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Abstract. We investigate the following problem: given a set of jobs and a set of
people with preferences over the jobs, what is the optimal way of matching people
to jobs? Here we consider the notion of popularity. A matching M is popular if
there is no matching M′ such that more people prefer M′ to M than the other way
around. Determining whether a given instance admits a popular matching and, if
so, finding one, was studied in [3]. If there is no popular matching, a reasonable
substitute is a matching whose unpopularity is bounded. We consider two mea-
sures of unpopularity - unpopularity factor denoted by u(M) and unpopularity
margin denoted by g(M). McCutchen recently showed that computing a match-
ing M with the minimum value of u(M) or g(M) is NP-hard, and that if G does
not admit a popular matching, then we have u(M)≥ 2 for all matchings M in G.

Here we show that a matching M that achieves u(M) = 2 can be computed in
O(m
√

n) time (where m is the number of edges in G and n is the number of
nodes) provided a certain graph H admits a matching that matches all people. We
also describe a sequence of graphs: H = H2,H3, . . . ,Hk such that if Hk admits
a matching that matches all people, then we can compute in O(km

√
n) time a

matching M such that u(M) ≤ k− 1 and g(M) ≤ n(1− 2
k ). Simulation results

suggest that our algorithm finds a matching with low unpopularity in random
instances.

1 Introduction

The problem of assigning people to positions is a very common problem that
arises in many domains. The input here is a bipartite graph G = (A ∪P ,E),
where nodes on one side of the bipartite graph rank edges incident on them
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in an order of preference, possibly involving ties. That is, the edge set E is
partitioned into E1 ∪̇E2 . . . ∪̇Er. We call A the set of applicants, P the set of
posts, and Ei the set of edges with rank i. If (a, p) ∈ Ei and (a, p′) ∈ E j with
i < j, we say that a prefers p to p′. If i = j, then a is indifferent between p and
p′. The ordering of posts adjacent to a is called a’s preference list. The problem
is to assign applicants to posts that is optimal with respect to these preference
lists.

This problem has been well-studied in economics literature, see for example
[1, 19, 21]. It models some important real-world markets, including the alloca-
tion of graduates to training positions [8], families to government-owned hous-
ing [20], and mail-based DVD rental systems such as NetFlix. Instances of these
markets can be regarded as restricted stable marriage instances [4, 7], in which
members of one side of the market (posts) are indifferent between members of
the other side of the market (applicants).

A matching M of G is a subset of E , such that no two edges of M share a
common endpoint. Various criteria have been proposed to measure the “good-
ness” of a matching. For example, a matching is Pareto-optimal [2, 1, 19] if no
applicant can improve his/her allocation (say by exchanging posts with another
applicant) without requiring some other applicant to be worse off. There are
many Pareto-optimal matchings and so we need stronger definitions: a match-
ing is rank-maximal [10] if it allocates the maximum number of applicants to
their first choice, and then subject to this, the maximum number to their second
choice, and so on. Such a matching has the lexicographically maximum signa-
ture (n1,n2, . . .) where ni is the number of people assigned to positions they re-
spectively rank i-th. A matching is maximum utility if it maximizes ∑(a,p)∈M ua,p,
where ua,p is the utility of allocating post p to applicant a. Note that ua,p would
be a function of the numerical rank that a associates with the edge (a, p). Thus
most of these criteria use the actual values or numerical ranks expressed by ap-
plicants in their preference lists. As the preference lists only express “relative”
ranking of the options, measuring the optimality of a matching as a function of
the actual numerical ranks may not be the correct approach. One criterion that
does not use numerical ranks is popularity. We define it below.

We say that an applicant a prefers matching M′ to M if (i) a is matched in
M′ and unmatched in M, or (ii) a is matched in both M′ and M, and a prefers
M′(a) to M(a) (where M(a),M′(a) are the posts that a is matched to in M and
in M′, respectively).

Definition 1. M′ is more popular than M, denoted by M′ �M, if the number of
applicants that prefer M′ to M is greater than the number of applicants prefer-
ring M to M′. A matching M∗ is popular if there is no matching M′ that is more
popular than M∗.
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Popular matchings can be considered stable in the sense that an applicant
majority vote cannot force a migration to another matching. Also, as mentioned
earlier, the notion of popularity does not use numerical ranks expressed by the
applicants but only their relative ranks. Based on these two properties, popular
matchings is one of the optimal ways to assign applicants to jobs bearing their
preferences in mind.

However, a popular matching need not always exist, thus popular match-
ings do not provide a complete answer to the problem of assigning applicants
to posts. Figure 1 contains an example instance in which A = {a1,a2,a3},
P = {p1, p2, p3}, and each applicant prefers p1 to p2, and p2 to p3. Consider the
three symmetrical matchings M1 = {(a1, p1), (a2, p2), (a3, p3)}, M2 = {(a1, p3),
(a2, p1), (a3, p2)} and M3 = {(a1, p2), (a2, p3), (a3, p1)}. None of these match-
ings is popular, since M1 ≺ M2, M2 ≺ M3, and M3 ≺ M1. In fact, it turns out
that this instance admits no popular matching, the problem being that the more
popular than relation is not transitive.

a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

Fig. 1. An instance for which there is no popular matching.

Given a bipartite graph G(A ∪P ,E) with a preference list associated with
each applicant, the popular matching problem is to determine if the input in-
stance admits a popular matching, and to find such a matching, if one exists.
The first polynomial-time algorithms for this problem were given in [3]: when
there are no ties in the preference lists, the problem can be solved in O(n+m)
time, where n = |A ∪P | and m = |E |, and more generally, the problem can be
solved in O(m

√
n) time. The main drawback of the notion of popular match-

ings is that such matchings may not exist in the given graph. In this situation, it
would be desirable if we can find some good substitutes for a popular matching.
This motivates our paper.

1.1 Problem Definition

In this paper, we assume that the input instance G does not admit a popular
matching. Our goal is to compute a least unpopular matching. We use two cri-
teria given by McCutchen [16] to measure the unpopularity of a matching. We
first need the following definitions.
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Given any two matchings X and Y in G, define φ(X ,Y ) = the number of
applicants that prefer X to Y . Let us define the following functions to compare
two matchings X and Y :

∆(X ,Y ) =

{
φ(Y,X)/φ(X ,Y ) if φ(X ,Y )> 0
∞ otherwise.

and δ(X ,Y ) = φ(Y,X)−φ(X ,Y ).

Using the above functions, we can define the unpopularity factor of a match-
ing M. Let M denote the set of all matchings in G and let Z denote the set of
matchings M̃ such that φ(M,M̃) = φ(M̃,M) = 0.

u(M) = max
M′:M′∈M and M′ /∈Z

∆(M,M′).

The unpopularity margin of a matching M is defined as:

g(M) = max
M′:M′∈M

δ(M,M′).

The functions u(·) and g(·) were first introduced by McCutchen, who also
gave polynomial time algorithms to compute u(M) and g(M) for any given
matching M. A matching M is popular if and only if u(M) ≤ 1 and g(M) = 0.
When G does not admit popular matchings, we are interested in computing a
matching M with a low value of u(M). Suppose u(M)≤ 2. Then such a match-
ing can be considered “reasonably popular” in a model where we say that a
matching M′ beats another matching M only when the number of applicants
who prefer M′ to M is more than twice the number of applicants who prefer M
to M′. If u(M)≤ 2, then no other matching can beat M by the above rule. Note
that all the 3 matchings M1,M2,M3 described in Figure 1 have their u value
equal to 2 and their g value equal to 1. Let us now define a least unpopular
matching.

Definition 2. A matching M that achieves the minimum value of u(M) among
all the matchings in G is defined as a least unpopularity factor matching in
G. Similarly, a matching that achieves the minimum value of g(M) among all
matchings in G is defined as a least unpopularity margin matching in G.

McCutchen recently showed that computing either a least unpopularity fac-
tor matching or a least unpopularity margin matching is NP-hard. He also showed
that the unpopularity factor of any matching is always an integer. Thus when G
does not admit a popular matching, the best matching in terms of the unpopu-
larity factor that one can hope for in G is a matching M that satisfies u(M) = 2.
Complementing McCutchen’s results, we have the following new results here.
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• A least unpopularity factor matching can be computed in O(m
√

n) time pro-
vided a certain graph H admits an A-complete matching. (An A-complete
matching means all nodes in A are matched.) Such a matching M that we
compute in H satisfies u(M) = 2.
• We also show a more general result. We construct a sequence of graphs:

H = H2,H3, . . . ,Hk, . . . and show that if Hk admits an A-complete matching,
then we can compute in O(km

√
n) time a matching M such that u(M)≤ k−1

and g(M)≤ n(1− 2
k ).

• We ran our algorithm on random graphs using a similar setup as in [3]. In our
simulation instances we observe, that Hk admits an A-complete matching
for values k≤ 4. Thus, in our generated instances our algorithm computes a
matching M whose unpopularity factor is a number ≤ 3 and whose unpop-
ularity margin can be upper bounded by n/2. We also give a probabilistic
analysis to upper bound the performance of our algorithm.
We continue our simulations with instances which are “highly correlated”.
Highly correlated instances are those in which applicants have an almost
identical preference list. These instances appear more difficult for our new
algorithm, which computes matchings with significantly higher unpopular-
ity than in the random case.

1.2 Background and Related Results

The notion of popular matchings was first introduced by Gärdenfors [5] in the
context of the stable marriage problem [4]. It is well known that every stable
marriage instance admits a weakly stable matching [9] (one for which there is no
pair who strictly prefer each other to their partners in the matching). In fact, there
can be an exponential number of weakly stable matchings, and so Gärdenfors
considered the problem of finding one with additional desirable properties, such
as popularity. Gärdenfors showed that when preference lists are strictly ordered,
every stable matching is popular. He also showed that when preference lists
contain ties, there may be no popular matching.

When only one side has preferences, Abraham et al. [3] gave polynomial
time algorithms to find a popular matching, or to report none exists. Recently,
Mahdian [14] showed that a popular matching exists with high probability, when
(i) preference lists are randomly constructed, and (ii) the number of posts is a
factor of α ≈ 1.42 larger than the number of applicants. He in fact showed a
phase transition at α, that is, if the number of posts is smaller than α times the
number of applicants, then with high probability popular matchings do not exist.

Manlove and Sng [15] generalized the algorithms of [3] to the case where
each post has an associated capacity, the number of applicants that it can accom-
modate. (They described this in the equivalent context of the house allocation
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problem.) They gave an O(
√

Cn1 +m) time algorithm for the no-ties case, and
an O((

√
C+n1)m) time algorithm when ties are allowed, where n1 is the num-

ber of applicants, m, as usual, is the total length of all preference lists, and C
is the total capacity of all of the posts. While the problem of deciding if an in-
put instance with fixed capacities admits a popular matching or not is solvable in
polynomial time, Kavitha and Nasre [13] showed that this problem with variable
capacities is NP-hard. More precisely, they showed that given G = (A ∪P ,E)
that does not admit a popular matching, the problem of deciding if by increasing
the capacities of some posts from 1 to 2, the resulting graph admits a popular
matching or not is NP-hard.

In [18] Mestre designed an efficient algorithm for the weighted popular
matching problem, where each applicant is assigned a priority or weight, and
the definition of popularity takes into account the priorities of the applicants. In
this case his algorithm for the no-ties version has O(n+m) complexity, and for
the version that allows ties, the complexity is O(min(k

√
n,n)m), where k is the

number of distinct weights assigned to applicants.
Assume that there is no tie in the preferences, Kavitha and Nasre [12] de-

signed an O(n2 +m) algorithm for finding a popular matching fulfilling various
optimality conditions like fairness, rank-maximality; McDermid and Irving [17]
improved the time complexity to O(n logn + m). They also showed that the
problem of computing a minimum weight popular matching can be solved in
O(n+m) time.

Though popular matchings need not always exist, Kavitha et al. [11] showed
that every instance admits a probability distribution over matchings, also called
a mixed matching, that is popular. For mixed matchings P and Q, define φ(P,Q)
to be the expected number of applicants that prefer P to Q. A mixed matching P
is popular if it satisfies φ(P,Q)≥ φ(Q,P) for any mixed matching Q. They also
showed a polynomial time algorithm for computing a popular mixed matching.

Organization of the paper. In Section 2 we describe the popular matching al-
gorithm from [3], which is the starting point of our algorithm. We then describe
McCutchen’s algorithm to compute the unpopularity factor of a given matching.
In Section 3 we describe our algorithm and bound its unpopularity factor and
unpopularity margin. In Section 4 we report our experimental results. Section 5
presents a probabilistic analysis of our algorithm.

2 Preliminaries

In this section we first review the algorithmic characterization of popular match-
ings given in [3]. McCutchen introduced the idea of Posts-Graph in order to
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compute the unpopularity factor of a matching. Since the proof of our main
theorem relies on the concept of Posts-Graph, we also review McCutchen’s al-
gorithm to compute the unpopularity factor of a matching.

For exposition purposes, as was done in [3], we create a unique strictly-
least-preferred post l(a) for each applicant a. In this way, we can assume that
every applicant is matched, since any unmatched applicant a can be paired with
l(a). From now on, matchings are always A-complete. Also, without loss of
generality, we assume that preference lists contain no gaps, i.e., if a is incident
to an edge of rank i, then a is incident to an edge of rank i−1, for all i > 1.

Let H1 = (A ∪P ,E1) be the graph containing only rank-one edges. Then
[3, Lemma 3.1] shows that a matching M is popular in G only if M ∩E1 is a
maximum matching of H1. Maximum matchings have the following important
properties, which we use throughout the rest of the paper.

M∩E1 defines a partition of A∪P into three disjoint sets: a node u∈A∪P
is even (resp. odd) if there is an even (resp. odd) length alternating path in H1
(w.r.t. M∩E1) from an unmatched node to u. Similarly, a node u is unreachable
if there is no alternating path from an unmatched node to u. Denote by N , O
and U the sets of even, odd, and unreachable nodes, respectively. The follow-
ing lemma gives the Gallai-Edmonds decomposition [6] which is a well known
result in matching theory.

Lemma 1 (Gallai-Edmonds Decomposition). Let N , O and U be the sets of
nodes defined by H1 and M∩E1 above. Then

(a) N , O and U are pairwise disjoint, and independent of the maximum match-
ing M∩E1.

(b) In any maximum matching of H1, every node in O is matched with a node in
N , and every node in U is matched with another node in U. The size of a
maximum matching is |O|+ |U|/2.

(c) No maximum matching of H1 contains an edge between a node in O and a
node in O ∪U. Also, H1 contains no edge between a node in N and a node
in N ∪U.

Using this node partition, we make the following definitions: for each appli-
cant a, f (a) is the set odd/unreachable posts amongst a’s most-preferred posts.
Also, s(a) is the set of a’s most-preferred posts amongst all even posts. We refer
to posts in ∪a∈A f (a) as f -posts and posts in ∪a∈A s(a) as s-posts. We note that
this definition of f (a) is different from the original definition as in [3]. By our
definition, the set f (a) can be empty for some applicant a but s(a) 6= /0 for any
a, since l(a) is always even. Also note that the set of f -posts and s-posts are
disjoint. We remark that there may be posts in P that are neither f -posts nor
s-posts. The next theorem characterizes the set of all popular matchings.
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Theorem 1 ([3]). A matching M is popular in G iff (i) M ∩E1 is a maximum
matching of H1 = (A∪P ,E1), and (ii) for each applicant a, M(a)∈ f (a)∪s(a).

Figure 2 contains the algorithm from [3], based on Theorem 1, for solving
the popular matching problem.

Popular-Matching(G = (A ∪P ,E))
Construct the graph G′ = (A ∪P ,E ′), where E ′ = {(a, p) : a ∈ A and p ∈ f (a)∪ s(a)}.
Construct a maximum matching M of H1 = (A ∪P ,E1).

//Note that M is also a matching in G′.
Remove any edge in G′ between a node in O and a node in O ∪U.

//No maximum matching of H1 contains such an edge.
Augment M in G′ until it is a maximum matching of G′.
Return M if it is A-complete, otherwise return “no popular matching”.

Fig. 2. An O(
√

nm)-time algorithm for the popular matching problem (from [3]).

2.1 McCutchen’s algorithm

Here we outline the algorithm given by McCutchen for computing the unpopu-
larity factor of a matching. Given a matching M, the idea is to find a series of
promotions (of applicants) at the cost of demoting one applicant. The longest
such promotion path determines the unpopularity factor of the particular match-
ing. Such a path can be discovered by building a directed weighted graph on
the set of posts, called the Posts-Graph GP . The vertices of GP represent all
the posts P in the original graph. We add edges into GP based on the follow-
ing rules: (let M(p) denote the applicant to which post p is matched to in the
matching M)

– an edge with weight −1 is directed from post pi to p j if M(pi) prefers p j to
pi.

– an edge with weight 0 is directed from post pi to p j if M(pi) is indifferent
between pi and p j.

Note that there is no edge from pi to p j if M(pi) prefers pi to p j. The series
of promotions mentioned above is a negative weight path in this graph. To find
the longest negative weight path in this graph, we add a dummy vertex s with 0
weight edges from s to all posts. An algorithm which finds shortest paths from
source s to all posts will give the longest negative weight path in GP . Existence
of a negative weight cycle implies that there exists a promotion sequence with-
out any demotion and hence the unpopularity factor of the matching is ∞. Let
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us assume that no negative weight cycles exist. Then all posts have a 0 or finite
length negative weight shortest path from the source. The post whose distance
from the source is the “most negative” determines the unpopularity factor of the
matching M. For details of the proof of correctness, refer to [16].

3 Our algorithm

In this section we describe a greedy strategy to compute a matching of G, whose
unpopularity factor and margin can be bounded. Our algorithm is iterative and
in every iteration it constructs a graph Hi and a maximum matching Mi in Hi.
We show that if Mi is an A-complete matching, then u(Mi)≤ i−1 and g(Mi)≤
n(1−2/i).

We will first give some intuition before we formally describe our algorithm.
Recall that the popular matching algorithm first finds a maximum cardinality
matching M1 in the graph H1 (whose edge set is the set of all rank 1 edges). The
algorithm then identifies all even applicants/posts using the Gallai-Edmonds de-
composition and adds the edges (a, p) where a is even and p∈ s(a) to the pruned
graph H1 (all rank 1 edges between an odd node in H1 and a node that is odd
or unreachable in H1 are removed from H1). Note that each such edge (a, p) is
new to H1, that is, such an edge is not already present in H1 since by Gallai-
Edmonds decomposition (part (iii)), there is no edge between two even vertices
of H1, and here both a and p are even in H1. In this new graph, call it H2, M1 is
augmented to a maximum cardinality matching M2. In case M2 is A-complete,
we declare that the instance admits a popular matching. Otherwise no popular
matching exists.

The idea of our algorithm here is an extension of the same strategy. Since we
are considering instances that do not admit a popular matching, M2 found above
will not be A-complete. In this case, we go further and find the Gallai-Edmonds
decomposition of nodes in H2 and identify nodes that are even in H1 and in H2.
A node that is odd or unreachable in either H1 or in H2 will always be matched
by a maximum cardinality matching in H2 that is obtained by augmenting a
maximum cardinality matching in H1. Hence the nodes that are not guaranteed
to be matched by such a matching M2 are the applicants and posts that are even
in both H1 and H2.

So let us now add the edges (a, p) to H2 where a and p are nodes that are
even in both H1 and H2 and among all posts that are even in both H1 and H2,
p is a most preferred post of a. We would again like to point out that such
an edge (a, p) did not exist in either H1 or in H2, since a and p were even
in H1 and in H2. We also prune H2 to remove edges that are contained in no
maximum cardinality matching of H2 and call the resulting graph H3. We then
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augment M2 to get M3 and continue the same procedure till we finally get an A-
complete matching Mi. Note that, for any applicant a, its unique last-resort post
l(a) remains even till the edge (a, l(a)) gets added to our graph. Further, once
the edge (a, l(a)) is added, applicant a becomes odd or unreachable and hence
gets marked. This ensures that our iterative algorithm is guaranteed to halt and
output an A-complete matching.

We would now like to contrast our approach above with the approach used
in the algorithm for rank-maximal matchings [10]. In the i-th iteration the algo-
rithm for rank-maximal matchings would add edges from an applicant a that is
even in each of the previous iterations to a post p that was even in each of the
previous iterations only if p was a rank i post in a’s preference list. On the other
hand, our algorithm will add an edge from an applicant a that is even in each of
the previous iterations to a post q that is even in each of the previous iterations if
q is a’s most preferred post among all such posts. Note that the rank of the edge
(a,q) is not necessarily i. Thus the absolute ranks in the preference lists are not
important and instead, what is important here is the relative ordering of posts
in each applicant’s preference list. Thus unlike in the rank-maximal matching
algorithm, in our algorithm every applicant a that has been even in all previous
iterations will have some new edge incident on it in the i-th iteration.

We give an example below to contrast rank-maximal matchings with the
matching computed by our algorithm. Our instance consists of n applicants
{a1,a2, · · · ,an/2,b1,b2, · · · ,bn/2}. The preference lists of applicants a1, · · · ,an/2
are as shown in Figure 3. The remaining n/2 applicants, b1, . . . ,bn/2 have pref-
erence lists of length 1 each. The preference list of bi consists of post qi, for
1 ≤ i ≤ n/2. Note that we did not add the last resort posts here as they play no
role in this example. This instance admits a popular matching (a matching with
unpopularity factor = 1), however the unpopularity factor of the rank-maximal
matching in this instance is n/2−1, as described below.

a1 : p1 p2
a2 : p1 p2 p3
a3 : p1 q1 p3 p4
a4 : p1 q1 q2 p4 p5
a5 : p1 q1 q2 q3 p5 p6
a6 : p1 q1 q2 q3 q4 p6 p7

:
:

an/2−1 : p1 q1 · · · qn/2−3 pn/2−1 pn/2
an/2 : p1 q1 · · · qn/2−1 pn/2

Fig. 3. The preference lists of the first n/2 applicants in our instance.
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As popular matchings and rank-maximal matchings are maximum-cardinality
matchings on rank 1 edges, these matchings match each bi to qi. Note that
f (ai) = p1 for all i, while s(ai) = pi for 2 ≤ i ≤ n/2. Thus the matching that
matches each ai to pi for each 1≤ i≤ n/2 is popular.

A rank-maximal matching, on the other hand, would match an/2 to p1 to
avoid the edge (an/2, pn/2) of rank n/2+ 1 and match each ai to pi+1 for 1 ≤
i ≤ n/2− 1. The signature of this matching is (n/2+ 1,1, . . . ,1,1), which is
lexicographically better than the signature of the popular matching, which is
(n/2+ 1,1, . . . ,1,0,1). However the rank-maximal matching has a promotion
path 〈pn/2, pn/2−1, . . . , p1〉 of length n/2−1 by promoting ai from pi+1 to pi, for
1 ≤ i ≤ n/2−1, and demoting an/2 to pn/2. This makes the n/2−1 applicants
a1, . . . ,an/2−1 better off while only an/2 is worse off. Thus even in instances that
admit popular matchings, a rank-maximal matching can have an unpopularity
factor as large as n/2−1.

3.1 The algorithm

We present our algorithm (which we call Bounded-Unpop in the rest of the
paper) here. Our algorithm starts with all nodes (applicants and posts) unmarked
and ends when every applicant is marked, that is, when an A-complete matching
is found. Figure 4 describes our algorithm.

Initialize i = 0 and let all nodes be unmarked.
Let H0 = (A ∪P , /0) and M0 = /0.
While Mi is not A-complete do:

1. Add edges (a, p) to Hi where (i) a is unmarked, (ii) p is unmarked and (iii) p is a’s
most preferred post among all unmarked posts. Call the resulting graph Hi+1.

2. Augment Mi in Hi+1 to get a new matching Mi+1 which is a maximum cardinality
matching of Hi+1.

3. i = i+1.
4. Partition the nodes of A ∪P into three disjoint sets: Ni,Oi,Ui.

– Ni and Oi consists of nodes that can be reached in Hi from an unmatched node
by an even/odd length alternating path with respect to Mi, respectively.
– Ui consists of nodes that are unreachable by an alternating path from any un-
matched node in Hi.

5. Mark all unmarked nodes in Oi∪Ui.
6. Delete all edges of Hi between a node in Oi and a node in Oi∪Ui

Return Mi.

Fig. 4. Algorithm Bounded-Unpop : An O(km
√

n)-time algorithm for finding an A–complete
matching.

11



Note that once a post becomes odd or unreachable in any iteration, it gets
marked and such a post cannot get any new edges incident upon it in the sub-
sequent iterations. We use this to show that if we find an A-complete matching
in the graph Hk, then the unpopularity factor of this matching is bounded by
k−1. The running time of our algorithm is determined by the least k such that
Hk admits an A-complete matching. Since each iteration of our algorithm takes
O(m
√

n) time, the overall running time is O(km
√

n), where k is the least number
such that Hk admits an A-complete matching.

Before we prove our main theorems, we need the following definition. Re-
call that GP is the Posts-Graph described in Section 2.1. Let us partition the
vertices of GP into k layers (corresponding to the k iterations): a post belongs
to a layer t if it gets marked for the first time in iteration t. Also, let posts that
remain even throughout the algorithm (including the k-th iteration) belong to
layer k. Let `(p) denote the layer number of post p in GP . Lemma 2 shows
a very useful property that the above partitioning of vertices of GP achieves.
Recall that if (p,q) is an edge in GP , then Mk(p) likes q at least as much as p.

Lemma 2. There is no edge in GP from a lower layer to a higher layer. More
precisely,

(1) if (p,q) is an edge such that Mk(p) strictly prefers q to p, then `(p)> `(q);
(2) if (p, p′) is an edge such that Mk(p) is indifferent between p and p′, then

`(p)≥ `(p′).

Proof. We first show claim (1). Let (p,q) be an edge in GP such that Mk(p)
strictly prefers q to p. Let p be a post that belongs to layer i. We now show that
q should belong to a layer j such that j < i.

Note that since p got marked in the i-th iteration, no new edges are ever
added to p in any of the subsequent iterations. Further, since the edge (Mk(p), p)
exists in the graph Hk, we can conclude that in some iteration t ≤ i, post p was
the most preferred unmarked post for Mk(p). Hence all the posts that Mk(p)
strictly prefers to p were already marked before the t-th iteration. That is, these
posts belong to layers j such that j < t ≤ i. Thus if (p,q) is an edge such that
Mk(p) strictly prefers q to p, then q belongs to layer j, where j < i. This proves
claim (1).

We now prove claim (2). Let (p, p′) be an edge such that Mk(p) is indifferent
between p and p′ and assume for the sake of contradiction that p belongs to layer
i and p′ belongs to layer j where j > i. Since p gets marked in the i-th iteration,
the edge (Mk(p), p) must have been added in some iteration t such that t ≤ i. The
posts p and p′ have the same rank in Mk(p)’s preference list. Thus in iteration
t, when the edge (Mk(p), p) was added to create Ht , the edge (Mk(p), p′) also
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was added to Ht . If not, it implies that the post p′ was already marked and we
are done.

Let us consider iteration i. The vertex p gets marked in the i-th iteration, so
p ∈ Oi∪Ui. Since we delete all edges between vertices in Oi∪Ui and vertices
in Oi and as the edge (Mk(p), p) does not get deleted from Hi (since this edge is
used by Mk), it follows that Mk(p) ∈Ni∪Ui.

Note that the edge (Mk(p), p′) was present in Ht and it has to remain in Hi as
p′ remains an even vertex till the j-th iteration where j > i, thus no edge incident
to p′ in our graph gets removed in any earlier iteration. This gives the required
contradiction as there cannot be an edge in Hi between Mk(p) ∈ Ni ∪Ui, and
p′ ∈ Ni - such an edge contradicts Gallai-Edmonds decomposition part (iii).
Thus p′ has to get marked in either iteration i or in an earlier iteration. This
proves claim (2). ut

The proof of the main theorem, stated below, now follows easily from the
above lemma.

Theorem 2. If our algorithm finds an A-complete matching Mk in Hk, then
u(Mk)≤ k−1.

Proof. Recall that the unpopularity factor of Mk is the “most negative” distance
of a vertex (post) in GP from the dummy source s as described in Section 2
when we assign a weight of −1 to each edge (p,q) where Mk(p) strictly prefers
q to p and a weight of 0 to each edge (p, p′) where Mk(p) is indifferent between
p and p′. All the edges (s, p) have weight 0.

Note that any path in GP between 2 posts can never go from a lower num-
bered layer to a higher numbered layer (by Lemma 2) as negative weight edges
always go from a higher numbered layer to a lower numbered layer and 0 weight
edges go either within the same layer or to a lower layer. As there are only k lay-
ers, there can be at most k−1 negative weight edges in any path between 2 posts.
Thus it follows that the most negative distance in GP from s cannot be less than
−(k−1), in other words, u(Mk)≤ k−1. ut

Theorem 3. If our algorithm finds an A-complete matching Mk in Hk, then
g(Mk)≤ n(1− 2

k ).

Proof. Let Mk be the A-complete matching produced by our algorithm after k
iterations and let M be any other A-complete matching in G. Now let us con-
struct a weighted directed graph HP similar to the posts graph GP . The vertices
of HP are all posts p such that Mk(p) 6= M(p). For every applicant a we have
a directed edge from Mk(a) to M(a) with a weight of −1,0,+1 if a considers
M(a) better than, the same as or worse than Mk(a), respectively. Any post p that
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does not belong to HP is matched to the same applicant in Mk as well as in M
and hence the corresponding applicant does not contribute to the unpopularity
margin. Furthermore, it is clear that the sum of weights of all edges in HP gives
the negative of the unpopularity margin by which M dominates Mk.

First note that HP is a set of disjoint paths and cycles. This is because, HP
can equivalently be constructed from S = Mk⊕M by striking off applicants and
giving appropriate directions and weights to edges. Thus a path in S continues
to be a path in HP although it may no longer be of even length. The same is
true for cycles also. If a path or cycle consists of only 0 weight edges, then we
can drop such a cycle/path from the graph, since these edges do not contribute
to the unpopularity margin. In addition, note that any cycle or path cannot be
composed of only negative and zero weight edges, otherwise the unpopularity
factor of Mk is ∞, a contradiction to Theorem 2. Hence we can assume that every
cycle or path contains at least one positive edge.

Let ρ be any path or cycle in HP . Furthermore, let α and β be the numbers
of −1’s and +1’s in ρ respectively. We define the function:

frac-margin(ρ) =
α−β

number of edges in ρ

Let us try to bound frac-margin(ρ) for each ρ. For the sake of simplicity, let
us first assume that the preference lists are strict. So there are only ±1 weight
edges in HP . Thus frac-margin(ρ) = (α− β)/(α+ β). Since the unpopularity
factor of Mk is bounded by k− 1, it is easy to see that the unpopularity factor
of ρ is also bounded by k−1 (refer to [16] for a proof), implying α/β≤ k−1.
Thus β/(α+β)≥ 1/k, and α/(α+β)≤ 1−1/k. Hence frac-margin(ρ) for any
path or cycle ρ is at most 1− 2/k. The contribution of ρ towards δ(Mk,M) is
(number of edges in ρ)·(frac-margin(ρ)). This is at most nρ(1−2/k) where nρ

is the number of edges in ρ. Since a unique applicant a is associated with each
edge (Mk(a),M(a)) of HP , it follows that ∑nρ≤ n. Thus δ(Mk,M)≤ n(1−2/k)
where M is any matching.

The proof for the case with ties also follows from the above argument.
Since 0 weight edges in ρ do not affect the numerator of frac-margin(ρ) and
only increase the denominator of frac-margin(ρ), it is easy to see that frac-
margin(ρ) for a path or cycle ρ with 0 weight edges is dominated by frac-
margin(ρ′) where ρ′ is obtained from ρ by contracting 0 weight edges. Thus
frac-margin(ρ) ≤ 1− 2/k and thus δ(Mk,M) ≤ n(1− 2/k) where M is any
matching. Thus maxM′δ(Mk,M)≤ n(1−2/k). ut

Corollary 1. Let G be a graph that does not admit a popular matching. If our
algorithm produces an A-complete matching M in H3, then M is a least unpop-
ularity factor matching in G.
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Proof. It follows from Theorem 2 that if our algorithm produces an applicant
complete matching M in H3, then u(M) ≤ 2. McCutchen [16] showed that the
unpopularity factor of any matching is always an integer. Thus if G admits no
popular matching, then the lowest value of u(·) we can hope for is 2. Since
u(M)≤ 2, it follows that this is a least unpopularity factor matching. ut

4 Experimental Results

4.1 Random Instances

In this section we present simulation results. For the generated random instances
our algorithm is able to find a matching with small unpopularity.

We follow the setting used in [3] so that our experimental results are com-
parable to those reported in [3]. The number of applicants and posts are equal
(denoted by n) and preference lists have the same length l. Existence of ties is
characterized by a single parameter t which denotes the probability of an entry
in the preference list to be tied with its predecessor.

Table 1 contains simulation results for random graphs with n = 100 and
n = 500 for different values of parameters l and t. The table shows the number
of instances (out of 1000 instances) that finish in some particular round of the
execution. Round 2 means that the instance has a popular matching. It is easy
to observe that the difficult cases are the ones which are denser (l is large) and
where we only have a few ties (t is small). For a fixed value of l as t decreases the
algorithm requires more rounds until it returns a solution. Note that intuitively
ties make the task of finding a popular matching easier. More precisely, if we
resolve the ties in all preference lists in an arbitrary way, we obtain an instance
without any ties, and every popular matching for this instance is also a popular
matching for the original instance.

We study the situation, where l is large and t small, further by varying the
value of n in order to see whether our observations for n = 100 and n = 500
are valid for larger values of n. Let us remark that Mahdian [14] proved the
following result. If the right side of the bipartite partition is slightly larger than
(≈ 1.42 times) the left side, then the instance has a popular matching with high
probability. Since we try to identify difficult instances we keep the two sides of
the partition equal, which is also the case in many practical situations, where
there are no surplus posts when compared to the number of applicants.

Table 1 shows the number of rounds (again out of 1000) that is required
for different values of n when t = 0.05 and l = n, i.e., the graph is complete
bipartite and only a few ties of very small length exist. The table suggests that
in our generated instances as n increases the probability of terminating at the
smaller rounds decrease and the one of higher rounds increase. However, this
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n = 100
# rounds

l t 2 3 4
0 1000

0.05 4 996
0.2 28 972

10 0.5 471 529
0.8 729 271
1.0 1000
0 988 12

0.05 991 9
0.2 3 991 6

25 0.5 138 861 1
0.8 773 227
1.0 1000
0 950 50

0.05 948 52
0.2 1 978 21

50 0.5 158 832 10
0.8 793 207
1.0 1000
0 943 57

0.05 952 48
0.2 2 973 25

100 0.5 148 836 16
0.8 783 217
1.0 1000

n = 500
# rounds

l t 2 3 4
0 1000

0.05 1000
0.2 1000

10 0.5 176 824
0.8 62 938
1.0 1000
0 1000

0.05 1000
0.2 1000

25 0.5 999 1
0.8 93 907
1.0 1000
0 951 49

0.05 967 33
0.2 994 6

50 0.5 997 3
0.8 104 896
1.0 1000
0 758 242

0.05 828 172
0.2 942 58

100 0.5 989 11
0.8 93 907
1.0 1000

n # rounds
2 3 4

10 585 413 2
25 141 844 15
50 6 962 32

100 952 48
250 896 104
500 820 180
1000 667 333
1500 541 459
2000 320 680

Table 1. The left and middle tables show the number of instances with n = 100 and 500 nodes
respectively (out of 1000 instances) that finish in round number 2 (popular matching), 3 or 4 for
different values of the parameters l and t. The table on the right shows the number of instances
(out of 1000 instances) that finish in round number 2 (popular matching), 3 or 4 for fixed t = 0.05,
l = n and different values of the parameter n. We note that in all tables the sum of the columns in
each row sum up to 1000.

is not accompanied with any increase in rounds larger than 4. Due to memory
constraints we could not continue the experiment for larger values of n. We
will see, however, in the next section instances where rounds higher than 4 are
possible.

Our experimental results on random instances are very promising. The al-
gorithm behaves nicely, far away from a possible large approximation.

4.2 Highly Correlated Instances

We continue our simulation results with some randomly structured instances,
which are very likely to be the most difficult instances. Recall from Figure 1
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Fig. 5. Distribution of number of rounds needed by our algorithm out of 1000 highly correlated
random instances. All have been constructed with n = 100. p is the density parameter, t the
probability of ties. The distribution of rounds is normally distributed around a mean value, which
increases as the tie probability decreases.
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that the instance where each applicant ranks all posts in the same way, has no
popular matching. Since most of the time applicants rank posts based on the
posts’ reputation, such instances are very likely to appear in practice.

The setting here is the following. The number of applicants and posts are
equal, denoted by n. We again choose to have the same number of applicants
and posts due to [14]. Moreover, there is a well known and strict total order
R of posts that each applicant is aware of. Every applicant chooses uniformly
at random a subset of n · p posts where 0 ≤ p ≤ 1 is a density parameter and
initially ranks these n · p posts based on the order R.

After applicants select posts, ties are introduced based on the parameter
0 ≤ t ≤ 1. Ties are introduced as in the previous setting. Each choice p ∈ P
of an applicant a ∈ A (except the first) will be a tie with its predecessor with
probability t.

In this setting, the instance of Figure 1 is constructed with n = 3, order
R = {p1, p2, p3}, p = 1.0 and t = 0.0. The highly correlated instances are con-
siderable more difficult than the random ones, a fact that is supported by our
experiments.

In order to understand the algorithm’s behavior we fix n = 100 and run our
algorithm for different values of the density of the instance p and the probability
of ties t. For each pair of values of p and t we run 1000 instances. Figure 5
plots the distribution of rounds taken by our algorithm when executed 1000
times. As can be seen from the figure, with a high tie probability the algorithm
terminates in a short number of rounds. When ties are less common, rounds
tend to increase. The worst case appears in dense instances with very small tie
probability (just like Figure 1).

It is worth noting that in all cases the number of rounds is normally dis-
tributed around a mean value which shifts depending on the instance parame-
ters.

4.3 Comparison with Rank-Maximal matchings

For the sake of completeness, we compare experimentally our new algorithm
with rank-maximal matchings for the instances of Section 4.1 and Section 4.2.
Here we are interested in comparing unpopularity factors. Let us note, however,
that in a given instance different rank-maximal matchings might have different
unpopularity factors. Thus, we explicitly compare matchings computed by Al-
gorithm Bounded-Unpop and the rank-maximal matchings algorithm presented
in [10].

Comparing these two algorithms, we observed that the algorithm in [10]
computes matchings with a larger unpopularity factor for all instances that we
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random instances
n = 100, l = 100, t = 0.05

unpopularity factor 2 3 4 5 6 7 8
Bounded-Unpop algorithm 959 41

Rank-Maximal algorithm in [10] 26 488 407 74 5
n = 500, l = 500, t = 0.05

unpopularity factor 2 3 4 5 6 7 8
Bounded-Unpop algorithm 833 167

Rank-Maximal algorithm in [10] 177 552 243 26 2

Table 2. Comparison of the unpopularity factor between the matching computed by our new
algorithm and the matchings computed by the rank-maximal matching algorithm in [10]. We
only consider here the most difficult random instances (dense instances with very few ties). The
table shows the distribution of the unpopularity factor out of 1000 random instances, thus the
values of each row sum up to 1000. For example for n = 100, l = 100, t = 0.05 the rank-maximal
matching algorithm in [10] computes a matching with unpopularity factor 3 in 488 instances out
of a 1000.

run. Therefore, we present the results only for the most difficult instances. Ta-
ble 2 contains the distribution (out of 1000 instances) of the unpopularity factor
in random instances that are dense and with very few ties.

Highly correlated instances demonstrate the same behavior. The only differ-
ence is that the unpopularity factor shifts to the right. For n = 100, p = 0.9 and
t = 0.1 the new algorithm computes matchings with unpopularity factor rang-
ing between 31 and 39. At the same time the rank-maximal matchings algorithm
in [10] computes matchings with unpopularity factor between 42 and 56. Sim-
ilarly for n = 500, p = 0.9 and t = 0.1 the new algorithm computes matchings
with unpopularity ranging from 129 and 140 while the algorithm in [10] from
221 to 251.

5 A bound on the number of iterations taken by our algorithm

In this section we give an upper bound on the expected number of iterations
our algorithm takes to compute an A-complete matching on random instances.
In this section, we assume that each preference list is complete and has no ties
in it. Each preference list is a uniform random permutation on the set of all
posts. Let n0 denote both the number of applicants and the number of posts. We
show that the expected number of iterations taken by our algorithm on such an
instance is at most lnn0 +1.

We now describe our random experiment. Each applicant picks a permuta-
tion independently and uniformly at random from the set of all permutations on
the posts. For the sake of analysis, we view the experiment in a slightly different
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manner as was done in [14]. Each applicant picks his/her first choice post inde-
pendently and uniformly at random from the set of posts P = {p1, . . . , pn0}. Let
M1 denote a maximum cardinality matching in the graph where each applicant
adds edges to his/her first choice post as picked above. We use Gallai-Edmonds
decomposition to partition the nodes into O1,U1, and N1. Note that every post
in O1∪U1 has one or more than one applicant adjacent to it. We match each of
these posts to one of its adjacent applicants as follows: every post p ∈ U1 has
a unique applicant a adjacent to it, so we match p to a; every post p′ ∈ O1 has
more than one applicant adjacent to it, we choose an a′ arbitrarily from these
applicants and match p′ to a′. For any p j ∈ P , the post p j is unmatched if no
applicant chose p j. Thus it is analogous to a balls and bins experiment where
we drop each ball uniformly at random into one of the bins. Hence we have:

Pr(p j is unmatched after the first iteration) =
(

1− 1
n0

)n0

≤ 1
e
.

Let n1 be the number of unmatched applicants, we have an equal number
of unmatched posts. In the second iteration each of these n1 unmatched appli-
cants of the first iteration picks his/her most preferred post independently and
uniformly at random from the set of unmatched posts. This is identical to the
first round except that we are now operating with n1 applicants and n1 posts.
We repeat the same step as in the first iteration and continue this experiment
till all applicants (and thus posts) are matched. Note that the number of itera-
tions taken by this experiment to compute an A-complete matching is an upper
bound of the number of iterations taken by Algorithm Bounded-Unpop since
here we arbitrarily assign an even applicant to an odd post, while in Algo-
rithm Bounded-Unpop we make no such prior assignment. If this experiment
finds an A-complete matching in t iterations, then our algorithm certainly finds
an A-complete matching by t iterations, if not sooner.

In general, at the beginning of the i-th iteration, we have ni−1 applicants and
ni−1 posts and each of these ni−1 applicants picks his/her most preferred post
independently and uniformly at random from these ni−1 so far unmatched posts.
Assuming that the post p j is still unmatched at the beginning of the i-th iteration,
we have:

Pr(p j does not get matched in the i-th iteration) =
(

1− 1
ni−1

)ni−1

≤ 1
e
.

Using this, it is easy to see that:

Pr(p j is unmatched in each of iterations 1, . . . , i)≤ 1
ei .
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Thus the probability that p j is unmatched in each of iterations 1, . . . , lnn0 is
at most 1/n0. Hence the expected number of unmatched posts after lnn0 itera-
tions is at most ∑

n0
i=1 1/n0 = 1. Hence the expected number of iterations required

for our random experiment to terminate is bounded by lnn0 + 1. We can con-
clude the following theorem.

Theorem 4. The expected number of iterations taken by Algorithm Bounded-
Unpop to find an A-complete matching in a random instance with n0 applicants
and n0 posts, where each preference list is a uniform random permutation of the
n0 posts, is at most lnn0 +1.

6 Conclusions and open questions

We considered the problem of computing a matching in G = (A ∪P ,E) whose
unpopularity can be bounded. We showed a sequence of graphs H2, . . . ,Hk, . . .
such that if Hk admits an A-complete matching, then we have a matching Mk
whose unpopularity factor is at most k−1. We implemented our algorithm and
ran it on random instances, where we observed that we always found an A-
complete matching in Hk for k ≤ 4. It is an open question to theoretically show
that random instances admit low unpopularity factor matchings. We showed that
the expected number of iterations taken by our algorithm on random instances
with an equal number n0 of applicants and posts is at most lnn0 +1.
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1. A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from random
endowments in house allocation problems. Econometrica, 66(3):689–701, 1998.
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