
New Approximation Algorithms for Minimum
Cycle Bases of Graphs

Telikepalli Kavitha1, Kurt Mehlhorn2, and Dimitrios Michail2

1 Indian Institute of Science, Bangalore, India
kavitha@csa.iisc.ernet.in

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{mehlhorn,michail}@mpi-inf.mpg.de

Abstract. We consider the problem of computing an approximate min-
imum cycle basis of an undirected edge-weighted graph G with m edges
and n vertices; the extension to directed graphs is also discussed. In this
problem, a {0, 1} incidence vector is associated with each cycle and the
vector space over F2 generated by these vectors is the cycle space of G.
A set of cycles is called a cycle basis of G if it forms a basis for its cycle
space. A cycle basis where the sum of the weights of the cycles is mini-
mum is called a minimum cycle basis of G. Cycle bases of low weight are
useful in a number of contexts, e.g. the analysis of electrical networks,
structural engineering, chemistry, and surface reconstruction.
We present two new algorithms to compute an approximate minimum
cycle basis. For any integer k ≥ 1, we give (2k − 1)-approximation algo-
rithms with expected running time O(kmn1+2/k + mn(1+1/k)(ω−1)) and
deterministic running time O(n3+2/k), respectively. Here ω is the best
exponent of matrix multiplication. It is presently known that ω < 2.376.
Both algorithms are o(mω) for dense graphs. This is the first time that
any algorithm which computes sparse cycle bases with a guarantee drops
below the Θ(mω) bound.
We also present a 2-approximation algorithm with O(mω√n log n) ex-
pected running time, a linear time 2-approximation algorithm for planar
graphs and an O(n3) time 2.42-approximation algorithm for the complete
Euclidean graph in the plane.

1 Introduction

Let G = (V,E) be an undirected connected graph with m edges and n vertices.
A cycle of G is any subgraph of G where each vertex has even degree. Associated
with each cycle C is an incidence vector x, indexed on E, where for any e ∈ E,
xe is 1 if e is an edge of C and 0 otherwise. The vector space over F2 generated
by the incidence vectors of cycles is called the cycle space of G. It is well known
that this vector space has dimension N = m− n + 1, where m is the number of
edges of G and n is the number of vertices. A maximal set of linearly independent
cycles is called a cycle basis. The edges of G have non-negative weights assigned
to them. A cycle basis where the sum of the weights of the cycles is minimum
is called a minimum cycle basis of G. We use the abbreviation MCB to refer

to a minimum cycle basis. Minimum cycle bases are of considerable practical
importance and therefore the problem of computing an MCB has received con-
siderable attention. An early paper is by Stepanec [1]. Horton [2] presented the
first polynomial time algorithm. Faster and/or alternative algorithms were later
presented by de Pina [3], Golynski and Horton [4], Berger et al. [5], and Kavitha
et al. [6]. The current fastest algorithm [6] has running time O(m2n+mn2 log n).
Implementations are discussed in [7–9].

An important application of the MCB problem is the construction of sparse
systems when solving problems in electrical networks [10, 3, 5]. Other applica-
tions are in structural engineering [11], chemistry and biochemistry [12], and
surface reconstruction from point clouds [13]. In most applications, the compu-
tation of an MCB is a preprocessing step. The use of an MCB ensures sparseness
and translates into faster running times of the main algorithm. Unfortunately,
even the fastest exact minimum cycle basis algorithm has a running time of
Θ(m2n + mn2 log n). This may dominate the running time of the application.

However, most applications can work with any cycle basis and any constant
factor approximate minimum cycle basis may be substituted for a minimum
cycle basis without much affect on the application. In [6] an α-approximation
algorithm for any α > 1 is presented for the MCB problem; its running time is
o(m2n + mn2 log n) + Θ(mω), where ω is the exponent of matrix multiplication.
It is known [14] that ω < 2.376. The time bound of Θ(mω) is still prohibitive for
some of the applications. It results from Gaussian elimination on m × m linear
systems.

We present a new approximation approach which leads to vastly improved
time bounds. In particular, for any integer k ≥ 1, we give two (2k − 1) approxi-
mation algorithms with expected running time O(kmn1+2/k + mn(1+1/k)(ω−1))
and deterministic running time O(n3+2/k), respectively. Both algorithms are
o(mω) for sufficiently dense graphs, the first algorithm for number of edges
m > max(n1+1/k,

ω−1
√

kn1+2/k) and the second algorithm for m > n
3
ω + 2

kω =
n1.26+ 0.84

k . The first algorithm is faster for sparser graphs and the second al-
gorithm for denser graphs. More precisely, the second algorithm is faster for
m > n4−ω+ 3−ω

k which with the current upper bound on ω is m > n1.624+ 0.624
k .

Our algorithms work in two phases. The first phase is a very fast computation
of a large number of cycles (all but O(n1+1/k) cycles) in an approximate MCB.
The second part is a more expensive computation of the remaining cycles. We
present two different ways for computing these remaining cycles, leading to the
above two algorithms, each faster for different graph densities. Only the second
phase needs a null space computation; it is a null space computation of a square
system of size O(n1+1/k). Our new algorithms are fast even when implemented
without fast matrix multiplication. Furthermore, by combining the techniques of
both the algorithms, we get an even faster algorithm at the expense of a larger
approximation factor.

We also present a 2-approximation algorithm with O(mω
√

n log n) expected
running time. For sparse graphs, this is subcubic. Moreover, we develop very
fast approximation algorithms for some special graph classes. For planar graphs

we give a linear time 2-approximation algorithm and for the complete Euclidean
graph in the plane we give a 2.42-approximation algorithm with running time
O(n3). In higher dimensions we give a k-approximation algorithm for any k > 1
with running time O(sdn3 log n) where s = 4(k + 1)/(k − 1) and d is the fixed
dimension.

The minimum cycle basis problem for directed graphs is less studied. Poly-
nomial time algorithms are given in [15–18]. The fastest deterministic algo-
rithm [17] has running time O(m3n + m2n2 log n) and there is a Monte Carlo
algorithm [18, 17] with running time O(m2n+mn2 log n). Some of our algorithms
generalize to directed graphs. We give a deterministic (2k − 1)-approximation
algorithm with running time O(n4+3/k), a Monte Carlo (2k − 1)-approximation
algorithm with running time O(n3+2/k), and a 2-approximation algorithm with
expected running time O(mω

√
n log n).

Preliminaries. Let T be any spanning tree in G(V,E), let e1, . . . , eN be the edges
of E \ T in some arbitrary but fixed order, and let eN+1, . . . , em be the edges
in T in some arbitrary but fixed order. We frequently view cycles in terms of
restricted incidence vectors3, that is, each cycle is a vector in {0, 1}N .

We use S and R to denote subsets of E \T . Each such subset gives rise to an
incidence vector in {0, 1}N . We use 〈C,S〉 to denote the standard inner product
of vectors C and S. We say that a vector S is orthogonal to C if 〈C,S〉 = 0. In
the field F2, 〈C,S〉 = 1 if and only if C contains an odd number of edges of S.

For a cycle C, we use w(C) =
∑

e∈C w(e) to denote its weight. We use
wG(MCB) to denote the weight of a minimum cycle basis of graph G. When it is
clear by the context we omit G and write w(MCB). The following lemma gives
us a lower bound on w(MCB). See [6] for a proof.

Lemma 1 (de Pina [3]). Let R1, . . . , RN be linearly independent vectors in
{0, 1}N and let Ai be a shortest cycle in G such that 〈Ai, Ri〉 = 1. Then∑N

i=1 w(Ai) ≤ w(MCB).

The sets Ri = {ei}, 1 ≤ i ≤ N , are clearly independent. The shortest cycle
C with 〈C,Ri〉 = 1 consists of the edge ei plus the shortest path in G \ {ei}
connecting its endpoints. We use SCi to denote this cycle. The cycle exists,
since there is always the spanning tree path in E \{ei} connecting the endpoints
of ei. Let SC = {SCi | 1 ≤ i ≤ N} be the shortest cycle multiset and let
w(SC) =

∑
C∈SC w(C) be its weight. By applying Lemma 1 to the cycles in SC,

we obtain Lemma 2.

Lemma 2. w(SC) ≤ w(MCB).
3 For a cycle C, use C to denote its incidence vector in {0, 1}N (restricted to e1, . . . , eN)

and C∗ to denote its incidence vector in {0, 1}m. Consider a set of cycles C1, . . . ,
Ck. Clearly, if the vectors C∗

1 to C∗
k are dependent, then so are the vectors C1 to Ck.

Conversely, assume that
P

i λiCi = 0. Then C =
P

i λiC
∗
i contains only edges in T .

Moreover, since C is a sum of cycles, each vertex has even degree with respect to C.
Thus, C = 0 and hence linear dependence of the restricted incidence vectors implies
linear dependence of the full incidence vectors. Thus we may restrict attention to
the restricted incidence vectors when discussing questions of linear independence.

2 The new approach

Our approximation algorithms are motivated by the shortest cycle multiset lower
bound (Lemma 2). We fix a parameter λ ≤ N and construct a set of linearly
independent cycles C1, . . . , Cλ such that w(Ci) ≤ (2k−1) ·w(SCi) for 1 ≤ i ≤ λ.
In the second phase, we extend the partial basis to a full basis. We offer two
alternatives for the second phase. Let t = 2k − 1.

Now we give the details of the first phase. We construct the cycles C1, . . . , Cλ

using a sparse t-spanner of G. A multiplicative t-spanner of a graph G is a
subgraph G′(V,E′), E′ ⊆ E such that for any u, v ∈ V we have w(SPG′(u, v)) ≤
t · w(SPG(u, v)) where SPG(u, v) denotes a shortest path in G from u to v.
When it is clear from the context we omit the subscript G and write SP(u, v).
Let G′(V,E′) be such a t-spanner of G. Since we can always add the edges in
the spanning tree T to E′, we may assume T ⊆ E′. We also assume that the
edges are indexed such that E \ E′ = {e1, . . . , eλ}.

For each edge ei = (u, v) ∈ E\E′, let Ci be formed by ei and SPG′(u, v). The
cycles Ci, 1 ≤ i ≤ λ are clearly independent since ei is contained in precisely Ci.
We have w(Ci) = w(ei) + w(SPG′(u, v)) ≤ w(ei) + t ·w(SPG(u, v)) ≤ t ·w(SCi).

The running time of phase 1 is easily estimated. As pointed out by Althöfer et
al. [19] every weighted undirected graph on n vertices has a (2k−1)-spanner with
O(n1+1/k) edges where k ≥ 1 is an integer. Such a spanner can be constructed
using an algorithm similar to Kruskal’s algorithm for constructing minimum
spanning trees. In order to build the spanner, consider all edges of the graph in
non-decreasing order of weight, adding each edge to the spanner if its endpoints
are not already connected, in the spanner, by a path using at most 2k−1 edges.
At any stage, the spanner is a (2k− 1)-spanner of the edges already considered,
and its unweighted girth is at least 2k + 1, so it has only O(n1+1/k) edges. The
above procedure can be implemented in O(mn1+1/k) time.

In the above spanner we are going to perform λ shortest path computations,
one for each edge of G that is not in the spanner. Using Dijkstra’s algorithm
we need O(λ · (n1+1/k + n log n)) time and since λ ≤ m we can compute both
the spanner and the λ linearly independent cycles in time O(mn1+1/k). We
should mention that there are faster algorithms to construct similar spanners,
see for example [20]. However, the construction by Althöfer et al. suffices for our
purposes.

3 The remaining cycles

In the preceding section we computed most of the cycles of an approximate
minimum cycle basis. We are left with computing the remaining cycles. The
number of additional cycles is N − λ. Note that this is exactly the dimension
of the cycle space of the spanner G′. We present two different algorithms. The
first approach uses all the edges in G to construct the remaining cycles while the
second approach uses only the edges eλ+1, . . . , em of the spanner.

3.1 The first approach

We first need to briefly review the algorithm in [6] in order to compute a min-
imum cycle basis; it refines a previous algorithm by de Pina [3]. The algorithm
is recursive. We immediately describe the modification of the algorithm needed
for our purposes.

The general step adds some number k of cycles to a partial basis PB of size
α. This step takes as input an integer k ≥ 1, and k linearly independent vectors
Sα+1, . . . , Sα+k orthogonal to the cycles in PB. These vectors, viewed as sets,
have the additional property that Sα+i∩{eα+1, . . . , eN} = {eα+i} for 1 ≤ i ≤ k.
The step updates Sα+1, . . . , Sα+k and returns k cycles Zα+1, . . . , Zα+k such that
〈Zi, Sj〉 = δij for α + 1 ≤ i ≤ j ≤ α + k (here δij is 1 if i = j and 0 otherwise).
The update has the additional property that it does not affect the orthogonality
w.r.t the partial basis PB. Observe, that the cycles PB ∪ {Zα+1, . . . , Zα+k} are
linearly independent. To see this note that for any 1 ≤ i ≤ k, 〈Zα+i, Sα+i〉 = 1
while any cycle C in the span of PB ∪ {Zα+1, . . . , Zα+i−1} has 〈C,Sα+i〉 = 0.

The top level call: We call the recursive procedure with the partial basis of
phase 1, namely PB = {C1, . . . , Cλ} and ask it to compute µ = N −λ additional
cycles. Let us write the C1, . . . , Cλ in the form of a λ×N matrix with one row
per cycle. Then C1

...
Cλ

 =
(
Iλ B

)
(1)

where Iλ is the λ × λ identity matrix and B is a λ × µ matrix. The matrix has
this form since each of the edges ei for 1 ≤ i ≤ λ belongs only to the cycle Ci.
Set (

Sλ+1 . . . Sλ+µ

)
=

(
B
Iµ

)
. (2)

Then the product of the matrix of C’s on the left side of Equation (1) and the
matrix of S’s on the left side of Equation (2) is B + B = 0, i.e., the S’s are
orthogonal to the C’s. Moreover, Sλ+i ∩ {eλ+1, . . . , eN} = eλ+i for 1 ≤ i ≤ µ.
The running time required to compute this null space basis is the time required
to output the already known matrix B. By using some sparse representation
of the vectors we need at most O(λ · µ) time. In the general case λ ≤ m and
µ = N −λ ∈ O(n1+1/k). Thus, initialization of phase 2 needs O(mn1+1/k) time.

The recursive case, k ≥ 2: Let ` = dk/2e. We first call the algorithm recursively
with ` and Sα+1 to Sα+`. The call will return cycles Zα+1 to Zα+` and updated
sets Sα+1 to Sα+`. We next update the sets Sα+`+1 to Sα+k. The set Sα+j ,
` + 1 ≤ j ≤ k, is replaced by a sum Sα+j +

∑
1≤i≤` βjiSα+i where the βji

are chosen such that the updated Sα+j becomes orthogonal to the cycles Zα+1

to Zα+`. Observe that orthogonality to the cycles in PB is not affected. The
update step is implemented using fast matrix multiplication and takes time
O(mkω−1). The final step is to call the algorithm recursively for the remaining

cycles. We therefore have the following recursion for the running time: T (k) =
T (dk/2e) + T (bk/2c) + O(mkω−1) for k ≥ 2. This solves to T (k) = k · T (1) +
O(mkω−1). We call the algorithm with k = µ and hence have total running time
µ · T (1) + O(mµω−1).

The base case, k = 1: The algorithm computes a t-approximate shortest4 cycle
C with 〈C,Sα+1〉 = 1. The shortest cycle C with 〈C,Sα+1〉 = 1 can be computed
as follows. We set up an auxiliary graph G† with two copies, say v′ and v′′, for
each vertex v, and two copies e′ and e′′ for each edge e = (u, v) ∈ E. If e ∈ Sα+1,
the copies are (u′, v′′) and (u′′, v′) and if e 6∈ Sα+1, the copies are (u′, v′) and
(u′′, v′′). Then a shortest cycle C with 〈C,Sα+1〉 = 1 corresponds to a shortest
path connecting the two copies of some vertex v minimized over all v. Such
a path can be found by n shortest path computations in the auxiliary graph.
In order to compute a t-approximate shortest cycle C with 〈C,Sα+1〉 = 1 we
compute t-approximate single source shortest paths between n pairs of vertices.

We need to perform a total of µn approximate shortest path computations.
Therefore, we require a faster algorithm than constructing a spanner. We use
an approximate distance oracle. Thorup and Zwick [20] constructed a structure
which answers (2k − 1)-approximate shortest path queries in time O(k). The
structure requires space O(kn1+1/k) and can be constructed in expected time
O(kmn1/k).

Using such a construction, we bound T (1) by the cost of computing the ap-
proximate distance oracle (O(kmn1/k) expected time) and the cost of performing
n queries to the oracle. Each query costs O(k) and thus a total cost of O(nk).
Forming the actual cycle can be done in time linear to its length which is O(n).
Thus, T (1) = O(kmn1/k) and therefore T (µ) = O(µkmn1/k + mµω−1). Since
µ ∈ O(n1+1/k) we get a bound of O(kmn1+2/k + mn(1+1/k)(ω−1)).

Approximation guarantee. We prove that the computed set of cycles is a t-
approximation of the MCB. Consider the vectors Sλ+1, . . . , SN at the end of the
algorithm and define Si = {ei} for 1 ≤ i ≤ λ. Then each Ci, 1 ≤ i ≤ N , is a
t-approximation of the shortest cycle in G having odd intersection with Si. All
we need to show is Lemma 3. Then the approximation guarantee follows from
Lemma 1.

Lemma 3. The vectors S1, . . . , SN are linearly independent.

Proof. Consider any i. We have 〈Ci, Si〉 = 1 and 〈Ci, Sj〉 = 0 for all j ≥ i + 1.
The latter holds for j > λ by the invariants of the recursive procedure and
it holds for i < j ≤ λ since Ci consists of edge ei and edges in the spanner
(which have index greater than λ) and Sj = {ej}. Thus, Si is independent of
the Si+1, . . . , SN and the lemma follows.

Theorem 1. For any integer k ≥ 1, a (2k − 1)-approximate MCB can be com-
puted in expected time O(kmn1+2/k + mn(1+1/k)(ω−1)) in undirected weighted
graphs. An O(log n)-approximate MCB in expected time O(mnω−1 + mn log n).
4 The original algorithm in [6] constructs a shortest cycle.

3.2 The second approach

Our second algorithm to compute the remaining cycles of our cycle basis, just
computes a minimum cycle basis of the t-spanner G′. The dimension of the cycle
space of G′ is µ = N − λ and thus we have the right number of cycles. Let
Cλ+1, . . . , CN be an MCB of G′. Cycles {C1, . . . , Cλ} ∪ {Cλ+1, . . . , CN} are by
definition linearly independent and we are also going to prove that they form a
t-approximation of an MCB of G.

For 1 ≤ i ≤ λ, we have Ci = ei + pi, where pi is a shortest path in
G′ between the endpoints of ei. In order to show that cycles C1, . . . , CN are
a t-approximation of the MCB, we again define appropriate linearly indepen-
dent vectors S1, . . . , SN ∈ {0, 1}N and use Lemma 1. Consider the exact algo-
rithm in [6] executing with the t-spanner G′ as its input. Other than the cycles
Cλ+1, . . . , CN , the algorithm also returns vectors Rλ+1, . . . , RN ∈ {0, 1}N−λ

such that 〈Ci, Rj〉 = 0 for λ + 1 ≤ i < j ≤ N and Ci is a shortest cycle in G′

such that 〈Ci, Ri〉 = 1 for λ+1 ≤ i ≤ N . Moreover, the (N−λ)×(N−λ) matrix
whose j-th row is Rj is lower triangular with 1 in its diagonal. This implies that
the Rj ’s are linearly independent. Given any vector S ∈ {0, 1}N let S̃ be the
projection of S onto its last N − λ coordinates. In other words, if S is an edge
set of G, then let S̃ be the edge set restricted only to the edges of G′. We define
Sj for 1 ≤ j ≤ N as follows. Let S1, . . . , Sλ be the first λ unit vectors of {0, 1}N .
For λ + 1 ≤ j ≤ N define Sj as:

Sj = (−〈C̃1, Rj〉, . . . ,−〈C̃λ, Rj〉, Rj,1, Rj,2, . . . , Rj,(N−λ)),

where Rj,1, . . . , Rj,(N−λ) are the coordinates of the vector Rj ∈ {0, 1}N−λ. Note
that the vectors Sj for 1 ≤ j ≤ N , defined above, are linearly independent. This
is because the N ×N matrix whose j-th row is Sj is lower triangular with 1’s in
its diagonal. The above definition of Sj ’s is motivated by the property that for
each 1 ≤ i ≤ λ, we have 〈Ci, Sj〉 = −〈C̃i, Rj〉 + 〈C̃i, Rj〉 = 0, since the cycle Ci

has 0 in all first λ coordinates, except the i-th coordinate, which is 1. Lemma 4,
shown below, together with Lemma 1, implies the correctness of our approach.

Lemma 4. Consider the above defined Sj for 1 ≤ j ≤ N and let Dj be the
shortest cycle in G such that 〈Dj , Sj〉 = 1. Cycle Cj has weight at most t times
the weight of Dj.

Proof. This is obvious for 1 ≤ j ≤ λ since Dj is a shortest cycle in G which uses
edge ej and Cj = ej + pj , where pj is a t-approximate shortest path between
the endpoints of ej . Consider now Dj for λ + 1 ≤ j ≤ N . If Dj uses any edge
ei for 1 ≤ i ≤ λ we replace it with the corresponding shortest path in the
spanner. This is the same as saying consider the cycle Dj +Ci instead of Dj . Let
D′

j = Dj +
∑

1≤i≤λ(ei ∈ Dj)Ci where (ei ∈ Dj) is 1 if ei ∈ Dj and 0 if ei /∈ Dj .
Then

〈D′
j , Sj〉 = 〈Dj , Sj〉+

∑
1≤i≤λ

(ei ∈ Dj)〈Ci, Sj〉.

But recall that our definition of Sj ensures that 〈Ci, Sj〉 = 0 for 1 ≤ i ≤ λ. This
implies that 〈D′

j , Sj〉 = 〈Dj , Sj〉 = 1. But D′
j by definition has 0 in the first λ

coordinates and S̃j = Rj , which in turn implies that 〈D̃′
j , Rj〉 = 1.

Cj is a shortest cycle in G′ such that 〈Cj , Rj〉 = 1. Thus, Cj has weight at
most the weight of D̃′

j , and by construction, D′
j has weight at most t times the

weight of Dj .

Thus, we have shown that the cost of our approximate basis is at most t times
the cost of an optimal basis. As a t-spanner we will again use a (2k−1)-spanner.
The best time bound in order to compute an MCB is O(m2n + mn2 log n) and
since a (2k − 1)-spanner has at most O(n1+1/k) edges the total running time
becomes O(n3+2/k).

Theorem 2. A (2k−1)-approximate MCB, for any integer k ≥ 1, in a weighted
undirected graph can be computed in time O(n3+2/k). An O(log n)-approximate
MCB can be computed in time O(n3 log n).

Further results. By combining the two approaches we can get even faster algo-
rithms in the expense of an increased approximation ratio. Due to space restric-
tions, details of this and several following results can be found in the full version
of this paper.

Our techniques for 2k − 1 approximate minimum cycle basis can also be
applied to the minimum cycle basis problem in directed graphs. The problem
definition is described in Section 4.1. We simply state our results here.

Theorem 3. For any integer k ≥ 1, a (2k− 1) approximate MCB of a directed
graph with non-negative edge weights can be computed in time O(n4+3/k). If we
allow randomization it can be computed, with high probability, in time O(n3+2/k).

For some classes of graphs which admit better spanners, our approaches lead
to very fast approximation algorithms. For the complete Euclidean graph in two
dimensions we get a 2.42 approximation in time O(n3). Similar results can be
obtained in higher (but fixed) dimensions. For planar graphs we get a linear time
2 approximation by just returning the list of bounded faces.

Practical considerations. Both approaches (Section 3.1 and 3.2) use fast matrix
multiplication. However, they are also efficient even when used without fast
matrix multiplication. This fact has high practical value since high performance
fast matrix multiplication libraries are difficult to implement. Instead of the
O(m2n + mn2 log n) algorithm to compute an MCB in G′, use the O(m3 +
mn2 log n) algorithm from [3], which is the fastest algorithm to compute an
MCB without fast matrix multiplication.

Theorem 4. A (2k− 1)-approximate MCB, for any integer k ≥ 1, can be com-
puted in an undirected weighted graph without fast matrix multiplication in ex-
pected O(kmn1+2/k + mn2+2/k) and deterministic O(n3+3/k) time respectively.

Both our algorithms are o(mω) for sufficiently dense graphs and appropri-
ate values of k. Moreover, they are easy to implement efficiently. Preliminary
experiments suggest a significant speedup in practice.

4 A 2-approximation algorithm

For any undirected (connected) graph G = (V,E) with n vertices and m edges,
Horton [2] defined a set of O(mn) cycles and proved that it contains an MCB.
An MCB can be found by determining the least weight N = m− n + 1 linearly
independent cycles from this set, using Gaussian elimination. We define a set of
O(m

√
n log n) cycles and show that it contains a 2-approximate minimum cycle

basis; our set is a subset of Horton’s set. Again, the basis is extracted from the
set by determining the least weight N linearly independent cycles in it.

For a vertex x ∈ V and an edge e = (u, v) ∈ E, let C[x, e] = SP(x, u) + e +
SP(v, x) be the cycle consisting of the edge e and the shortest paths from x to
its endpoints. Horton’s collection consists of the cycles C[x, e] for all x ∈ V and
e ∈ E. We use a subset of Horton’s collection.

Definition 1. For v, x ∈ V and S ⊂ V , bunch(v, S) consists of all vertices
closer to v than to any vertex in S and cluster(x, S) consists of all vertices v
with x ∈ bunch(v, S).

Lemma 5 (Thorup and Zwick [21]). Given a weighted graph G = (V,E)
and 0 < q < 1, one can compute a set S ⊂ V of size O(nq log n) in expected
time O(m/q log n) such that |cluster(x, S)| = 1/q for all x ∈ V .

We take a value q = 1/
√

n log n here and first compute in expected time
O(m

√
n log3/2 n) a set S ⊂ V of O(

√
n log n) vertices as given in Lemma 5. This

ensures that cluster(v, S) has size
√

n log n for all v ∈ V . Also, bunch(v, S) for
all v can be computed in expected time O(m/q) [20], which is O(m

√
n log n).

We use two types of cycles:

– the O(m
√

n log n) cycles C[s, e] for all s ∈ S and e ∈ E,
– the cycles C[u, e] for each u ∈ V and e = (v, w) ∈ E and either v or w in

bunch(u, S). The number of such cycles is
∑

u∈V

∑
v∈bunch(u,S) deg(v). This

is the same as
∑

v∈V deg(v)·|cluster(v, S)|, which is
√

n log n
∑

v∈V deg(v) =
m
√

n log n.

Thus, our collection has O(m
√

n log n) cycles. We need to show that it con-
tains a 2-approximate cycle basis. Let B1, . . . , BN be the minimum cycle ba-
sis of G determined by Horton’s algorithm in order of increasing weight, i.e.,
w(B1) ≤ w(B2) ≤ · · · ≤ w(BN). We show that each Bi =

∑
C∈Ci

C where Ci

is a subset of our collection and each cycle in Ci has cost at most 2w(Bi). This
implies that our collection contains N linearly independent cycles A1, . . . , AN

with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , N . Assume otherwise and let j be min-
imal such that ∪i≤jCi contains less than j linearly independent vectors with
w(Ai) ≤ 2·w(Bi) for i = 1, . . . , j. Then j ≥ 1 and ∪i≤j−1Ci contains at least j−1
linearly independent vectors with w(Ai) ≤ 2 · w(Bi) for i = 1, . . . , j − 1. Also,
∪i≤jCi spans {B1, . . . , Bi} and hence contains at least i linearly independent
vectors. Thus, it contains a vector Aj linearly independent from {A1, . . . , Aj−1}.
Furthermore, Aj ∈ Ci for some i ≤ j and hence w(Aj) ≤ 2w(Bi) ≤ 2w(Bj), a
contradiction.

Consider any Bi. If Bi belongs to our collection, we set Ci = {Bi}. Otherwise,
Bi = C[u, e] where e = (v, w) and neither v nor w is in bunch(u, S). Let s ∈ S be
the nearest vertex in S to u. Then, w(SP(s, u)) ≤ w(SP(u, v)) and w(SP(s, u)) ≤
w(SP(u, w)).

For any edge f ∈ Bi, the cycle C(s, f) is in our collection and furthermore
Bi =

∑
f∈Bi

C(s, f) since the paths from s to the endpoints of the edges in Bi

appear twice in this sum and cancel out. We set Ci = {C(s, f) | f ∈ Bi}. It
remains to show w(C(s, f)) ≤ 2w(Bi) for all f ∈ Bi. We distinguish cases.

Assume first that f 6= e. Then f ∈ SP(u, v) or f ∈ SP(u, w). We may
assume w.l.o.g. that the former is the case. Then w(C(s, f)) ≤ w(SP(s, u)) +
w(SP(u, v))+w(SP(v, s)) since C(s, f) consists of f and the shortest paths from
s to the endpoints of f and w(SP(v, s)) ≤ w(SP(s, u)) + w(SP(u, v)) by the
triangle inequality. Thus w(C(s, f)) ≤ 2(w(SP(s, u)) + w(SP(u, v))) ≤ 2w(Bi)
since w(SP(s, u)) ≤ w(SP(u, w)).

Assume next that f = e. Then w(C(s, f)) = w(SP(s, v))+c(e)+w(SP(w, s)) ≤
w(SP(s, u)) + w(SP(u, v)) + c(e) + w(SP(s, u)) + w(SP(u, w)) ≤ 2w(SP(u, v)) +
c(e) + 2w(SP(u, w)) ≤ 2w(Bi).

We sort our collection in non-decreasing order of weight and do Gaussian
elimination on their incidence vectors, restricted to the N edges e1, . . . , eN . This
determines the least weight N linearly independent cycles in our collection. The
time taken for the Gaussian elimination step, which is the most expensive step
in our algorithm, is O(mω

√
n log n) using fast matrix multiplication.

Theorem 5. A 2-approximate MCB in an undirected graph G with non-negative
edge weights can be computed in expected time O(mω

√
n log n).

4.1 Extension to directed graphs

The above algorithm also holds for directed graphs. A cycle in a directed graph
is a cycle in the underlying undirected graph with edges traversable in both di-
rections. A {−1, 0, 1} edge incidence vector is associated with each cycle: edges
traversed by the cycle in the right direction get 1 and edges traversed in the
opposite direction get −1. The cycle space is the space generated by these cycle
vectors over Q. Note that the weight of a cycle is simply the sum of the weight
of its edges, independent of the orientation of these edges. Let C = (e1, . . . , ek)
be a cycle in a directed graph and let ei = (ui, ui+1). Then we can write
C =

∑k
i=1 SP(s, ui) + ei + SP(ui+1, s) where uk+1 = u1, since SP(s, ui) can-

cels SP(ui, s). Note that SP(a, b) for us here need not be a directed path - it is
a shortest path in the underlying undirected graph between a and b. However,
the incidence vector of this path in the directed graph would contain −1’s cor-
responding to edges which are traversed in the reverse direction. All the steps in
the above construction go through for directed minimum cycle bases too and we
have a collection of O(m

√
n log n) cycles which is a superset of a 2-approximate

directed minimum cycle basis.
However, when we do Gaussian elimination, we are no longer over F2 and so

the numbers could grow large. So we can no longer claim that the time taken for

Gaussian elimination is O(mω
√

n log n). But if we choose a prime p uniformly
at random from a collection of small primes and do the arithmetic in Gaussian
elimination modulo p, then our cost remains O(mω

√
n log n) and we will show

that with high probability we determine the cycles of a 2-approximate MCB.

Arithmetic modulo p. The problem with doing arithmetic modulo any number p
is that the least weight N linearly independent cycles in our collection could turn
out to be linearly dependent modulo p. That is, the determinant of the N × N
matrix M , defined by incidence vectors of these N cycles, is a multiple of p. In
that case, our algorithm is not guaranteed to return a 2-approximate minimum
cycle basis.

Now we will use the property that all the entries in the matrix M are −1, 0, 1,
to show a bounded error when p is a prime chosen uniformly at random from
a collection P = {p1, . . . , pN2} of N2 distinct primes, where each pi ≥

√
N . It

follows from Hadamard’s inequality that the absolute value of the determinant
of M is at most NN/2, since each of the N rows is a vector in {−1, 0, 1}N . Thus,
at most N elements of P can be divisors of det(M). So the probability that a
random element of P divides det(M) is ≤ N/N2 = 1/N . So with probability
1 − 1/N , arithmetic modulo p yields the least weight N linearly independent
cycles from the collection of O(m

√
n log n) cycles.

The value of π(r), the number of primes less than r, is given by r/6 log r ≤
π(r) ≤ 8r/log r [22]. So all the primes p1, . . . , pN2 are Õ(N2), and computing
them takes Õ(N2) time using a sieving algorithm. Arithmetic modulo p ensures
that all numbers are Õ(N2) and we can assume that arithmetic on O(log N) bit
numbers takes O(1) time. It follows that addition, subtraction and multiplication
in Zp can be implemented in unit time since p is Õ(N2). However, we also need
to implement division efficiently. Once p is chosen, we compute the multiplicative
inverses of all elements in Z∗

p by the extended Euclid’s gcd algorithm by solving
ax = 1(modp) for each a ∈ Z∗

p. This takes time O(log p) for each element and
hence O(p log p) = Õ(N2) for all the elements. Thus, we have shown the following
theorem.

Theorem 6. A 2-approximate minimum cycle basis can be computed with high
probability in expected time O(mω

√
n log n) in an directed graph G with n ver-

tices, m edges and non-negative edge weights.

5 Conclusions

In this paper we design faster algorithms for computing approximate minimum
cycle basis of undirected graphs. To the best of our knowledge it is the first time
that sparse cycle bases with a guarantee are computed in o(mω) time. Our tech-
niques extend also to the directed version of the minimum cycle basis problem
in which the base field is Q instead of F2. We present very fast approximate
algorithms for this version as well.

References

1. Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs.
Uspekhi Mat. Nauk 19 (1964) 171–175

2. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph.
SIAM Journal of Computing 16 (1987) 359–366

3. de Pina, J.: Applications of Shortest Path Methods. PhD thesis, University of
Amsterdam, Netherlands (1995)

4. Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum
cycle basis of a regular matroid. In: SWAT. (2002)

5. Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs.
Algorithmica 40(1) (2004) 51–62

6. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: A faster algorithm for
minimum cycle basis of graphs. In: 31st International Colloquium on Automata,
Languages and Programming, Finland. (2004) 846–857

7. Huber, M.: Implementation of algorithms for sparse cycle bases of
graphs. Technical report, Technische Universität München (2002) http://www-
m9.ma.tum.de/dm/cycles/mhuber.

8. Kreisbasenbibliothek CyBaL. http://www-m9.ma.tum.de/dm/cycles/cybal (2004)
9. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. In:

WEA. Volume 3503 of LNCS. (2005) 32–43
10. Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. John Wiley

& Sons, New York (1981)
11. Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure

for the structural analysis of skeletal structures by the flexibility method. In: Proc.
Royal Society of London Series A. Volume 350. (1976) 61–70

12. Gleiss, P.M.: Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and
Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der
Universität Wien (2001)

13. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete
one-forms. Computers and Graphics (2006) to appear.

14. Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions.
Journal of Symb. Comput. 9 (1990) 251–280

15. Kavitha, T., Mehlhorn, K.: A polynomial time algorithm for minimum cycle basis
in directed graphs. In: STACS 2005. Volume 3404 of LNCS. (2005) 654–665

16. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of
a directed graph. Inf. Process. Lett. 94(3) (2005) 107–112

17. Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for
minimum cycle basis in directed graphs. In: Proceedings of ICALP. Volume 4051
of LNCS. (2006) 250–261

18. Kavitha, T.: An Õ(m2n) randomized algorithm to compute a minimum cycle basis
of a directed graph. In: Proceedings of ICALP, LNCS 3580. (2005) 273–284

19. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1) (1993) 81–100

20. Thorup, M., Zwick, U.: Approximate distance oracles. In: ACM Symposium on
Theory of Computing. (2001) 183–192

21. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM
Symposium on Parallel Algorithms and Architecture. (2001) 1–10

22. Apostol, T.M.: Introduction to Analytic Number Theory. Springer-Verlag (1997)

