollary 2.2. w(SC)≤ w(MCB).

3 The new approach

Our approximation algorithms are motivated by the shortest cycle multiset lower bound (Corol-
lary 2.2). We fix a parameter λ ≤ N and construct a set of linearly independent cycles C1, . . . ,Cλ

such that w(Ci)≤ (2k−1) ·w(SCi) for 1≤ i≤ λ . In the second phase, we extend the partial basis to
a full basis. We offer two alternatives for the second phase. Let t = 2k−1.

Now we give the details of the first phase. We construct the cycles C1, . . . ,Cλ using a sparse t-
spanner of G. A multiplicative t-spanner of a graph G is a subgraph G′(V,E ′), E ′⊆ E such that for any
u,v ∈ V we have w(SPG′(u,v)) ≤ t ·w(SPG(u,v)) where SPG(u,v) denotes a shortest path in G from
u to v. When it is clear from the context we omit the subscript G and write SP(u,v). Let G′(V,E ′)
be such a t-spanner of G. Since we can always add the edges in T to E ′ (recall that T is an arbitrary
spanning tree of G), we may assume T ⊆ E ′. We also assume that the edges are indexed such that
E \E ′ = {e1, . . . ,eλ}.

For each edge ei = (u,v) ∈ E \E ′, let Ci be formed by ei and SPG′(u,v). The cycles Ci, 1≤ i≤ λ

are clearly independent since ei is contained in precisely Ci. We have w(Ci) = w(ei)+w(SPG′(u,v))≤
w(ei)+ t ·w(SPG(u,v))≤ t ·w(SCi).

The running time of phase 1 is easily estimated. As pointed out by Althöfer et al. [1] every
weighted undirected graph on n vertices has a (2k−1)-spanner with O(n1+1/k) edges where k ≥ 1 is
an integer. Such a spanner can be constructed using an algorithm similar to Kruskal’s algorithm (see
Cormen et al. [8]) for constructing minimum spanning trees. In order to build the spanner, consider all
edges of the graph in non-decreasing order of weight, adding each edge to the spanner if its endpoints
are not already connected, in the spanner, by a path using at most 2k− 1 edges. At any stage, the
spanner is a (2k− 1)-spanner of the edges already considered, and its unweighted girth is at least
2k+1, so it has only O(n1+1/k) edges. The above procedure can be implemented in O(mn1+1/k) time.

In the above spanner we are going to perform λ shortest path computations, one for each edge of G
that is not in the spanner. Using Dijkstra’s algorithm we need time O(λ · (n1+1/k +n logn)) and since
λ ≤ m we can compute both the spanner and the λ linearly independent cycles in time O(mn1+1/k).
We should mention that there are faster algorithms to construct similar spanners, see for example [33].
However, the construction by Althöfer et al. suffices for our purposes.

4 The remaining cycles

In the preceding section we computed most of the cycles of an approximate minimum cycle basis. We
are left with computing the remaining cycles. The number of additional cycles is N−λ . Note that this
is exactly the dimension of the cycle space of the spanner G′. We present two different algorithms.

4

input : Graph G(V,E) and integer k ≥ 1.
output : A (2k−1)-approximate MCB.

Construct a (2k−1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . ,eλ be the edges of G\G′.
For 1≤ i≤ λ let Ci = ei + pi where ei = (ui,vi) and pi is a shortest path in G′ from ui to vi.
Find linearly independent Sλ+1, . . . ,SN in the subspace orthogonal to cycles C1, . . . ,Cλ .
Call the algorithm in [21] with input: the graph G, sets {C1, . . . ,Cλ}, {Sλ+1, . . . ,SN} and
N−λ to compute (2k−1)-approximate cycles Cλ+1, . . . ,CN .
Return {C1, . . . ,Cλ}∪{Cλ+1, . . . ,CN}.

Figure 1: The first approximation algorithm.

The first approach uses all the edges in G to construct the remaining cycles while the second approach
uses only the edges eλ+1, . . . ,em.

4.1 The first approach

We first need to briefly review the algorithm in [21] in order to compute a minimum cycle basis; it
refines a previous algorithm by de Pina [10]. The algorithm is recursive. We immediately describe
the modification of the algorithm needed for our purposes.

The general step adds some number k of cycles to a partial basis PB of size α . This step takes
as input an integer k ≥ 1, and k linearly independent vectors Sα+1, . . . , Sα+k orthogonal to the cycles
in PB. The vectors, when viewed as sets, have the additional property that Sα+i ∩{eα+1, . . . ,eN} =
{eα+i} for 1 ≤ i ≤ k. The step updates the sets Sα+1, . . . , Sα+k and returns k cycles Zα+1, . . . ,Zα+k
such that 〈Zi,S j〉 = δi j for α +1 ≤ i ≤ j ≤ α + k (here δi j is 1 if i = j and 0 otherwise). The update
has the additional property that it does not affect the orthogonality with respect to the partial basis
PB. Observe, that the cycles PB∪{Zα+1, . . . ,Zα+k} are linearly independent. To see this note that
for any 1 ≤ i ≤ k, 〈Zα+i,Sα+i〉 = 1 while any cycle C in the span of PB∪{Zα+1, . . . ,Zα+i−1} has
〈C,Sα+i〉= 0.

The top level call: We call the recursive procedure with the partial basis of phase 1, namely PB =
{C1, . . . ,Cλ} and ask it to compute µ = N−λ additional cycles. Let us write the C1, . . . ,Cλ in the
form of a λ ×N matrix with one row per cycle. Then C1

...
Cλ

=
(

Iλ B
)

(1)

where Iλ is the λ ×λ identity matrix and B is a λ ×µ matrix. The matrix has this form since each of
the edges ei for 1≤ i≤ λ belongs only to the cycle Ci. Set

(
Sλ+1 . . . Sλ+µ

)
=

(
B
Iµ

)
. (2)

Then the product of the matrix of C’s on the left side of Equation (1) and the matrix of S’s on the
left side of Equation (2) is B + B = 0, i.e., the S’s are orthogonal to the C’s. Moreover, Sλ+i ∩

5

{eλ+1, . . . ,eN} = {eλ+i} for 1 ≤ i ≤ µ . The running time required to compute this null space ba-
sis is the time required to output the already known matrix B. By using some sparse representation of
the vectors we need at most O(λ · µ) time. In the general case λ ≤ m and µ = N−λ ∈ O(n1+1/k).
Thus, initialization of phase 2 needs O(mn1+1/k) time.

The recursive case, k≥ 2: Let `= dk/2e. We first call the algorithm recursively with ` and Sα+1 to
Sα+`. The call will return cycles Zα+1 to Zα+` and updated sets Sα+1 to Sα+`. We next update the sets
Sα+`+1 to Sα+k. The set Sα+ j, `+ 1 ≤ j ≤ k, is replaced by a sum Sα+ j +∑1≤i≤` β jiSα+i where the
β ji are chosen such that the updated Sα+ j becomes orthogonal to the cycles Zα+1 to Zα+`. Observe
that orthogonality to the cycles in PB is not affected. The computation of the β ji’s and the update
step can be implemented using fast matrix multiplication and takes time O(mkω−1) (see [21] for the
details). The final step is to call the algorithm recursively for the remaining cycles. We therefore have
the following recursion for the running time: T (k) = T (dk/2e)+T (bk/2c)+O(mkω−1) for k ≥ 2.
This solves to T (k) = k ·T (1)+O(mkω−1). We call the algorithm with k = µ and hence have total
running time µ ·T (1)+O(mµω−1).

The base case, k = 1: The algorithm computes a t-approximate shortest2 cycle C with 〈C,Sα+1〉= 1.
The shortest cycle C with 〈C,Sα+1〉= 1 can be computed as follows. We set up an auxiliary graph G†

with two copies, say v′ and v′′, for each vertex v, and two copies e′ and e′′ for each edge e = (u,v)∈ E.
If e ∈ Sα+1, the copies are (u′,v′′) and (u′′,v′) and if e 6∈ Sα+1, the copies are (u′,v′) and (u′′,v′′).
Then a shortest cycle C with 〈C,Sα+1〉 = 1 corresponds to a shortest path connecting the two copies
of some vertex v minimized over all v. Such a path can be found by n shortest path computations
in the auxiliary graph. In order to compute a t-approximate shortest cycle C with 〈C,Sα+1〉 = 1 we
compute t-approximate single source shortest paths between n pairs of vertices.

We need to perform a total of µn approximate shortest path computations. Therefore, we require
a faster algorithm than constructing a spanner. We use an approximate distance oracle. Thorup and
Zwick [33] constructed a structure which answers (2k−1)-approximate shortest path queries in time
O(k). The structure requires space O(kn1+1/k) and can be constructed in expected time O(kmn1/k).
In the case of unweighted graphs Baswana and Sen [3] showed that a (2k−1)-approximate distance
oracle can be computed in expected O(min(n2,kmn1/k)) time. The same can also be done determinis-
tically [28].

Using such a construction, we bound T (1) by the cost of computing the approximate distance
oracle (O(kmn1/k) expected time) and the cost of performing n queries to the oracle. Each query
costs O(k) and thus a total cost of O(nk). Forming the actual cycle can be done in time linear in its
length which is O(n). Thus, T (1) = O(kmn1/k) and therefore T (µ) = O(µkmn1/k +mµω−1). Since
µ ∈ O(n1+1/k) we get a bound of O(kmn1+2/k +mn(1+1/k)(ω−1)).

Approximation guarantee. We prove that the computed set of cycles is a t-approximation of the
MCB. Consider the vectors Sλ+1, . . . ,SN at the end of the algorithm and define Si = {ei} for 1≤ i≤ λ .
Then each Ci, 1≤ i≤ N, is a t-approximation of the shortest cycle in G having odd intersection with
Si. All we need to show is Lemma 4.1. Then the approximation guarantee follows from Lemma 2.1.

Lemma 4.1. The vectors S1, . . . ,SN are linearly independent.

Proof. Consider any i. We have 〈Ci,Si〉 = 1 and 〈Ci,S j〉 = 0 for all j ≥ i+ 1. The latter holds for
j > λ by the invariants of the recursive procedure and it holds for i < j ≤ λ since Ci consists of edge

2The original algorithm constructs a shortest cycle.

6

input : Graph G(V,E) and integer k ≥ 1.
output : A (2k−1)-approximate MCB.

Construct a (2k−1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . ,eλ be the edges of G\G′.
For 1≤ i≤ λ let Ci = ei + pi where ei = (ui,vi) and pi is the shortest path in G′ from ui to
vi.
Call the exact algorithm in [21] to find an MCB of G′. Let these cycles be Cλ+1, . . . ,CN .
Return {C1, . . . ,Cλ}∪{Cλ+1, . . . ,CN}.

Figure 2: The second approximation algorithm.

ei and edges in the spanner (which have index greater than λ) and S j = {e j}. Thus, Si is independent
of the Si+1, . . . ,SN and the lemma follows.

Theorem 4.2. A (2k−1)-approximate minimum cycle basis, for any integer k ≥ 1, in an undirected
weighted graph can be computed in expected time O(kmn1+2/k +mn(1+1/k)(ω−1)).

The above theorem implies that an O(logn)-approximate minimum cycle basis can be computed
in expected time O(mnω−1 +mn logn). Note that Rizzi [27] independently designed an O(mn) time
algorithm which computes an O(logn) approximate minimum cycle basis.

4.2 The second approach

Our second algorithm just computes a minimum cycle basis of the t-spanner G′. The dimension of the
cycle space of G′ is µ = N−λ and thus we have the right number of cycles. Let Cλ+1, . . . ,CN be an
MCB of G′. Cycles {C1, . . . ,Cλ}∪{Cλ+1, . . . ,CN} are by definition linearly independent and we are
also going to prove that they form a t-approximation of an MCB of G.

For 1≤ i≤ λ , we have Ci = ei + pi, where pi is a shortest path in G′ between the endpoints of ei.
In order to show that cycles C1, . . . ,CN are a t-approximation of the MCB, we again define appropriate
linearly independent vectors S1, . . . ,SN ∈ {0,1}N and use Lemma 2.1. Consider the exact algorithm
in [21] executing with the t-spanner G′ as its input. Other than the cycles Cλ+1, . . . ,CN , the algorithm
also returns the vectors Rλ+1, . . . ,RN ∈ {0,1}N−λ such that 〈Ci,R j〉= 0 for λ +1≤ i < j ≤ N and Ci

is a shortest cycle in G′ such that 〈Ci,Ri〉 = 1 for λ + 1 ≤ i ≤ N. Moreover, the (N−λ)× (N−λ)
matrix whose j-th row is R j is lower triangular with 1 in its diagonal. This implies that the R j’s are
linearly independent. Given any vector S ∈ {0,1}N let S̃ be the projection of S onto its last N− λ

coordinates. In other words, if S is an edge set of G, then let S̃ be the edge set restricted only to the
edges of G′. We define S j for 1≤ j≤N as follows. Let S1, . . . ,Sλ be the first λ unit vectors of {0,1}N .
For λ +1≤ j ≤ N define S j as:

S j = (−〈C̃1,R j〉, . . . ,−〈C̃λ ,R j〉,R j,1,R j,2, . . . ,R j,(N−λ)),

where R j,1, . . . ,R j,(N−λ) are the coordinates of the vector R j ∈ {0,1}N−λ . Note that the vectors S j

for 1≤ j ≤ N, defined above, are linearly independent. This is because the N×N matrix whose j-th
row is S j is lower triangular with 1’s in its diagonal. The above definition of S j’s is motivated by the
property that for each 1≤ i≤ λ , we have 〈Ci,S j〉=−〈C̃i,R j〉+ 〈C̃i,R j〉= 0, since the cycle Ci has 0
in all first λ coordinates, except the i-th coordinate, which is 1. Lemma 4.3, shown below, together
with Lemma 2.1, implies the correctness of our approach.

7

Lemma 4.3. Consider the above defined S j for 1 ≤ j ≤ N and let D j be a shortest cycle in G such
that 〈D j,S j〉= 1. Cycle C j returned by the algorithm in Figure 2 has weight at most t times the weight
of D j.

Proof. This is obvious for 1 ≤ j ≤ λ since D j is a shortest cycle in G which uses edge e j and C j =
e j + p j, where p j is a t-approximate shortest path between the endpoints of e j. Consider now D j for
λ + 1 ≤ j ≤ N. If D j uses any edge ei for 1 ≤ i ≤ λ we replace it with the corresponding shortest
path in the spanner. This is the same as saying consider the cycle D j +Ci instead of D j. Let D′j =
D j +∑1≤i≤λ (ei ∈ D j)Ci where (ei ∈ D j) is 1 if ei ∈ D j and 0 if ei /∈ D j. Then

〈D′j,S j〉= 〈D j,S j〉+ ∑
1≤i≤λ

(ei ∈ D j)〈Ci,S j〉.

But recall that our definition of S j ensures that 〈Ci,S j〉= 0 for 1≤ i≤ λ . This implies that 〈D′j,S j〉=
〈D j,S j〉= 1. But D′j by definition has 0 in the first λ coordinates and S̃ j = R j, which in turn implies
that

〈D̃′j,R j〉= 〈D̃′j, S̃ j〉= 〈D′j,S j〉= 1 .

C j is a shortest cycle in G′ such that 〈C j,R j〉 = 1. Thus, C j has weight at most the weight of D̃′j
(which is the same cycle as D′j), and by construction, D′j has weight at most t times the weight of
D j.

Thus, we have shown that the cost of our approximate basis is at most t times the cost of an
optimal basis. As a t-spanner we will again use a (2k− 1)-spanner. The best time bound in order to
compute an MCB is O(m2n+mn2 logn) and since a (2k− 1)-spanner has at most O(n1+1/k) edges
the total running time becomes O(n3+2/k). It is also known that any graph has an O(logn)-spanner of
linear size.

Theorem 4.4. A (2k− 1)-approximate minimum cycle basis, for any integer k ≥ 1, in a weighted
undirected graph can be computed in time O(n3+2/k +n3+1/k logn).

4.3 Combining the approaches

Consider the algorithm in Figure 2. After computing the first λ cycles we use an exact MCB algorithm
to compute the remaining cycles. We can instead use the algorithm in Figure 1 which is fast for
sparse graphs. We begin by computing a (2k− 1)-spanner G′ of G and the first λ cycles. Then
we call the algorithm in Figure 1 to compute a (2q− 1)-approximate MCB of G′. The result will
be a (2k− 1)(2q− 1)-approximate MCB of G. Note that in this case it is not sufficient to use the
O(mn1+1/k) approach of Althöfer et al. [1] in order to compute the initial (2k−1)-spanner G′. Thorup
and Zwick [33] have shown how to construct a (2k−1)-spanner G′ with size Õ(kn1+1/k) in expected
time Õ(kmn1/k). Such a spanner is a collection of shortest path trees T (w) for w ∈ V and given two
vertices u,v ∈V there is a tree in this collection that contains a path between u and v that is of stretch
at most 2k− 1. Furthermore, the corresponding tree can be obtained in O(k) time. We can also
preprocess these trees in order to be able to output the path in amortized or worst case constant time
per edge.

Consider running the algorithm in Figure 1 in the subgraph G′. The algorithm will first compute
a (2q− 1)-spanner G′′ of the (2k− 1)-spanner G′ and some of the cycles. Then it will compute the
remaining cycles by doing (2q−1)-approximate shortest cycles computations in G′. We therefore get
an algorithm with expected running time Õ(qk · n1+1/kn1+2/q + kn1+1/kn(1+1/q)(ω−1)). Note that this
upper bound does not include the time to output the initial cycles using the (2k−1)-spanner.

8

Theorem 4.5. A (2k− 1)(2q− 1)-approximate MCB of an undirected weighted graph, for any two
integers k,q ≥ 1, can be computed in expected time Õ(qk ·n2+1/k+1/q(n1/q +n(1+1/q)(ω−2))) plus the
time to output the MCB.

4.4 Directed graphs

Our techniques for computing a 2k− 1 approximate minimum cycle basis can also be applied to
the minimum cycle basis problem in directed graphs. A cycle in a directed graph is a cycle in the
underlying undirected graph with edges traversable in both directions. A {−1,0,1} edge incidence
vector is associated with each cycle: edges traversed by the cycle in the right direction get 1 and
edges traversed in the opposite direction get −1. The cycle space is the space generated by these
cycle vectors over Q. Note that the weight of a cycle is simply the sum of the weight of its edges,
independent of the orientation of these edges.

The algorithms for finding an MCB in directed graphs are based on the techniques used in [10, 21].
Some more ideas are required in order to compensate for the extra cost of arithmetic that arises when
changing the base field from F2 to Q. Lemma 2.1 can also be generalized, see for example [19]. The
algorithm in Figure 2 can be directly generalized. For the spanner computation we view our directed
graph G as undirected and we compute a (2k− 1)-spanner G′. We then give to the edges of G′ the
orientation that they have in G.

As in Section 4.2 we return two sets of cycles. The first set is constructed as follows. For each
edge ei ∈ E \E ′ for 1≤ i≤ λ we compute the cycle ei+ pi where pi is the shortest path in G′ between
the endpoints of ei when G′ is viewed as an undirected graph. Then, we traverse each such cycle in
an arbitrary orientation and form our directed cycles based on the direction of the edges in G. The
second set is simply the set of cycles of a directed MCB of G′. The proof of correctness of this
approach follows by Section 4.2 if we replace the base field with Q.

The time to compute the spanner is again O(mn1+1/k). The fastest deterministic algorithm [13]
to compute an MCB of a directed graph has a running time of Õ(m2Nω−1 + N3) + O(N(m2n +
mn2 logn)). We execute this algorithm on the spanner and G′ has at most O(n1+1/k) edges. Thus,
N ≤ m ∈ O(n1+1/k) and the running time becomes O(mn1+1/k)+ Õ(n(1+1/k)(ω+1))+O(n4+3/k). For
k ≥ 1 this is O(n4+3/k).

Theorem 4.6. A (2k− 1)-approximate minimum cycle basis, for any integer k ≥ 1, in a weighted
directed graph can be computed in time O(n4+3/k).

If we allow the use of randomization then we can compute approximate directed MCB even faster.
The improved Monte Carlo algorithm in [13] computes an MCB of a directed graph with non-negative
weights in time O(m2n+mn2 logn) with probability at least 3/4. Using this algorithm we get the
following theorem.

Theorem 4.7. A (2k− 1)-approximate minimum cycle basis, for any integer k ≥ 1, in a weighted
directed graph can be computed with probability at least 3/4 in time O(n3+2/k).

4.5 Planar and Euclidean graphs

In the minimum cycle basis problem, some types of graphs are much easier to handle than others.
Consider a planar graph G. In linear time we can find an embedding of G in the plane. The ap-
proximate cycle basis algorithm just returns the set of bounded faces of G. It is easy to see that
all these cycles are linearly independent and due to Euler’s formula they are also the right number,
N = m−n+1 = f −1, where f is the number of faces of G.

9

For the approximation factor let E∗ ⊆ E be the edges of G which belong to at least one cycle.
Since each edge is incident with at most two faces this cycle basis has weight at most 2 ·∑e∈E∗ w(e)≤
2 ·w(MCB) since a minimum cycle basis has to use each edge that belongs to at least one cycle.

The embedding can be found in linear time [15]. The bounded faces can also be enumerated in
linear time and the size of the output is also linear. Thus, the algorithm constructs in a trivial way a
2-approximate minimum cycle basis of a planar graph. We should also mention that Liebchen and
Rizzi [25] present an algorithm which computes a minimum 2-basis of a planar graph (a basis in
which each edge is contained in at most 2 cycles). Their algorithm, while more complicated, runs also
in linear time and a minimum 2-basis is also a 2 approximation of the minimum cycle basis.

Let P be a set of points in the Euclidean plane. The Euclidean graph G(P) on P has vertices
corresponding to points in P. The graph is complete and the weight of an edge is the Euclidean
distance between the points corresponding to the vertices. In order to find an approximate MCB of
G(P) we use the result that the Delaunay triangulation of the points P is a ≈ 2.42 [22] spanner of
G(P). Let DT denote the Delaunay triangulation of P. DT is a planar graph. The approximate MCB
algorithm returns the following set of cycles: (a) For each edge e = (u,v) ∈ G(P) \DT the cycle Ce

formed by edge e and the shortest path in DT from u to v, and (b) a minimum cycle basis of DT.

Theorem 4.8. A 2.42 approximation of the MCB in a complete Euclidean graph in the plane can be
constructed in O(n3) time.

Proof. The proof of the approximation ratio follows exactly the proof in Section 4.2. For the running
time we note that computing the Delaunay triangulation requires O(n logn) time. The shortest path
computations on the planar spanner require O(λn) which is O(n3). Computing an MCB of a planar
graph can be done in O(n2 logn) by the algorithm of Hartvigsen and Mardon [14].

In the case we want to handle higher (but fixed) dimensions we can use the fact that the well-
separated pair decomposition [5] (s-WSPD) for separation factor s = 4(t + 1)/(t− 1) is a t-spanner
of G(P) for t > 1. The algorithm begins by computing an s-WSPD decomposition. The time to
compute an s-WSPD is O(n logn+ sdn) where d is the dimension. Since the size of the WSPD is
O(sdn) we know that λ ≤ m and µ = N−λ ∈ O(sdn). Thus, the time to compute the first λ cycles is
O(m(sdn+n logn)).

For the remaining cycles we use the approach used by the algorithm in Figure 2. Computing
exactly the MCB of the spanner we get a running time of O(sdn3 logn). We have shown the following.

Theorem 4.9. A t-approximate MCB for t > 1 of a complete Euclidean graph can be computed in
time O(sdn3 logn) where s = 4(t +1)/(t−1) and d the fixed dimension.

5 Practical considerations

The algorithms in Figure 1 and 2 use fast matrix multiplication. However, they are also efficient even
when used without fast matrix multiplication. This fact has high practical value since high perfor-
mance fast matrix multiplication libraries are difficult to implement. In the algorithm of Figure 2,
instead of the O(m2n+mn2 logn) algorithm to compute an MCB in G′, use the O(m3 +mn2 logn)
algorithm from [10], which is the fastest algorithm to compute an MCB without fast matrix multipli-
cation. The algorithm in Figure 1 can also be implemented without fast matrix multiplication. The
last phase is the only part which depends on fast matrix multiplication techniques. Instead of using
the algorithm in [21] we can use the original approach from de Pina [10]. The running time of this

10

 0.00390625

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 50 100 150 200 250 300 350 400 450 500

tim
e

(s
ec

)

nodes

G(n;0.3)

Algorithms
Exact

3-approx (k=2)
MST

Figure 3: Performance of the algorithm in Figure 2 in practice for G(n;0.3) random weighted dense graphs.
Three variants are used (a) exact computation for k = 1, (b) 3 approximation for k = 2, and (c) O(n) approx-
imation for k = n. For k = n the algorithm runs in O(mn) and returns the fundamental basis induced by the
minimum spanning tree of the graph. A fundamental basis induced by a spanning tree T is the following cycle
basis: for each e 6∈ T one cycle consisting of e and the unique path in T between its endpoints. We include it
here for comparison, since, a spanning tree is the best (sparsest) one can hope for a spanner.

approach is O(mµ2) = O(mn2+2/k) plus O(µ(kn+ kmn1/k)) for the shortest paths. Thus, we get the
following theorem.

Theorem 5.1. The algorithm in Figure 2 computes a (2k− 1)-approximate minimum cycle basis,
for any integer k ≥ 1, in an undirected weighted graph without fast matrix multiplication in time
O(n3+3/k). Similarly, the algorithm in Figure 1 in expected time O(kmn1+2/k +mn2+2/k).

Both our algorithms are o(mω) for sufficiently dense graphs and appropriate values of k. More-
over, they are easy to implement efficiently. We performed some preliminary experiments and as it is
to be expected, the 3 approximation algorithm is significantly faster than the exact approach since it
reduces the problem into a computation in a sparser graph. See Figure 3.

6 A 2-approximation algorithm

Another possible way to compute an MCB is to use the greedy algorithm. Sort cycles in non-
decreasing order of weight and use Gaussian elimination. The approach works since the sets of
linearly independent vectors of a vector space form a matroid. Hence, the greedy algorithm can
determine a least weight basis. A graph, however, may have an exponential number of cycles.

Horton [16] defined a set of O(mn) cycles and proved that it contains an MCB. Thus, an MCB
can be found by determining the least weight N linearly independent cycles from this set, using Gaus-
sian elimination. We define a set of O(m

√
n logn) cycles and show that it contains a 2-approximate

minimum cycle basis; our set is a subset of Horton’s set. Again, the basis is extracted from the set by
determining the least weight N linearly independent cycles in it.

11

For a vertex x ∈ V and an edge e = (u,v) ∈ E, let C[x,e] = SP(x,u)+ e+ SP(v,x) be the cycle
consisting of the edge e and the shortest paths from x to its endpoints. Horton’s collection consists of
the cycles C[x,e] for all x ∈V and e ∈ E. We use a subset of Horton’s collection.

Definition 6.1. For v,x ∈ V and S ⊂ V , bunch(v,S) consists of all vertices closer to v than to any
vertex in S and cluster(x,S) consists of all vertices v with x ∈ bunch(v,S).

Lemma 6.1 (Thorup and Zwick [32]). Given a weighted graph G = (V,E) and 0 < q < 1, one can
compute a set S⊂V of size O(nq logn) in expected time O(m logn

q) such that |cluster(x,S)| ≤ 4
q for all

x ∈V .

We take q= 1/
√

n logn here and first compute, as given in Lemma 6.1, in expected time O(m
√

n log3/2 n)
a set S⊂V of O(

√
n logn) vertices. This ensures that cluster(v,S) has size

√
n logn for all v∈V . Also,

bunch(v,S) for all v can be computed in expected time O(m/q) [33], which is O(m
√

n logn). We use
two types of cycles:

• the O(m
√

n logn) cycles C[s,e] for all s ∈ S and e ∈ E,

• the cycles C[u,e] for each u∈V and e = (v,w)∈ E and either v or w in bunch(u,S). The number
of such cycles is ∑u∈V ∑v∈bunch(u,S) deg(v). This is the same as ∑v∈V deg(v) · |cluster(v,S)|,
which in turn is at most

√
n logn∑v∈V deg(v) = m

√
n logn.

Thus, our collection has O(m
√

n logn) cycles. We need to show that it contains a 2-approximate
cycle basis. Let B1, . . . ,BN be the minimum cycle basis of G determined by Horton’s algorithm in
order of non-decreasing weight, i.e., w(B1)≤ w(B2)≤ ·· · ≤ w(BN).

Lemma 6.2. For all 1≤ i≤ N we have Bi = ∑C∈Ci C where Ci is a subset of our collection and each
cycle in Ci has cost at most 2 ·w(Bi).

Proof. Consider any Bi. If Bi belongs to our collection, we set Ci = {Bi}. Otherwise, Bi = C[u,e]
where e = (v,w) and neither v nor w is in bunch(u,S). Let s ∈ S be the nearest vertex in S to u. Then,
w(SP(s,u))≤ w(SP(u,v)) and w(SP(s,u))≤ w(SP(u,w)).

For any edge f ∈ Bi, the cycle C(s, f) is in our collection and Bi = ∑ f∈Bi C(s, f) since the paths
from s to the endpoints of the edges in Bi appear twice in this sum and cancel out. We set Ci =
{C(s, f) | f ∈ Bi}. It remains to show w(C(s, f))≤ 2w(Bi) for all f ∈ Bi. We distinguish cases.

Assume first that f 6= e. Then f ∈ SP(u,v) or f ∈ SP(u,w). We may assume w.l.o.g. that the
former is the case. Then w(C(s, f)) ≤ w(SP(s,u))+w(SP(u,v))+w(SP(v,s)) since C(s, f) consists
of f and the shortest paths from s to the endpoints of f and w(SP(v,s))≤w(SP(s,u))+w(SP(u,v)) by
the triangle inequality. Thus w(C(s, f))≤ 2(w(SP(s,u))+w(SP(u,v)))≤ 2w(Bi) since w(SP(s,u))≤
w(SP(u,w)).

Assume next that f = e. Then w(C(s, f)) = w(SP(s,v)) + c(e) +w(SP(w,s)) ≤ w(SP(s,u)) +
w(SP(u,v))+c(e)+w(SP(s,u))+w(SP(u,w))≤ 2w(SP(u,v))+c(e)+2w(SP(u,w))≤ 2w(Bi).

Lemma 6.3. The collection constructed above contains N linearly independent cycles A1, . . . ,AN with
w(Ai)≤ 2 ·w(Bi) for i = 1, . . . ,N.

Proof. The lemma follows from Lemma 6.2. Assume otherwise and let j be minimal such that ∪i≤ jCi

contains less than j linearly independent vectors with w(Ai)≤ 2 ·w(Bi) for i= 1, . . . , j. Then j≥ 1 and
∪i≤ j−1Ci contains at least j−1 linearly independent vectors with w(Ai)≤ 2 ·w(Bi) for i = 1, . . . , j−1.
Also, ∪i≤ jCi spans {B1, . . . ,Bi} and hence contains at least i linearly independent vectors. Thus, it
contains a vector A j linearly independent from {A1, . . . ,A j−1}. Furthermore, A j ∈ Ci for some i ≤ j
and hence w(A j)≤ 2w(Bi)≤ 2w(B j), a contradiction.

12

We sort our collection in non-decreasing order of weight and do Gaussian elimination on their
incidence vectors, restricted to the N edges e1, . . . ,eN . This determines the least weight N linearly
independent cycles in our collection. The time taken for the Gaussian elimination step, which is the
most expensive step in our algorithm, is O(mω

√
n logn) using fast matrix multiplication.

Theorem 6.4. A 2-approximate MCB in an undirected graph G with non-negative edge weights can
be computed in expected time O(mω

√
n logn).

6.1 Extension to directed graphs

The above algorithm also holds for directed graphs. See Section 4.4 for definitions. Let C =(e1, . . . ,ek)
be a cycle in a directed graph and let ei = (ui,ui+1). Then we can write C = ∑

k
i=1 SP(s,ui)+ ei +

SP(ui+1,s) where uk+1 = u1, since SP(s,ui) cancels SP(ui,s). Note that SP(a,b) for us here need not
be a directed path - it is a shortest path in the underlying undirected graph between a and b. However,
the incidence vector of this path in the directed graph would contain −1’s corresponding to edges
which are traversed in the reverse direction. All the steps in the above construction go through for di-
rected minimum cycle bases too and we have a collection of O(m

√
n logn) cycles which is a superset

of a 2-approximate directed minimum cycle basis.
However, when we do Gaussian elimination, we are no longer over F2 and so the numbers could

grow large. So we can no longer claim that the time taken for Gaussian elimination is O(mω
√

n logn).
But if we choose a prime p uniformly at random from a collection of small primes and do the arith-
metic in Gaussian elimination modulo p, then our cost remains O(mω

√
n logn) and we will show that

with high probability we determine the cycles of a 2-approximate MCB.

Arithmetic modulo p. The problem with doing arithmetic modulo any number p is that the least
weight N linearly independent cycles in our collection could turn out to be linearly dependent modulo
p. That is, the determinant of the N×N matrix M, defined by incidence vectors of these N cycles, is a
multiple of p. In that case, our algorithm is not guaranteed to return a 2-approximate minimum cycle
basis.

Now we will use the property that all the entries in the matrix M are in {−1,0,1}, to show a
bounded error when p is a prime chosen uniformly at random from a collection P = {p1, . . . , pN2}
of N2 distinct primes, where each pi ≥

√
N. It follows from Hadamard’s inequality that the absolute

value of the determinant of M is at most NN/2, since each of the N rows is a vector in {−1,0,1}N .
Thus, at most N elements of P can be divisors of det(M). So the probability that a random element
of P divides det(M) is ≤ N/N2 = 1/N. So with probability 1−1/N, arithmetic modulo p yields the
least weight N linearly independent cycles from the collection of O(m

√
n logn) cycles.

The value of π(r), the number of primes less than r, is given by r
6logr ≤ π(r)≤ 8r

logr [2]. So all the
primes p1, . . . , pN2 are Õ(N2), and computing them takes Õ(N2) time using a sieving algorithm. Arith-
metic modulo p ensures that all numbers are Õ(N2) and we can assume that arithmetic on O(logN) bit
numbers takes O(1) time. It follows that addition, subtraction and multiplication in Zp can be imple-
mented in unit time since p is Õ(N2). However, we also need to implement division efficiently. Once
p is chosen, we compute the multiplicative inverses of all elements in Z∗p by the extended Euclid’s gcd
algorithm by solving ax = 1(mod p) for each a ∈ Z∗p. This takes time O(log p) for each element and
hence O(p log p) = Õ(N2) for all the elements. Thus, we have shown the following theorem.

Theorem 6.5. A 2-approximate minimum cycle basis can be computed with high probability in ex-
pected time O(mω

√
n logn) in an directed graph G with n vertices, m edges and non-negative edge

weights.

13

7 Conclusions and open problems

In this paper we design faster algorithms for computing approximate minimum cycle basis of undi-
rected graphs. To the best of our knowledge it is the first time that sparse cycle bases with a guarantee
are computed in o(mω) time. The importance of this result follows from the fact that minimum cycle
bases are usually used to form linear systems which then have to be solved. Thus, the MCB compu-
tation should not dominate the running time. Our techniques extend also to the directed version of
the minimum cycle basis problem in which the base field is Q instead of F2. We present very fast
approximate algorithms for this version as well.

One of the most important open questions in this area is to decouple the (approximate) MCB
computation from the null space basis. We have partially solved this by computing all but O(n1+1/k)
cycles without using a null space basis. Another related question to this is whether we can reach an
o(mω) running time when computing exactly the minimum cycle basis or is there an Ω(mω) lower
bound?

References

[1] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse span-
ners of weighted graphs. Discrete Comput. Geom., 9(1):81–100, 1993.

[2] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1997.

[3] Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs in
expected o(n2) time. ACM Trans. Algorithms, 2(4):557–577, 2006.

[4] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle basis for network graphs. Algorithmica,
40(1):51–62, 2004.

[5] Paul Callahan and Rao Kosaraju. A decomposition of multidimensional point sets with appli-
cations to k-nearest-neighbors and n-body potential field. Journal of the ACM, 42(1):67–90,
1995.

[6] A. C. Cassell, J. C. Henderson, and K. Ramachandran. Cycle bases of minimal measure for
the structural analysis of skeletal structures by the flexibility method. In Proc. Royal Society of
London Series A, volume 350, pages 61–70, 1976.

[7] D. Coppersmith and S. Winograd. Matrix multiplications via arithmetic progressions. Journal
of Symb. Comput., 9:251–280, 1990.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company, 1989.

[9] Kreisbasenbibliothek CyBaL. http://www-m9.ma.tum.de/dm/cycles/cybal, 2004.

[10] J.C. de Pina. Applications of Shortest Path Methods. PhD thesis, University of Amsterdam,
Netherlands, 1995.

[11] Petra Manuela Gleiss. Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and
Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der Universität
Wien, 2001.

14

[12] A. Golynski and J. D. Horton. A polynomial time algorithm to find the minimum cycle basis of
a regular matroid. In 8th Scandinavian Workshop on Algorithm Theory, 2002.

[13] Ramesh Hariharan, Telikepalli Kavitha, and Kurt Mehlhorn. A faster deterministic algorithm
for minimum cycle basis in directed graphs. In ICALP 2006, 33rd International Colloquium on
Automata, Languages and Programming, volume 4051 of LNCS, pages 250–261, 2006.

[14] David Hartvigsen and Russell Mardon. The all-pairs min cut problem and the minimum cycle
basis problem on planar graphs. Journal of Discrete Mathematics, 7(3):403–418, 1994.

[15] J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM, 21:549–568, 1974.

[16] J. D. Horton. A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM
Journal of Computing, 16:359–366, 1987.

[17] M. Huber. Implementation of algorithms for sparse cycle bases of graphs. Technical report,
Technische Universität München, 2002. http://www-m9.ma.tum.de/dm/cycles/
mhuber.

[18] Telikepalli Kavitha. An Õ(m2n) randomized algorithm to compute a minimum cycle basis of a
directed graph. In Proceedings of ICALP, LNCS 3580, pages 273–284, 2005.

[19] Telikepalli Kavitha and Kurt Mehlhorn. Algorithms to compute minimum cycle basis in directed
graphs. Theor. Comp. Sys., 40(4):485–505, 2007.

[20] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail. New approximation algorithms for
minimum cycle bases of graphs. In STACS 2007, 24th Annual Symposium on Theoretical Aspects
of Computer Science, volume 4393 of LNCS, pages 512–523, 2007.

[21] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E. Paluch. An Õ(m2n)
algorithm for minimum cycle basis of graphs. Algorithmica, 2007. DOI: 10.1007/s00453-007-
9064-z.

[22] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete euclidean
graph. Discrete Computational Geometry, 7:13–28, 1992.

[23] Josef Leydold and Peter F. Stadler. Minimal cycle bases of outerplanar graphs. Electron. J. of
Combinatorics, 5:1–14, 1998.

[24] Christian Liebchen and Romeo Rizzi. A greedy approach to compute a minimum cycle basis of
a directed graph. Inf. Process. Lett., 94(3):107–112, 2005.

[25] Christian Liebchen and Romeo Rizzi. Classes of cycle bases. Discrete Appl. Math., 155(3):337–
355, 2007.

[26] Kurt Mehlhorn and Dimitrios Michail. Implementing minimum cycle basis algorithms. J. Exp.
Algorithmics, 11:1–14, 2006.

[27] Romeo Rizzi. Minimum weakly fundamental cycle bases are hard to find. Algorithmica, 2007.
DOI: 10.1007/s00453-007-9112-8.

15

[28] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate dis-
tance oracles and spanners. In Proceedings of the 32nd International Colloquium in Automata,
Languages and Programming, LNCS volume 3580, pages 261–272, 2005.

[29] G. F. Stepanec. Basis systems of vector cycles with extremal properties in graphs. Uspekhi Mat.
Nauk, 19:171–175, 1964.

[30] M. N. S. Swamy and K. Thulasiraman. Graphs, Networks, and Algorithms. John Wiley & Sons,
New York, 1981.

[31] Geetika Tewari, Craig Gotsman, and Steven J. Gortler. Meshing genus-1 point clouds using
discrete one-forms. Comput. Graph., 30(6):917–926, 2006.

[32] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of 13th ACM Sympo-
sium on Parallel Algorithms and Architecture, pages 1–10, 2001.

[33] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

16

