
Reducing Rank-Maximal to Maximum Weight

Matching

Dimitrios Michail a,∗
aMax-Planck-Institut für Informatik,

Saarbrücken, Germany

Abstract

Given a bipartite graph G(V,E), V = A ∪̇B where |V | = n, |E| = m and a partition
of the edge set into r ≤ m disjoint subsets E = E1 ∪̇E2 ∪̇ . . . ∪̇Er, which are called
ranks, the rank-maximal matching problem is to find a matching M of G such that
|M ∩ E1| is maximized and given that |M ∩ E1| is maximized, |M ∩ E2| is also
maximized, and so on. Such a problem arises as an optimization criteria over a
possible assignment of a set of applicants to a set of posts. The matching represents
the assignment and the ranks on the edges correspond to a ranking of the posts
submitted by the applicants.

The rank-maximal matching problem and several other optimization variants,
e.g. fair matching and maximum cardinality rank-maximal matching, can be solved
by a reduction to the weight matching problem in time O(r

√
nm log n). Recently,

Irving et al. developed a combinatorial approach which improves the running time
for the rank-maximal matching problem to O(min(n + r, r

√
n)m). They raised the

open questions on (a) whether such a running time can be achieved by the weight
matching reduction and (b) whether such a running time can be achieved for the
other variants of the problem.

In this work we show how the reduction to the weight matching problem can
also be used to achieve the same running time. Our algorithm is simpler and more
intuitive.

Key words: bipartite graph, matching, preference lists, rank maximal, weighted
matching

∗ Corresponding address: Max-Planck-Institut für Informatik, Stuhlsatzenhausweg
85, 66123 Saarbrücken, Germany, Tel: 0049 681 9325 128, Fax: 0049 681 9325 199

Email address: michail@mpi-inf.mpg.de (Dimitrios Michail).

Preprint submitted to Elsevier Science

1 Introduction

Consider a bipartite graph G(V,E), V = A ∪̇ B, where |V | = n, |E| = m and
a partition of the edge set into r ≤ m disjoint subsets E = E1 ∪̇E2 ∪̇ . . . ∪̇Er.
Each set of edges Ei is denoted as the edges of rank i. To avoid triviality we
assume that n > 3 and m = Ω(n). A matching M is called rank-maximal if
it maximizes |M ∩ E1|, and given that |M ∩ E1| is maximized, it maximizes
|M ∩E2|, and so on. Note that such a matching is not necessarily of maximum
cardinality. The problem arises as an optimization criteria when assigning a set
of applicants to a set of posts. In this setting we call the nodes in A applicants
and the nodes in B posts. If (a, b) ∈ Ei and (a, b′) ∈ Ej with i < j, we say
that a prefers b to b′. If i = j, we say that a is indifferent between b and b′.
This ordering of posts adjacent to a is called a’s preference list. A matching
M corresponds to the assignment and the ranks on the edges correspond to a
ranking of the posts submitted by the applicants.

Such a bipartite matching problem with a graded edge set is well studied
in the economics literature, see for example [1–3]. It models important real-
world problems, including the allocation of graduates to training positions [4].
Using the problem setup considered in this paper, various other definitions
of optimality have been considered. For example, a matching M is Pareto
optimal [5,1,2] if there is no matching M ′ such that (i) some applicant prefers
M ′ to M , and (ii) no applicant prefers M to M ′. Another important definition
of optimality is Popular matchings [6]. A matching M is popular if and only
if there is no matching M ′ that is more popular that M . A matching M ′ is
more popular than M if a majority of applicants in M would prefer to switch
to M ′. It is important to note that popular matchings may not always exist.
Finally, we mention maximum-utility matchings, which maximize

∑
(a,b)∈M ua,b,

where ua,b is the utility of allocating applicant a to post b. Maximum-utility
matchings can be found using an obvious transformation to the maximum-
weight matching problem. All the above problems belong to the class of one-
sided preference list problems. When preference lists are expressed from both
sides of the partition we have the well-known problem of stable marriage.

The rank-maximal matching problem can be solved by using the well-studied
maximum weight matching problem. Given an edge e of rank i let its weight be
2dlogne(r−i). Since any matching M has less that n edges, it follows that no col-
lection of edges of rank at least i can replace an edge of rank i−1 and therefore
a maximum weight matching in this instance corresponds to a rank-maximal
matching. The maximum weight matching problem has been previously stud-
ied and efficient algorithms exist. The fastest algorithms have running time
O(n(m+n log n)) [7] and O(

√
nm log nC) [8] where C is the maximum weight

in an instance. The first is strongly- while the second weakly-polynomial. Sim-
ply applying the aforementioned algorithms to the rank-maximal matching

2

problem does not result in efficient algorithms, either in time nor in space
requirements. The problem is that the edge weights are as large as nr, which
is non-polynomial in the input size. Both algorithms assume that arithmetic
operations between numbers which are in O(C) can be performed in con-
stant time. This is not true in this case, where arithmetic on numbers in
O(nr) takes time Ω(r). Hence, the running times are O(rn(m+ n log n)) and
O(r2

√
nm log n) respectively, both using O(rn) space. It is known [9], how-

ever, that the scaling algorithm for the weighted matching problem can be
implemented such that all arithmetic is performed on numbers with O(log n)
bits, independent of the edge weights. In this case the running time improves
to O(r

√
nm log n).

Given the partition of the edge set E = E1 ∪̇E2 ∪̇ . . . ∪̇Er we can also ask for
matchings satisfying different criteria. The maximum cardinality rank-maximal
matching problem asks for a rank-maximal matching with maximum cardi-
nality. Similarly the fair matching problem asks for a matching of maximum
cardinality such that the minimum number of edges of rank r are used, and
given that the minimum number of edges of rank r−1 are used, and so on. The
fastest method, so far, to solve these problems is by using a similar reduction
to the weighted matching problem. These problems have been recently con-
sidered by Abraham et al. [10] in the context of rental markets. Finally let us
mention that combinations of different criteria are also possible. For example
the fair-popular matchings problem [11] asks for a popular matching which is
the most fair among popular matchings.

In [12,13] the authors present a combinatorial algorithm which solves the rank-
maximal matching problem in O(min(n+ r, r

√
n)m) time using linear space.

The algorithm identifies edges which cannot be part of a rank-maximal match-
ing and deletes them. This approach, however, does not seem to generalize to
the maximum cardinality rank-maximal or the fair matching problem. In an
attempt to close the gap between the rank-maximal matching and its variants,
we present an algorithm which solves the rank-maximal matching problem in
the same running time and space as [12]. The main difference is than our al-
gorithm is based on the weight matching reduction. We believe that the new
algorithm is simpler and more intuitive, since the weighted matching approach
seems as the most natural way to approach the problem. Morever, it should
be a better starting point in designing faster algorithms for the other variants
of the rank-maximal matching problem.

2 Preliminaries

Let π : V 7→ Z≥0 be a potential function defined on the vertices of G. For an
edge e = (v, w) ∈ E denote its weight by c(e) and define its reduced weight

3

with respect to π as c̄(e) = π(v) + π(w) − c(e). Moreover call such an edge
tight if c̄(e) = 0. We say that π is a feasible potential function for c if c̄(e) ≥ 0
for all edges e ∈ E. We say that a feasible potential function π is optimal if
there is a matching M in G such that c̄(e) = 0 for each e ∈ M and π(v) = 0
for all v ∈ V which are free in M . Define also Π =

∑
v∈V π(v). Note that any

matching M has

c(M) =
∑

e=(v,w)∈M
c(e) ≤ ∑

e=(v,w)∈M
π(v) + π(w) ≤ ∑

v∈V
π(v) = Π

Moreover, for an optimal potential function π and the corresponding matching
M , c(M) = Π, since any free vertex has zero potential.

Our algorithm uses a decomposition theorem by Kao et al. [14]. For an integer
h ∈ [1, C], where C is the maximum weight of an edge, divide G into two
lighter subgraphs Gh and G′h as follows:

• Gh is formed by edges (u, v) ∈ G such that c(e) ∈ [C − h + 1, C]. An edge
e ∈ Gh has weight ch(e) = c(e)− (C − h).
• Let πh be an optimal potential function for Gh. An edge e = (u, v) ∈ G

belongs to G′h if πh(u) + πh(v) − c(e) < 0. In that case edge e has weight
c′h(e) = c(e)− πh(u)− πh(v) in G′h.

Theorem 1 ([14]) Consider G, Gh and G′h as defined above and let mwm(G)
denote the weight of a maximum weight matching in G. Then mwm(G) =
mwm(Gh) + mwm(G′h).

If πh and π′h are optimal potential functions for Gh and G′h respectively, then
πh + π′h is an optimal potential function for G. This follows directly by Theo-
rem 1 and the feasibility of πh +π′h w.r.t the original weight function. See [14]
for more details.

3 The decomposition

Consider an instance of the rank-maximal matching problem and the reduced
instance of the weight matching problem. The edges of G have weights of
the form 1 1, n, n2, . . . , nr−1. Using Theorem 1 we decompose the problem and
solve it recursively. The base case of the recursion is a maximum cardinality
matching computation.

1 We say that a graph G has edges with weights of the form 1, n, n2, . . . , nr−1 to
denote that all edges of G can be assigned to one of these categories based on their
weight; multiple edges can have the same weight.

4

0

0

n2 − n− 1

0

0

n− 1

n

n− 1

0

0

0

0

1

1

1

1

0

0

n2 − n− 1

0

1

n

n + 1

n

1

n

1

n− 1

1

n

n2

n

n− 1

n2 − 1

n− 1

1

1

1

1

G(V, E) Gh(V, Eh) G′
h(V, E ′

h)

Fig. 1. Example of an instance of the rank-maximal matching problem reduced to
maximum weight matching and the two graphs resulting from the decomposition.
The numbers next to the edges represent the costs. The numbers next to the vertices
represent an optimal potential function.

Choose h = nr−1 − 1. Then Gh contains the edges of G with weight in the
range [2, nr−1]. Each edge in Gh has weight ch(e) = c(e)− 1. Thus, graph Gh

contains all edges of G with rank at most r − 1 and these edges have weights
n − 1, n2 − 1, . . . , nr−1 − 1. Graph G′h is much simpler. Assuming that πh is
an optimal potential function for Gh, G

′
h contains only the edges of G with

negative reduced weight w.r.t πh. Such edges fall into two categories:

• Edges e = (u,w) ∈ G where c(e) = 1 and πh(u) + πh(w) = 0. Such edges
have cost 1 in G′h.
• Edges e = (u,w) ∈ G where c(e) > 1 and πh(u) + πh(w)− c(e) < 0. Due to

the feasibility of πh in Gh,

πh(u) + πh(w)− ch(e) ≥ 0

where ch(e) = c(e) − 1. We conclude that πh(u) + πh(w) − c(e) ≥ −1 and
therefore all such edges also have cost 1 in G′h. These edges are exactly the
ones in Gh which are tight w.r.t. πh.

The decomposition results in two subproblems (see Figure 1 for an example).
The subproblem in G′h is a maximum cardinality matching computation, since
all edges have weight 1. On the other hand graph Gh has edges with weights
of the form n− 1, n2− 1, . . . , nr−1− 1. We are going to show in Section 4 that
an optimal potential function for these weights is also optimal for the weights
1, n, n2, . . . , nr−2. Thus, the subproblem in Gh is a rank-maximal matching
computation with r− 1 ranks. This can be solved recursively in time T (r− 1)
where T (r) is the time required to solve an instance with r different ranks.

Extra care is required in order to watch out for the cost of arithmetic opera-
tions during the algorithm, since the potential function πh can take values up
to O(nr). In this respect consider the following representation for an optimal
potential function π:

5

• A set of nodes V 0 containing all nodes v ∈ V s.t π(v) = 0.
• A set of edges E0 containing all edges e = (u,w) ∈ E which are tight w.r.t
π, i.e., c̄(e) = π(u) + π(w)− c(e) = 0.

The above two sets can guide the construction of a matching M in O(
√
nm)

time such that any matched edge is tight and every free vertex has zero poten-
tial. The above imply that such a matching has the same cost as our optimal
potential function and, therefore, is itself optimal. In the algorithm we will
manipulate these two sets and maintain the invariant that all such tuples will
correspond to the representation of some optimal potential function.

4 Fewer ranks

Let G be a graph with edge weights 1, n, n2, . . . , nr−2 and let V 0, E0 be two
sets representing an optimal potential function. In this section we show that
the same sets are a solution for the edge weights n − 1, n2 − 1, . . . , nr−1 − 1.
More precisely, there exists an optimal potential function such that these two
sets are its representation.

Assume that we have solved the subproblem with edge costs 1, n, n2, . . . , nr−2

in time T (r − 1) and we have an optimal potential function π represented
by V 0 and E0. In order to obtain an optimal potential function for the edge
costs n− 1, n2− 1, . . . , nr−1− 1 the first step is to obtain an optimal potential
function for the edge costs n, n2, . . . , nr−1. The following lemma is part of the
folklore.

Lemma 2 Consider a graph G with edge costs 1, n, n2, . . . , nr−2. Let M be
a maximum weight matching of G and π : V 7→ Z≥0 be a potential function
proving its optimality. Then the potential function nπ proves the optimality of
M for G with edge costs n, n2, n3, . . . , nr−1.

Let π′ be the potential function obtained by multiplying π with n in Lemma 2.
From the feasibility of π, the definition of π′ and the integrality of the potential
functions we also get the following corollary.

Corollary 3 For any node v ∈ V either π′(v) = 0 or π′(v) ≥ n. Moreover,
for any edge e ∈ E either c̄(e) = π′(v) + π′(w)− c(e) = 0 or c̄(e) ≥ n.

The same sets V 0 and E0 are a representation of the new optimal potential
function π′ for the new weights. The next step is the construction of a potential
function π′′ which will be optimal for the weights n− 1, n2 − 1, . . . , nr−1 − 1.
Algorithm 1 constructs such a potential function. We will need the following
definition.

6

Input: optimal potential function π′ for edge costs n, n2, . . . , nr−1

Output: optimal potential function π′′ for edge costs
n− 1, n2 − 1, . . . , nr−1 − 1

while G= has a vertex v with π′(v) = 0
let Av and Bv be the vertices reachable from v in G= by even
and odd paths respectively
for w ∈ Av set π′′(w) = π′(w)
for w ∈ Bv set π′′(w) = π′(w)− 1
delete Av and Bv

endwhile
if G= is not empty

let A ∪̇B be the remaining vertex set of G=

for each w ∈ A, set π′′(w) = π′(w)
for each w ∈ B, set π′′(w) = π′(w)− 1

endif

Algorithm 1. Construct optimal potential function

Definition 4 (equality subgraph) For a graph G(V,E) with edge costs c :
E 7→ Z>0 and a potential function π : V 7→ Z≥0, let the equality subgraph
G=(V,E=) be the graph with edge set E= = {e = (u, v) ∈ E : c̄(e) = π(u) +
π(v)− c(e) = 0}.

The following lemmata prove the correctness of Algorithm 1.

Lemma 5 Let G be a graph with edge costs n, n2, . . . , nr, n > 1 and π : V 7→
Z≥0 be an optimal potential function for G. Let G= be the equality subgraph of
G w.r.t π and v ∈ V be a vertex with π(v) = 0. Then, there is no odd length
path in G= starting from v which ends to a vertex w with π(w) = 0.

PROOF. Assume otherwise and let p be an odd length path in G= from v
to w such that π(v) = π(w) = 0 (see Figure 2). Since every edge on p has
reduced cost zero we get the following∑

i∈{α1,α2,...,αk}
ni =

∑
j∈{β1,β2,...,βk−1}

nj (1)

where αi ≥ 1, βi ≥ 1, n > 1 and 2k − 1 < n. Assume w.l.o.g that there are
no i, j such that nαi = nβj , otherwise remove both of them. At least one term
will remain since the number of terms is odd. Both sides have at most k < n
terms and any term in one side needs at least n terms on the other side in
order to cancel out. But there are not so many terms, a contradiction. 2

7

nαk

nαk−1

nα2

nα1

nβk−1

nβ1

0

0

Fig. 2. Path p in equality subgraph G= for the proof of Lemma 5.

Lemma 6 Algorithm 1 constructs an optimal potential function π′′ for the
edge costs n − 1, n2 − 1, . . . , nr−1 − 1 given an optimal potential function π′

for the edge costs n, n2, . . . , nr−1. The two potential functions have the same
representation as sets V 0 and E0.

PROOF. By Corollary 3 every edge e = (v, w) which does not belong to G=

has c̄′(e) = π′(v) + π′(w)− c(e) ≥ n. Every potential can decrease by at most
1 during the algorithm and therefore c̄′′(e) = π′′(v) + π′′(w) − (c(e) − 1) ≥
π′(v) − 1 + π′(w) − 1 − (c(e) − 1) = π′(v) + π′(w) − c(e) − 1 ≥ n − 1 > 0
since n > 1. This means that all these edges are feasible and every such edge
remains non-tight.

In the first part of the algorithm, by Lemma 5 all vertices v that get their
potential decreased have π′(v) > 0. The same is true for the second part, since
the second part is executed only if G= is non-empty and there is no vertex with
zero potential. By Corollary 3 every such vertex has π′(v) ≥ n and therefore
π′′(v) ≥ n − 1 > 0. Hence, the set of vertices with zero potential remain the
same.

We will now examine the effect on G=. For each edge e that is tight w.r.t π′,
exactly one of its endpoints get their potential reduced by 1 and therefore e
remains tight in π′′ w.r.t the cost function c(e)− 1.

Finally, let M be a maximum weight matching such that π′ proves its op-
timality. Every edge e ∈ M belongs to G= and every free vertex has zero
potential. The potential function π′′ also proves the optimality of M w.r.t
the new cost function, since the sets V 0 and E0 have not changed. Thus the
resulting function is optimal. 2

8

Input: graph G with edge partition E1, E2, . . . , Er
Output: sets V 0, E0

if r = 1
compute maximum matching M of G and optimal π
based on π compute V 0 and E0 and return them

else
solve recursively instance for G(V,E \ Er) and E1, E2, . . . , Er−1

let V 0, E0 be the solution
let E‡ = {e = (v, u) ∈ Er : {v, u} ∈ V 0}
form unweighted G′h(V,E

‡ ∪ E0) and find optimal potential
function π′h in G′h
set E0 = {e = (v, u) ∈ E‡ ∪ E0 : π′h(v) + π′h(u) = 1}
set V 0 = {v ∈ V 0 : π′h(v) = 0}
return V 0 and E0

endif

Algorithm 2. Compute a rank-maximal matching

5 Combining the solutions

After solving the two subproblems we are left with the following:

• Graph G′h and an optimal potential function π′h which was obtained by a
maximum cardinality matching computation, and
• graph Gh and sets V 0, E0 representing an optimal potential function πh.

Combining the two solutions requires to add up the two potential functions,
πh and π′h. The addition will be performed implicitly by changing V 0 and E0

based on the potential function π′h. Updating V 0 requires checking for each
v ∈ V whether πh(v) = π′h(v) = 0 which can be done by checking whether
π′h(v) = 0 and v ∈ V 0. Updating E0 is slightly more complicated.

• For an edge e = (v, u) with c(e) = 1 in G, i.e. e ∈ Er, we have to check
whether πh(v) + π′h(v) + πh(u) + π′h(u) = 1. Recall from Section 4 that if a
vertex v ∈ V has πh(v) > 0 then πh(v) > n−2 and therefore it is enough to
check (a) that π′h(v) + π′h(u) = 1 (an operation which takes constant time
since π′h is polynomially bounded) and (b) that πh(v) = πh(u) = 0 which
can be done by checking whether {v, u} ∈ V 0.
• For the rest of the edges, we have to check whether πh(v) + π′h(v) + πh(u) +
π′h(u) = c(e). By the feasibility of πh we know that πh(v)+πh(u) ≥ c(e)−1.
Moreover, for an edge e s.t πh(v) + πh(u) 6= c(e)− 1 we know that πh(v)−
1 + πh(u)− 1− (c(e)− 1) ≥ n− 1 (in the worst case where both endpoints
got their potential decreased by 1, when transforming to a new potential

9

function for edge weights which are reduced by 1), and hence any such edge
cannot be tight.

We conclude that if an edge has πh(v) + πh(u) = c(e) − 1 and therefore
belongs already to E0, then it will remain tight if π′h(v) + π′h(u) = 1.

The final output of the algorithm is sets V 0 and E0 which represent an optimal
potential function. See Algorithm 2 for a succinct description.

From these sets a rank-maximal matching can be constructed by performing
one maximum cardinality matching computation. This is done in the following
way. Let G=(V,E0) be the final equality subgraph. Create a new graph, Gαβ,
containing two copies of G=, Gα(V,Eα) and Gβ(V,Eβ). For a vertex v ∈ V ,
let vα and vβ be the two copies in the new graph. Then, if v ∈ V 0 include the
edge (vα, vβ). Finally find a maximum cardinality matching M in Gαβ. The
matching M ∩Eα is then a maximum weight matching in the original graph,
as the following lemma proves.

Lemma 7 The matching M ∩Eα constructed as above, is a maximum weight
matching in G.

PROOF. Let π be the optimal potential function for G, represented as the
sets V 0 and E0. We first argue that the graph Gαβ has a perfect matching. Let
M ′ be a maximum weight matching in G corresponding to π. Each edge in M ′

is tight w.r.t π and therefore belongs to E0. Thus, M ′ is also a matching of
G=. Take two copies of this matching one for Gα and one for Gβ. All remaining
unmatched nodes in Gαβ were also unmatched in M ′ and therefore have zero
potential. We added the extra edges vαvβ in case a vertex v had zero potential.
Together with these edges a perfect matching for Gαβ can be formed.

Let now M be a maximum cardinality matching of Gαβ. By the above M is a
perfect matching. Consider any node v s.t v /∈ V 0. There is no edge between
vα and vβ and therefore vα must be matched inside Gα. Therefore, any node
v /∈ V 0 must be matched by M ∩ Eα. Hence,

Π =
∑
v∈V

π(v) =
∑
v∈V
v/∈V 0

π(v) =
∑

e∈M∩Eα
c(e) = c(M ∩ Eα)

and the lemma follows. 2

In the case where r = 1 finding an optimal potential function is straightforward
using a maximum cardinality matching. For example, the LEDA [15] library
can return an optimal potential function alongside a maximum cardinality
matching.

10

5.1 Running Time

Denote the algorithm’s running time as T (r) for an instance with r ranks.
Moreover, assume that together with sets V 0, E0 the recursive call returns
a maximum cardinality matching M0 of the graph induced by the edges in
E0. Then T (r) consists of solving a subproblem of size r − 1 recursively in
T (r − 1), a maximum matching computation and the time taken to combine
the two solutions. Finding a new maximum cardinality matching can be done
in O(min(

√
n, |M ′| − |M0|+ 1)m) where M ′ is the new maximum matching.

All the administrative work, like updating the various graphs and sets, does
not dominate the running time. The recursion solves to O(min(n+r, r

√
n)m).

The space requirement of the algorithm is linear.

5.2 Fewer phases

The number of phases can be reduced from r to r∗, where r∗ is the largest
rank used in an optimal solution for a particular instance. Assume we are
at the start of phase i. We have sets V 0 and E0 corresponding to edges of
ranks i − 1, . . . , 1. These edges now have weights n − 1, . . . , ni − 1. We can
check whether this matching is already optimal by assuming that all remain-
ing edges are of rank i, and therefore solving our initial problem with edge
weights nr−i, . . . , nr−i, nr−i+1, . . . , nr−1 or equivalently for 1, . . . , 1, n, . . . , ni−1.
This way we simply boost the importance of less important edges in order to
check whether they would be used or not. Solving this instance can be eas-
ily done since the only change is in graph G′h by including more edges with
weight 1. To summarize, in phase i we first form G′h by including the appro-
priate edges from edges e ∈ Ei ∪ Ei+1 ∪ · · · ∪ Er and try to find a maximum
weight matching in G′h. If the resulting matching after summing up the two
potential functions does not use any edge of rank E≥i then we know that we
already found a rank-maximal matching. Otherwise we form G′h by including
only edges from Ei and continue the phases.

6 Conclusions

We presented a new algorithm which solves the rank-maximal matching prob-
lem by r maximum cardinality matching computations. Using the Hopcroft
and Karp algorithm [16] we get time O(min(n+r, r

√
n)m) using linear space.

The algorithm is based on the idea of reducing the problem to the maximum
weight matching problem. Doing this reduction implicitly, allows us to main-

11

tain the numbers appearing during the computation up to a reasonable level.
Our algorithm answers an open question of [12], on whether such a running
time can be achieved by using the maximum weight matching reduction.

What remains is to come up with a way of solving the remaining variants of
the problem in the same running time.

References

[1] A. Abdulkadiroglu, T. Sonmez, Random serial dictatorship and the core from
random endowments in house allocation problems, Econometrica 66 (3) (1998)
689–702.

[2] A. E. Roth, A. Postlewaite, Weak versus strong domination in a market with
indivisible goods, Journal of Mathematical Economics 4 (1977) 131–137.

[3] L. Zhou, On a conjecture by Gale about one-sided matching problems, Journal
of Economic Theory 52 (1) (1990) 123–135.

[4] A. Hylland, R. Zeckhauser, The efficient allocation of individuals to positions,
Journal of Political Economy 87 (2) (1979) 293–314.

[5] D. J. Abraham, K. Cechlárová, D. Manlove, K. Mehlhorn, Pareto optimality
in house allocation problems, in: ISAAC 2004: the 15th Annual International
Symposium on Algorithms and Computation, 2005, pp. 1163–1175.

[6] D. J. Abraham, R. W. Irving, T. Kavitha, K. Mehlhorn, Popular matchings,
in: SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2005, pp. 424–432.

[7] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice Hall, 1993.

[8] H. N. Gabow, R. Tarjan, Faster scaling algorithms for network problems, SIAM
Journal of Computing 18 (1989) 1013–1036.

[9] A. V. Goldberg, R. Kennedy, An efficient cost scaling algorithm for the
assignment problem, Math. Program. 71 (2) (1995) 153–177.

[10] D. Abraham, N. Chen, V. Kumar, V. Mirrokni, Assignment problems in rental
markets, in: Proceedings of WINE: Internet and Network Economics, Second
International Workshop, Vol. 4286 of LNCS, 2006, pp. 198–213.

[11] T. Kavitha, personal communication (2007).

[12] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, K. Paluch, Rank-maximal
matchings, in: Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, Society for Industrial and Applied Mathematics, 2004, pp.
68–75.

12

[13] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, K. Paluch, Rank-maximal
matchings, ACM Transactions on Algorithms 2 (4) (2006) 1–9.

[14] M.-Y. Kao, T. W. Lam, W.-K. Sung, H.-F. Ting, A decomposition theorem
for maximum weight bipartite matchings, SIAM Journal of Computing 31 (1)
(2001) 18–26.

[15] K. Mehlhorn, S. Naher, LEDA: A Platform for Combinatorial and Geometric
Computing, Cambridge University Press, 1999.

[16] J. E. Hopcroft, R. M. Karp, An n5/2 algorithm for maximum matching in
bipartite graphs, SIAM Journal on Computing 2 (1973) 225–231.

13

