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Abstract. The rising demand for adaptive, cloud-based and AI-based
systems is calling for an upgrade of the associated dependability con-
cepts. That demands instantiation of dependability-orientated processes
and methods to cover the whole life cycle. However, a common solution
is not in sight yet That is especially evident for continuously learning AI
and/or dynamic runtime-based approaches. This work focuses on engi-
neering methods and design patterns that support the development of
dependable AI-based autonomous systems. The emphasis on the human-
centric aspect leverages users’ physiological, emotional, and cognitive
state for the adaptation and optimisation of autonomous applications.
We present the related body of knowledge of the TEACHING project
and several automotive domain regulation activities and industrial work-
ing groups. We also consider the dependable architectural concepts and
their applicability to different scenarios to ensure the dependability of
evolving AI-based Cyber-Physical Systems of Systems (CPSoS) in the
automotive domain. The paper shines the light on potential paths for
dependable integration of AI-based systems into the automotive domain
through identified analysis methods and targets.

Keywords: AI · dependable systems · CPSoS · dependability.

1 Introduction

A comprehensive set of methods, tools, and engineering approaches has evolved
in the past decades to ensure the correctness of operation and to affirm trust in
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automotive systems. However, new challenges are exposed through the embrace
of non-deterministic components and their no strict correctness characteristics
by dependable systems. Several questions arise concerning dependability and
standard compliance, including process and technical engineering aspects.

For dependable system integration, different challenges are linked to deter-
ministic and non-deterministic functions. As a deterministic function assures
always the same output for a given input, it is possible to predict and deter-
mine system behaviour under all considered circumstances. That assumption
is the basis for the construction of sufficiently safe products and state of the
art safety argumentation based on evidence for appropriate process engineering
during design, development, implementation, and testing.

In contrast, as non-deterministic functions deliver different outputs to the
same inputs at different runs, traditional processes and engineering approaches
do not guarantee accurate prediction of the system behaviour under all consid-
ered circumstances. Hence, it is not possible to pledge necessary evidence for
appropriate safety assurance.

TEACHING project tackles the specified issue while focusing on autonomous
applications running in distributed and highly heterogeneous environments. It
emphasises the relationship between Artificial Intelligence (AI), humans and
CPSoS by leveraging human perception for adaptation and optimisation of au-
tonomous applications. The resulting human-centric systems leverages the phys-
iological, emotional, and cognitive state of the users for the adaptation and
optimisation of autonomous applications. The implementation is based on the
structuring of a distributed, embedded and federated learning system, which
is reinforced by methods that improve system dependability. The results are
exploited in the automotive and avionics domains. Both domains pose an au-
tonomous challenge with high dependability needs for the system with the human
in the loop.

This paper focuses on the automotive sector, which is confronted by four
main trends: electrification, ADAS and Autonomous Driving (AD), connected
vehicles and diverse mobility [1]. The successful response to these trends depends
on openness to changes, skills to execute the same and dedicated implementation
[22]. That is especially the case for AD, which relies on smart environment
sensing and complex decision making supported by CPSoS. The complexity of
autonomous decision making induces the need for embedding AI algorithms.
Such algorithms must mimic low-level cognitive skills to enable machines to use
available data and generate appropriate decisions [22].

Machine Learning (ML) models enable dynamic extraction of knowledge from
historic data to anticipate the effect of actions, plans and interactions within
the cyber and the physical realm and provide adaptability to effectively handle
human interactions. Hence, ML is a key enabling service providing fundamental
adaptation primitives and mechanisms for applications running on the CPSoS [3].
Nevertheless, the neural-based empowerment of the CPSoS requires addressing
compelling challenges related to the dependability of Neural Networks (NN).

The apparent poor dependability of AI in critical decision-making environ-
ments is one of the key causes of the low level of acceptance of and trust towards
new technologies. Thus, there is a need to demonstrate and inform the commu-
nity of reliability approaches for AI and their benefits.



Dependable Integration Concepts for Human-Centric AI-based Systems 3

This paper offers dependability perspectives to consider different application
case of non-deterministic systems as described in section 3, which is also one key
factor of the TEACHING project. Prior to that, we consider the related work
and standardisation activities in section 2. The paper is concluded with the key
findings and outlook for the TEACHING project in the reported context.

2 Related work and regulation activity overview

Automotive regulations and working group activities are summarised in this
section, which also includes synopsis of consequentially resulting challenges for
dependable AI-based systems in the autonomous automotive context. These reg-
ulation activities form the framework, in which the proposed approaches need to
sustain and provide evidence, as depicted in Figure 1. European manufacturers
comply with regulations provided by the United Nations Economic Commission
for Europe (’UNECE’)[21], which is the legal basis for uniform type approval reg-
ulations. The UNECE Regulations contain provisions for (a) administrative pro-
cedures for granting type approvals, (b) performance-oriented test requirements,
(c) conformity of production, and (d) mutual recognition of type approvals. The
regulations related to the automotive sector come from UNECE world forum for
harmonisation of vehicle regulations (WP.29)11.

Fig. 1: Regulatory and standardisation constraints on development.

2.1 Research related work

The development of Artificial Intelligence (AI) throughout the years has in-
troduced new concepts and methods for solving complex technical problems.
The benefits of AI and machine learning were recognised by many industrial
areas, which started to utilise it for their applications. However, ist utilisation
in dependable systems brings new challenges into play. Although standardisa-
tion bodies from different fields have already started to consider the integration

11 https://unece.org/wp29-introduction
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of AI-based systems in the context of safety-critical applications, this topic is
still in an early phase [23] and solutions focusing on the dependability of AI-
based systems are seldom. G. Montano et al. [17] proposes a novel naturalistic
decision-making support system for complex fault management procedures on
board modern aircrafts. The framework is responsible for generating applicable
configurations at run-time by using sensor data and autonomously generating
effective decision support information for the pilot. The authors showed that
instead of the constraint programming paradigm, AI could be effectively utilised
for analysing the system and supporting the pilot with decision-making. Never-
theless, an evaluation of the quality constraints of the dependability features is
not given. In the work of [14] different methods for uncertainty estimation on
metrics which were designed to give more insights on the performance concerning
safety-critical applications were described.

In [4] explainability is mentioned as the heart of Trustworthy AI and thus
the guarantee for developing AI systems aimed at mission-critical (including
safety) applications. The authors focus on approaches with humans keeping the
responsibility for the decisions, but relying on machine aids.

The nn-dependability-kit [5] is an open-source toolbox to support safety en-
gineering of NNS for autonomous driving systems. The rationale behind this is
a GSN structured approach to argue the quality of NNs. The tool also includes
dependability metrics for indicating sufficient elimination of uncertainties in the
product life cycle and a formal reasoning engine to avoid undesired behaviours.

Besides these publications, several survey and overview papers [10,15,18,19]
provide perspectives and descriptions of the AI and safety landscape [9]. How-
ever, there is no common approach to protect the systems against wrong deci-
sions and possible harm to the environment, determination of safety measures
for AI-based systems or generic pattern for the AI-based system applications.

2.2 Regulations and standards for automated vehicles

The UNECE regulations include new UN regulation on uniform provisions con-
cerning the approval of vehicles with regards to cyber-security and cyber-security
management system (UNECE R 155 2021- the final phase of approval), uniform
provisions concerning the approval of vehicles with regards to software update
and software update management system (UNECE R 156 2021 – under devel-
opment), and regulations event data recorder ( UNECE WP.29 GRVA – 2020
not frozen). There is a multitude of other regulations dealing with more specific
parts of the automated vehicle (e.g. Automated Lane Keeping System (ALKS),
Advanced Emergency Braking System (AEBS)).

Standards embody the specific topic’s global agreed state of the art, within a
particular domain. They are not legally binding, but they offer the agreed design
and development practices. The following standards are specific to autonomous
vehicle design, development, and testing. This is not an exhaustive list for the
whole domain, but a fair representation of specific standards to be considered
for autonomous vehicle development and safety and cybersecurity functions.

The most prominent automotive standard is ISO 26262 [11] intended for
safety-related systems that include one or more electrical and/or electronic (E/E)
components. This document addresses possible hazards caused by malfunction-
ing behaviour of safety-related E/E systems, including the interaction of these
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systems. The included framework is intended to be used to integrate functional
safety activities into a company-specific development framework.

From the perspective of process engineering, the non-deterministic system
behaviour is addressed by new standards, such as SotIF (Safety Of The Intended
Functionality) [13]. SotIF is a technical product safety standard with a focus
on how to specify, develop, verify and validate an intended functionality to be
considered sufficiently safe.

The absence of unreasonable risk due to hazards resulting from functional
insufficiency of the intended functionality or by reasonably foreseeable misuse by
persons is referred to as the Safety Of The Intended Functionality (SotIF). ISO
PAS 21448 enhances ISO 26262 and is applied to intended functionality where
proper situational awareness is critical to safety. These are situations that are
derived from complex sensors and processing algorithms; especially emergency
intervention systems and systems with levels of automation 1 to 5 on the OICA
/ SAE standard J3016 automation scale.

The third key automotive standard is ISO SAE DIS 21434 - Road vehicles -
cybersecurity engineering [12]. It replaces the SAE J3061 - Cybersecurity Guide-
book for Cyber Physical Vehicle Systems, provides guidelines for the organisation
management of cybersecurity (CSMS) and performs operative cybersecurity ac-
tivities for automotive product development. It is accompanied by ISO DTR 4804
– Road Vehicles, Safety and cyber-security for Automated Driving Systems De-
sign, Verification and Validation. This document provides recommendations and
guidance on steps for developing and validating automated driving systems based
on basic safety principles derived from worldwide applicable publications. These
principles provide a foundation for deriving a baseline for the overall safety re-
quirements and activities necessary for the different automated driving functions
including human factors as well as the verification and validation methods for
automated driving systems focused on vehicles with level 3 and level 4 features
according to SAE J3016:2018. ISO/WD PAS 5112 Road vehicles - Guidelines
for auditing cybersecurity engineering and VDA - Automotive Cyber Security
Management System Audit provide guidelines on how to perform cybersecurity
audits and to evaluate the compliance to CSMS defined in the UNECE Reg 155.

2.3 Regulations and standards for AI-based systems

Aside from multiple ethics guidelines for AI-based systems, which are out of
scope of this work, the ethics guidelines for trustworthy AI by an EU Independent
High Level Expert Group on Artificial Intelligence highlight the need for AI
systems to be human-centric.

Also, in the context of AI-based systems, UNECE WP.29 released a first
informal document, WP.29-175-21, about artificial intelligence and vehicle regu-
lation. This work connects AI to two automotive-specific applications: (a) HMI
enhancements for infotainment and vehicle management and (b) development of
self-driving functionalities (building on HD maps, surrounding detection using
sensor data fused with deep learning algorithms, and driving policies for auto-
mated driving using deep learning). Currently, there are no established UNECE
regulations specifically for AI-based systems.

Additionally, in the last two years, the European Commission has been ac-
tively studying AI and its impact on citizens’ lives. The European Commission
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created an independent group of high-level experts for AI. The European Com-
mission released a set of guidelines for AI-based systems and a white paper on
AI [20] to create a unique ’ecosystem of trust’. AI technologies may present new
safety risks for users when they are embedded in products and services. A lack
of clear safety provisions tackling these risks may, in addition to risks for the
individuals concerned, create legal uncertainty for businesses that are marketing
their products involving AI in the EU.

The new EU regulatory framework would apply to products and services
relying on AI. To that aim, the intended regulatory framework will be defined
following a risk-based approach. A risk-based approach requires clear criteria to
differentiate between the different AI applications, concerning the question of
whether they are ‘high-risk’ or not.

Conformity assessment is needed to verify and ensure compliance of certain
mandatory requirements, which address high risks. The prior conformity assess-
ment could include procedures for testing, inspection or certification, as well as
checks of the algorithms and data sets used in the development phase.

2.4 Consequential challenges

Automated Driving: Minimising the potential for fault propagation and limit-
ing complexity requires safety-related systems to include dependable and function-
specific encapsulated systems. However, the large number of intercommunicat-
ing nodes of ADSs limits the ordinary applicability of functional safety. ADSs
require new approaches to real-time fault tolerance and reasoning about the
consequences of faults because the fault tolerance of ADSs is unlikely to be effi-
ciently solved solely as a software problem due to the need to coordinate complex
integrative system comprised of hardware, software and physical elements.

Connected Vehicle End2End Safety: New security risks may be exposed,
opening the opportunity for automated remote attacks on vehicle fleets through
increased interlacing of automotive systems with networks (e.g. V2X), new fea-
tures like autonomous driving, and online software updates. Remote cyberattacks
can directly affect vehicles’ safety-related functions. Hence, a combined approach
is needed for safety and cybersecurity analysis.

Safety of the intended functionality: The hazard analysis and risk assess-
ment are followed by triggering condition analysis in line with the safety goals.
It would be useful to describe which is the most suitable method to define the
SotIF requirements to discover the weaknesses of the system design and reduce
Area 3 to an acceptable level already to the first phase of system development
without waiting for driving tests, simulation, endurance testing, etc.

Dependability Engineering Methods for AI-based systems: The goal
is to manage and evaluate the risk posed by inadequate performance of the NNs.
Considering a huge encasement in the number of advanced vehicle functionalities,
an acceptable safety level for the road vehicles requires the avoidance of unrea-
sonable risk caused by every hazard associated with the intended functionality
and its implementation, especially those due to performance limitations.

However, for the systems, which rely on sensing the external or internal
environment, potential hazardous behaviour caused by the intended functionality
or performance limitation of the fault-free system is not adequately addressed
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in the ISO 26262. Example of such limitations includes ML algorithms and AI-
based system. Therefore, when developing a safety-critical AI, the safety case
is used as a key tool for determining safety requirements to encapsulate all
safety arguments for the AI. That safety case is based on a SotIF standard [13],
demonstrating that all necessary safety measures are appropriately applied for
AI. So, both ISO 262626 and SotIF are addressed in parallel to evaluate potential
risks which can affect vehicle safety. Combining these two dependability domains
will result in the definition of a safe function and mean that weaknesses of the
technologies have been considered (SotIF) and that possible E/E faults can be
controlled by the system or by other measures (ISO 26262).

3 Conceptual approaches for ensuring dependability of
AI-based systems

This section presents four conceptual approaches for ensuring dependability fea-
tures (e.g., safety or security) of AI-based systems for different view points. The
conceptualisation is a step closer to identifying key integrated process engineer-
ing approaches that support the development of dependable products that rely
on non-deterministic algorithms for different application cases. Table 1 provides
an overview of the concepts, drawbacks and benefits.

Table 1: Overview of concepts, main intention, drawbacks, and benefits

Concept Main Intention Benefits Drawbacks

A support of opera-
tor

human takes decisions, tradi-
tional safety measures guaran-
tee system safety

system operation not au-
tonomously, decision-making
mechanism must be qualified
adequately

B selection of pol-
icy

policy-based decision making
ensures deterministic system
behaviour, traditional safety
measures guarantee system
safety, autonomous system op-
eration possible

only restricted AI algorithm
capabilities due finite set of
policies

C taking criti-
cal decisions
in supervised
manner

comparison with determinis-
tic supervisor system, monitor
meets classic safety require-
ments, less restricted applica-
tion of AI, autonomous opera-
tion of system

AI limited by monitor func-
tionalities, two nearly equally
sophisticated systems needed,
resource usage increased, syn-
chronisation mechanism re-
quired

D AI to mon-
itor system
and enhance
dependability

conventional system works
without AI intervention, AI
acts as monitor, AI increases
realiability of conventional
system

AI must learn normal vs. ab-
normal behaviour of system,
AI must not reduce the system
reliability in any case
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Fig. 2: Conceptual approach A for ensuring dependability of AI based systems.

3.1 Concept A: Human-in-the-Loop

This concept (depicted in Figure 2) uses AI-based system to observe and analyse
specific tasks or components and recommend human-readable actions. As a ’safe’
decision gate, the human decides whether the AI recommendations should be
applied and if so, then how they should be executed. The presence of the human
in the loop enables application of traditional safety measures to warrant system
safety. The analysis of complex situations and tasks is transferred to the AI
algorithm, which frees up human resources, otherwise dedicated to the analysis.

The implication of potentially wrong decision being made by the AI algo-
rithm (i.e., detection or non-detection of a critical situation) can potential vio-
late the system safety, but are monitored by the human. Thus, the system does
not operate autonomously because human intervention is required. Kesuma et
al. [8] proposed a kit that utilises AI for data anomaly detection. If AI detects
unexpected signal behavior, a human is notified. The AI can enhance the mon-
itoring system by observing many sensor signals and signalling the operators if
an anomaly is detected at any stage.

Fig. 3: Conceptual approach B for ensuring dependability of AI based systems.
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3.2 Concept B: Policy-based decision integration

This concept (Figure 3) makes the AI-based system responsible for observing
and analysing specific tasks or components and recommends machine-readable
actions that can be translated into a finite set of policies and objectives. These
policies and objectives are then used to influence the set-point generation of the
safety-critical system domain. The finite set of policies and objectives (shown
as two hard-wired icons in Figure 3) can be analysed for safety, and traditional
safety techniques can be applied to guarantee system safety. Thus, the system
operates autonomously because no human intervention is required to integrate
the actions recommended by the AI algorithm and the policy-based approach
can be implemented in a resource-efficient manner. A wrong decision by the AI
algorithm (i.e., detection or non-detection of a critical situation) could not violate
system safety, since the defined policies and transition between the policies have
to be intrinsically safe. Since the set of possible actions is limited to a finite
number of policies and actions, the AI algorithm’s capabilities might be restricted
by this limitation, but the AI algorithm itself is not considered to be a safety-
critical component.

Fig. 4: Conceptual approach C for ensuring dependability of AI based systems.

3.3 Concept C: Model-based decision integration

In this concept, the AI-based system is responsible for observing and analysing
specific tasks or components and recommends machine-readable actions. Instead
of mapping these actions to a finite set of policies or objectives, the model-
based integration approach compares the non-deterministic output of the AI-
based system with the output of a deterministic model running along with the
AI-based system. The concept (Figure 4) has also been referred to as ’safety
envelope’ [16]. The AI-based and deterministic models are designed for the same
objectives, while the deterministic model is also designed to meet classic safety
systems requirements. Hence, the deterministic model can be used to validate
the AI-based system’s output to ensure system safety.

The concept envisages AI-based system as a replacement of the human driver
in fully autonomous vehicles. In such a use case, the system assumes responsibil-
ity for perception and interpretation of the vehicle environment for calculating
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the input values for the setpoint generator in every specific driving situation.
Since the generated inputs have a critical impact on system safety, the vehi-
cle vendor (i.e., the original equipment manufacturer) must therefore guarantee
that AI-generated inputs do not violate system safety. That is problematic since
the non-deterministic nature of AI-based systems makes them unverifiable with
current state-of-the-art safety methods and standards.

The advantage of the system running the deterministic model is that it can be
analysed for safety, and traditional safety techniques can be applied to guaranty
system safety. As the deterministic model is less restrictive than the policy-based
approach, the AI algorithm’s capabilities are less restricted. The system oper-
ates autonomously as no human intervention is required to integrate the actions
recommended by the AI algorithm. Thus, the AI algorithm’s wrong decision
does not violate system safety. Hence, the AI algorithm is not considered to be
a safety-critical component.

The major drawback of this concept is dictated by the limitation of the
deterministic model, which might restrict the capabilities of the AI algorithm.
This means that two nearly equally sophisticated systems must be developed
and the two (possibly) resource-intensive systems must be executed side-by-side
in a synchronous manner.

Fig. 5: Conceptual approach D for ensuring dependability of AI based systems.

3.4 Concept D: AI-based system for ensuring dependability

This approach (Figure 5) inverts assumptions for the application case. The AI-
based algorithm is not seen as a potential source of harm for the dependabil-
ity of the CPSoS but as an intelligent monitoring unit. It is used to monitor
the conventional system. The AI algorithm learns the normal/expected system
behaviour under real operating conditions without influencing the functionality
and dependability of the system itself unless the system violates its specification.
Consequently, AI algorithm enhances the dependability of systems through mon-
itoring and learning the behaviour of a (dependable) system under observation.
If AI detects abnormal behaviour, countermeasures are either recommended or
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automatically triggered. Equally, the same is valid for the real-time guarantees
of the system. Furthermore, the reliability of the system under observation in-
cluding the monitoring architecture shall not be lower than the system reliability
of the system under observation on its own. Also, the source code of the sys-
tem under observation shall not be modified by the monitoring architecture [7].
This concept is used in cyber-security applications for anomaly based network
intrusion detection [2] or dynamic honeypots [6].

4 Conclusion and Outlook

The assurance of dependability, especially considering novel run-time adaptive
AI-based approaches in the automotive domain, is still an open issue that lacks
standard solutions for industrialisation. However, there is a necessity to establish
the means of delivering a convincing and explicit affirmation that the systems
under development are at the appropriate maturity level. To shine a light on
possible paths for the dependability of AI systems in the automotive world, this
paper presents (I) the body of knowledge of the TEACHING project and related
regulatory activities, and (II) four perspectives on dependability architecture
concepts and patterns for the adoption of continuously learning AI-based systems
into dependable automotive applications. The presented conceptual dependabil-
ity perspectives support the identification of key integrated process engineering
approaches for the development of dependable products in the automotive do-
main and beyond. We provide an overview of the advantages and drawbacks that
are resulting from different perspectives.

In that respect, TEACHING continues to seek the most suitable perspectives
and the balance of benefits to continue optimising driving automation applica-
tions. Consequently, we are adapting the control strategy to the human in the
loop, hence fulfiling the promise of a human-centric approach to driving automa-
tion where improvements of the machine itself depend on the human state.
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