
Implementing Minimum Cycle Basis Algorithms∗

Kurt Mehlhorn and Dimitrios Michail

Max-Planck-Institut für Informatik
Saarbrücken, Germany

{mehlhorn,michail}@mpi-inf.mpg.de

Abstract

In this paper we consider the problem of computing a minimum cycle
basis of an undirected graph G = (V, E) with n vertices and m edges. We
describe an efficient implementation of an O(m3 + mn2 log n) algorithm.
For sparse graphs this is the currently best known algorithm. This algo-
rithm’s running time can be partitioned into two parts with time O(m3)
and O(m2n + mn2 log n) respectively. Our experimental findings imply
that for random graphs the true bottleneck of a sophisticated implemen-
tation is the O(m2n+mn2 log n) part. A straightforward implementation
would require Ω(nm) shortest path computations, thus we develop sev-
eral heuristics in order to get a practical algorithm. Our experiments show
that in random graphs our techniques result in a significant speedup.

Based on our experimental observations, we combine the two funda-
mentally different approaches to compute a minimum cycle basis to obtain
a new hybrid algorithm with running time O(m2n2). The hybrid algo-
rithm is very efficient in practice for random dense unweighted graphs.

Finally, we compare these two algorithms with a number of previous
implementations for finding a minimum cycle basis of an undirected graph.

1 Introduction

1.1 Preliminaries

Let G = (V,E) be an undirected graph. A cycle of G is any subgraph in which
each vertex has even degree. Associated with each cycle is an incidence vector
x, indexed on E, where xe = 1 if e is an edge of C, xe = 0 otherwise. The vector
space over GF (2) generated by the incidence vectors of cycles is called the cycle
space of G. It is well-known that this vector space has dimension N = m−n+κ,
where m is the number of edges, n is the number of vertices, and κ the number
of connected components of G. A maximal set of linearly independent cycles is
called a cycle basis.

∗A preliminary version of this paper appeared in the Proc. 4th International Workshop on
Efficient and Experimental Algorithms (WEA), 2005 [14]

1

The edges of G have non-negative weights. The weight of a cycle is the sum
of the weights of its edges. The weight of a cycle basis is the sum of the weights
of its cycles. We consider the problem of computing a cycle basis of minimum
weight in an undirected graph. (We use the abbreviation MCB to refer to a
minimum cycle basis.)

The problem has been extensively studied, both in its general setting and in
special classes of graphs. Its importance lies in its use as a preprocessing step in
several algorithms. Such algorithms include diverse applications like electrical
circuit theory [4], structural engineering [3], and surface reconstruction [15, 8].

The first polynomial time algorithm for the minimum cycle basis problem
was given by [9] with running time O(m3n). De Pina [6] gave an O(m3 +
mn2 log n) algorithm by using a different approach. [7] improved Horton’s algo-
rithm to O(mωn) by using fast matrix multiplication. It is presently known [5]
that ω < 2.376. Recently [1] gave another O(m3 + mn2 log n) algorithm by
using similar ideas as de Pina. Finally, [11] improved de Pina’s algorithm to
O(m2n + mn2 log n) again by using fast matrix multiplication. In the same
paper a faster 1 + ε approximation algorithm, for any ε > 0, is presented.

In this paper we report our experimental findings from our implementation
of the O(m3 + mn2 log n) algorithm presented in [6]. Our implementation uses
LEDA [13]. We develop a set of heuristics which improve the best-case perfor-
mance of the algorithm while maintaining its asymptotics. Finally, we consider
a hybrid algorithm obtained by combining the two different approaches used
in [6, 11] and [9, 7] with running time O(m2n2), and compare the implemen-
tations. The new algorithm is motivated by our need to reduce the cost of
the shortest path computations. The resulting algorithm seems to be very ef-
ficient in practice for random dense unweighted graphs. Finally, we compare
our implementations with previous implementations of minimum cycle basis
algorithms [10, 12].

The paper is organized as follows. In Section 2 we briefly describe the
algorithms. In Section 2.1 we describe our heuristics and in Section 2.2 we
present our new algorithm. In Section 3 we present and discuss our experimental
results. We summarize and offer conclusions in Section 4.

2 Algorithms

We briefly describe the algorithms. Let G(V,E) be an undirected graph with
m edges and n vertices. Let l : E 7→ R≥0 be a non-negative length function on
the edges. Let κ be the number of connected components of G and let T be any
spanning forest of G. Also let e1, . . . , eN be the edges of G\T in some arbitrary
but fixed order. Note that N = m− n + κ is exactly the dimension of the cycle
space.

The algorithm [6] computes the cycles of an MCB and their witnesses. A
witness S of a cycle C is a subset of {e1, . . . , eN} which will prove that C belongs
to the MCB [6, 11]. We view these subsets in terms of their incidence vectors
over {e1, . . . , em}. Hence, both cycles and witnesses are vectors in the space

2

Algorithm 1: Construct an MCB
Set Si = {ei} for all i = 1, . . . , N
for i = 1 to N do

Find Ci as the shortest cycle in G s.t 〈Ci, Si〉 = 1
for j = i + 1 to N do

if 〈Ci, Sj〉 = 1 then
Sj = Sj ⊕ Si

end
end

end

{0, 1}m. 〈C,S〉 stands for the standard inner product of vectors C and S. Since
we are in the field GF (2) observe that 〈C,S〉 = 1 if and only if the cardinality
of the intersection of the two edge sets is odd. Finally, adding two vectors C
and S in GF (2) is the same as the symmetric difference of the two edge sets.
Algorithm 1 gives a full description, where ⊕ denotes the symmetric difference.

The algorithm in phase i has two parts, one is the computation of the cycle
Ci and the second part is the update of the sets Sj for j > i. Note that updating
the sets Sj for j > i is nothing more than maintaining a basis {Si+1, . . . , SN}
of the subspace orthogonal to {C1, . . . , Ci}.

Computing the cycles Given Si, it is easy to compute a shortest cycle Ci

such that 〈Ci, Si〉 = 1 by reducing it to n shortest path computations in an
appropriate graph Gi. The following construction is well-known.

Gi has two copies v+ and v− of each vertex v ∈ V . For each edge e =
(u, v) ∈ E do: if e /∈ Si, then add edges (u+, v+) and (u−, v−) to the edge set
of Gi and assign their weights to be the same as e. If e ∈ Si, then add edges
(u+, v−) and (u−, v+) to the edge set of Gi and assign their weights to be the
same as e. Gi can be visualized as 2 levels of G (the + level and the − level).
Within each level, we have edges of E \Si. Between the levels we have the edges
of Si. Call Gi the signed graph.

Any v+ to v− path p in Gi corresponds to a cycle in G by identifying edges
in Gi with their corresponding edges in G. If an edge e ∈ G occurs multiple
times we include it if the number of occurrences of e modulo 2 is 1. Because we
identify v+ and v− with v, the path in G resulting from p is a cycle C. Since we
start from a positive vertex and end in a negative one, the cycle has to change
sign an odd number of times and therefore uses an odd number of edges from
Si. In order to find a shortest cycle, we compute a shortest path from v+ to v−

for all v ∈ V .

Running time In each phase we have the shortest path computations which
take time O(n(m+n log n)) and the update of the sets which take O(m2) time.
We execute O(m) phases and therefore the running time is O(m3 + m2n +
mn2 log n).

3

2.1 Heuristic improvements

In this section we present several heuristics which can improve the running time
substantially. All heuristics preserve the worst-case time and space bounds.

Compressed representation (H1) All vectors (sets S and cycles C) which
are handled by the algorithm are in {0, 1}m. Moreover, any operations per-
formed are normal set operations. This allows us to use a compressed represen-
tation where each entry of these vectors is represented by a bit of an integer.
This allows us to save up space and at the same time to perform 32 or 64 bitwise
operations in parallel.

Upper bounding the shortest path (H2) During phase i we might per-
form up to n shortest path computations in order to compute the shortest cycle
Ci with an odd intersection with the set Si. We can use the shortest path found
so far as an upper bound on the shortest path. This is implemented as follows;
a node is only added in the priority queue of Dijkstra’s implementation if its
current distance is not more than our current upper bound.

Reducing the shortest path computations (H3) We come to the most
important heuristic. In each of the N phases we are performing n shortest path
computations. This results to Ω(mn) shortest path computations.

Let S = {e1, e2, . . . , ek} be a witness at some point of the execution. We
need to compute the shortest cycle C s.t 〈C,S〉 = 1. We can reduce the number
of shortest path computations based on the following observation.

Let C≥i be the shortest cycle in G s.t 〈C≥i, S〉 = 1, and C≥i∩{e1, . . . , ei−1} =
∅, and ei ∈ C≥i. Then cycle C can be expressed as

C = min
i=1,...,k

C≥i.

We can compute C≥i in the following way. We delete edges {e1, . . . , ei} from
the graph G and the corresponding edges from the signed graph Gi. Let ei =
(v, u) ∈ G. Then we compute a shortest path in Gi from v+ to u+. The path
computed will have an even number of edges from the set S, and together with
ei an odd number. Since we deleted edges {e1, . . . , ei} the resulting cycle does
not contain any edges from {e1, . . . , ei−1}.

Using the above observation we can compute each cycle in O(kSP (n, m))
time when |S| = k < n and in O(nSP (n, m)) when |S| ≥ n. Thus, the running
time for the cycles computations is equal to

SP (n, m) ·
∑

i=1,...,N

min{n, |Si|}

where SP (n, m) is the time to compute a single-source shortest path on an
undirected weighted graph with m edges and n vertices.

4

w

u

v

e = (v, u)

SP (w, v)

SP (w, u)

Figure 1: Horton’s candidate cycle for the MCB

Algorithm 2: Construct an MCB
Ensure uniqueness of shortest path distances of G (lexicographically or
by perturbation)
Construct superset (Horton set) S of the MCB
Set Si = {ei} for all i = 1, . . . , N
for i = 1 to N do

Find Ci as the shortest cycle in S s.t 〈Ci, Si〉 = 1
for j = i + 1 to N do

if 〈Ci, Sj〉 = 1 then
Sj = Sj ⊕ Si

end
end

end

2.2 A new hybrid algorithm

The first polynomial algorithm [9] developed did not compute the cycles one by
one but instead computed a superset of the MCB and then greedily extracted
the MCB by Gaussian elimination. This superset contains O(mn) cycles which
are constructed in the following way.

For each vertex w ∈ V and edge e = (v, u) ∈ E, construct the cycle C =
SP (w, v) + SP (w, u) + (v, u) where SP (a, b) is the shortest path from a to b
(Figure 1). If these two shortest paths do not contain a vertex other than w in
common then keep the cycle otherwise discard it. Let us call this set of cycles
the Horton set. It was shown in [9] that the Horton set always contains an
MCB. However, not every MCB is contained in the Horton set.

Based on the above and motivated by the need to reduce the cost of the
shortest path computations we develop a new algorithm, which combines the
two approaches. That is, compute the Horton set and extract the MCB not
by using Gaussian elimination which would take time O(m3n) but by using the
orthogonal space of the cycle space as we did in Algorithm 1. The Horton set
contains an MCB but not necessarily all the cycles that belong to any MCB. We

5

resolve this difficulty by ensuring uniqueness of the MCB. We ensure uniqueness
by ensuring uniqueness of the shortest path distances on the graph (either by
perturbation or by lexicographic ordering). After the preprocessing step, every
cycle of the MCB will be contained in the Horton set and therefore we can query
the superset for the cycles instead of the graph G. A succinct description can
be found in Algorithm 2.

The above algorithm has worst case running time O(m2n2). This is because
the Horton set contains at most mn cycles, we need to search for at most
m cycles and each cycle contains at most n edges. The space requirement is
O(mn2), a factor of n more than the lower bound which is O(mn) to represent
the cycles of the MCB.

The important property of this algorithm is that the time to actually com-
pute the cycles is only O(n2m), which is by a factor of m

n better than the O(m2n)
time required by Algorithm 1. Together with the experimental observation that
in general the linear independence step is not the bottleneck, we actually hope
to have developed a very efficient algorithm.

3 Experiments

3.1 Setup

We perform several experiments in order to understand the running time of the
algorithms using the previously presented heuristics. In order to understand the
speedup obtained, especially from the use of the H3 heuristic, we study in more
detail the cardinalities of the sets S during the algorithm as well as how many
operations are required in order to update these sets. We also compare the
running times of Algorithm 1 and Algorithm 2 with previous implementations.

All experiments are done using random sparse and dense graphs. All graphs
were constructed using the G(n; p) model, for p = 4/n, 0.3, 0.5 and 0.9. Our
implementation uses LEDA [13]. All experiments were performed on a Pentium
1.7Ghz machine with 1 GB of memory, running GNU/Linux. We used the GNU
g++ 3.3 compiler with the -O optimization flag. All other implementations use
the boost C++ libraries [2].

3.2 Updating Si’s

In this section we present experimental results which suggest that the dominat-
ing factor of the running time of Algorithm 1 (at least for random graphs) is not
the time needed to update the witnesses S but the time to compute the cycles.

Note that the time to update the witnesses is O(m3) and the time to compute
the cycles is O(m2n + mn2 log n), thus on sparse graphs this algorithm has
the same running time O(n3 log n) as the fastest known. The currently fastest
algorithm [11] for the MCB problem has running time O(m2n+mn2 log n+mω);
the mω factor is dominated by the m2n but we present it here in order to
understand what type of operations the algorithm performs. This algorithm

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500

tim
e
(s

e
c)

nodes

Sparse Graphs

Update S’s
Find C’s

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250

tim
e
(s

e
c)

nodes

G(n;p), p=0.3

Update S’s
Find C’s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250

tim
e
(s

e
c)

nodes

G(n;p), p=0.5

Update S’s
Find C’s

Figure 2: Comparison of the time taken to update the sets S and the time taken
to calculate the cycles on random weighted graphs, by Algorithm 1.

improves upon [6] w.r.t the time needed to update the sets S by using fast
matrix multiplication techniques.

Although fast matrix multiplication can be practical for medium and large
sized matrices, our experiments show that the time needed to update the sets S
is a small fraction of the time needed to compute the cycles. Figure 2 presents
a comparison of the required time to update the sets Si and to calculate the
cycles Ci by using the signed graph for random weighted graphs.

In order to get a better understanding of this fact, we performed several
experiments. As it turns out, in practice, the average cardinality of the sets S
is much less than N and moreover the number of times we actually perform set
updates (if 〈Ci, Sj〉 = 1) is much less than N(N − 1)/2. Moreover, heuristic H1
decreases the constant factor of the running time (for updating S’s) substantially
by performing 32 or 64 operations in parallel. This constant factor decrease does
not concern the shortest path computations. Table 1 summarizes our results.

7

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

tim
e(

se
c)

nodes

Sparse Graphs

with heuristic
without heuristic

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160

tim
e(

se
c)

nodes

G(n;p), p=0.3

with heuristic
without heuristic

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160

tim
e(

se
c)

nodes

G(n;p), p=0.5

with heuristic
without heuristic

Figure 3: Running times of Algorithm 1 with and without the H3 heuristic.
Without the heuristic the algorithm is forced to perform Ω(nm) shortest path
computations.

8

n m N N(N − 1)/2 max(|S|) avg(|S|) # 〈S, C〉 = 1
sparse (m ≈ 2n)
10 19 10 45 4 2 8
51 102 52 1326 25 3 113
104 208 108 5778 44 4 258
206 412 212 22366 108 5 760
491 981 500 124750 226 7 2604
596 1192 609 185136 315 6 2813
963 1925 985 484620 425 7 5469
1060 2120 1084 586986 498 7 5980
1554 3107 1581 1248990 537 8 9540
2070 4139 2105 2214460 1051 13 20645
3032 6064 3092 4778686 1500 13 31356
4441 8882 4525 10235550 2218 17 58186
p = 0.3
10 13 4 6 2 2 2
25 90 66 2145 27 3 137
50 367 318 50403 133 5 1136
75 832 758 286903 370 6 3707
100 1485 1386 959805 613 7 8103
150 3352 3203 5128003 1535 9 22239
200 5970 5771 16649335 2849 10 49066
300 13455 13156 86533590 6398 10 116084
500 37425 36926 681746275 18688 14 455620
p = 0.5
10 22 13 78 7 2 14
25 150 126 7875 57 4 363
50 612 563 158203 298 6 2527
75 1387 1313 861328 654 6 6282
100 2475 2376 2821500 1168 8 15771
150 5587 5438 14783203 2729 9 39292
200 9950 9751 47536125 4769 11 86386
300 22425 22126 244768875 10992 13 227548
500 62375 61876 1914288750 30983 15 837864

Table 1: Statistics about sets S sizes on sparse random graphs with p = 4/n
and dense random graphs for p = 0.3 and 0.5. Sets are considered during the
whole execution of the algorithm. Column #〈S, C〉 = 1 denotes the number of
updates performed on sets S. An upper bound on this is N(N − 1)/2, which
we actually use when bounding the algorithm’s running time. Note that the
average cardinality of S is very small compared to N although the maximum
cardinality of some S is in O(N).

9

n m N max(|Si|) davg(|Si|)e |{Si : |Si| < n}|
sparse (m ≈ 2n)
10 19 10 4 2 10
51 102 52 16 5 52
104 208 108 39 5 108
206 412 212 106 10 212
491 981 498 246 13 498
596 1192 609 220 11 609
963 1925 980 414 11 980
1060 2120 1076 496 17 1076
1554 3107 1573 795 21 1573
2070 4139 2108 1036 27 2108
3032 6064 3092 1468 33 3092
4441 8882 4522 1781 33 4522
p = 0.3
10 13 4 2 2 4
25 90 66 20 4 66
50 367 318 153 10 302
75 832 758 357 15 721
100 1485 1386 638 15 1343
150 3352 3203 1534 18 3133
200 5970 5771 2822 29 5635
300 13455 13156 6607 32 12968
500 37425 36926 15965 39 36580
p = 0.5
10 22 13 7 3 13
25 150 126 66 5 121
50 612 563 222 12 532
75 1387 1313 456 10 1276
100 2475 2376 1094 15 2314
150 5587 5438 2454 19 5338
200 9950 9751 4828 28 9601
300 22425 22126 10803 33 21875
500 62375 61876 30877 38 61483

Table 2: Statistics about sets Si sizes on sparse random graphs with p = 4/n
and dense random graphs for p = 0.3 and 0.5, at the moment we calculate cycle
Ci.

10

3.3 Number of shortest path computations

Heuristic H3 improves the best case of the algorithm, while maintaining at the
same time the worst case. Instead of Ω(nm) shortest path computations we hope
to perform much less. In Table 2 we study the sizes of the sets Si for i = 1, . . . , N
used to calculate the cycles for sparse and dense graphs respectively.

In both sparse and dense graphs although the maximum set can have quite
large cardinality, the average set size is much less than n. Moreover, in sparse
graphs every set used has cardinality less than n. On dense graphs the sets with
cardinality less than n are more than 95% percent. This implies a significant
speedup due to the H3 heuristic.

Figure 3 compares the running times of Algorithm 1 with and without the
H3 heuristic.

3.4 Running time

In this section we compare the various implementations for computing a mini-
mum cycle basis. Except from Algorithm 1 (DP) and Algorithm 2 (HYB) we
include in the comparison two implementations, (HOR) or (HOR U1) [12] and
(HOR U2) [10] of Horton’s algorithm with running time O(m3n), and an im-
plementation (FEAS) [12] of the O(m3 + mn2 log n) algorithm presented in [1].
Algorithms 1 and 2 are implemented with compressed integer sets. Fast matrix
multiplication [11, 7] can nicely improve many parts of these implementations
with respect to the worst case complexity. We did not experiment with these
versions of the algorithms.

The comparison of the running times is performed for three different type
of undirected graphs: (a) random sparse graphs, where m ≈ 2n, (b) random
graphs from G(n; p) with different density p = 0.3, 0.5, 0.9 and (c) hypercubes.
Tests are performed for both weighted and unweighted graphs. In the case of
weighted graphs the weight of an edge is an integer chosen independently at
random from the uniform distribution in the range [0 . . . 216].

Figures 4 and 5 summarize the results of these comparisons. In the case of
weighted graphs Algorithm 1 is definitely the winner. On the other hand in the
case of dense unweighted graphs Algorithm 2 performs much better. As can
be easily observed the differences on the running time of the implementations
are rather small for sparse graphs. For dense graphs however, we observe a
substantial difference in performance.

Dense unweighted graphs In the case of dense unweighted graphs, the hy-
brid algorithm performs better than the other algorithms. However, even on
the exact same graph, the addition of weights changes the performance sub-
stantially. This change in performance is not due to the difference in size of the
produced Horton set between the unweighted and the weighted case, but due
to the total number of queries that have to be performed in this set.

In the hybrid algorithm before computing the MCB, we sort the cycles of
the Horton set. Then for each of the N phases, we query the Horton set from

11

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350

tim
e(

se
c)

nodes

Sparse Graphs

DP_U
HYB_U

FEAS_U
HOR_U1
HOR_U2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

nodes

G(n;p), p=0.3

DP_U
HYB_U

FEAS_U
HOR_U1
HOR_U2

 0

 5

 10

 15

 20

 25

 20 30 40 50 60 70 80

tim
e(

se
c)

nodes

G(n;p), p=0.5

DP_U
HYB_U

FEAS_U
HOR_U1
HOR_U2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 25 30 35 40 45 50 55 60

tim
e(

se
c)

nodes

G(n;p), p=0.9

DP_U
HYB_U

FEAS_U
HOR_U1
HOR_U2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 5.5 6 6.5 7 7.5 8
tim

e(
se

c)

dimension

hypercubes

DP_U
HYB_U

FEAS_U
HOR_U1
HOR_U2

Figure 4: Comparison of various algorithms for random unweighted graphs.
Algorithm 1 is denoted as DP U and Algorithm 2 as HYB U. HOR U1 and
HOR U2 are two different implementation of Horton’s algorithm. FEAS U is
an implementation of another O(m3) algorithm. See Section 3.4 for details.

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350

tim
e(

se
c)

nodes

Sparse Graphs

DP
HYB

FEAS
HOR

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80

tim
e(

se
c)

nodes

G(n;p), p=0.3

DP
HYB

FEAS
HOR

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70

tim
e(

se
c)

nodes

G(n;p), p=0.5

DP
HYB

FEAS
HOR

 0

 2

 4

 6

 8

 10

 12

 14

 10 15 20 25 30 35 40 45 50

tim
e(

se
c)

nodes

G(n;p), p=0.9

DP
HYB

FEAS
HOR

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8 9

tim
e(

se
c)

dimension

hypercubes

DP
HYB

FEAS
HOR

Figure 5: Comparison of various algorithms for random weighted graphs. Algo-
rithm 1 is denoted as DP and Algorithm 2 as HYB. HOR is Horton’s algorithm
and FEAS is another O(m3 + mn2 log n) algorithm. See Section 3.4 for details.

13

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70

of

 c
yc

le
s

or
 q

ue
rie

s
(lo

g
sc

al
e)

nodes

G(n,p), p=0.3

unweighted #cycles
unweighted #queries

[1,256] #cycles
[1,256] #queries

[1,65536] #cycles
[1,65536] #queries

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 20 30 40 50 60 70

of

 c
yc

le
s

or
 q

ue
rie

s
(lo

g
sc

al
e)

nodes

G(n,p), p=0.5

unweighted #cycles
unweighted #queries

[1,256] #cycles
[1,256] #queries

[1,65536] #cycles
[1,65536] #queries

Figure 6: Number of cycles in the Horton set (set with duplicates) and number
of queries required in this set (set sorted by cycle weight) in order to extract
the MCB for random dense graphs with random weights of different ranges.
Each random graph is considered with three different edge weight ranges: (a)
unweighted, (b) weights in [1, 28], (c) weights in [1, 216].

14

the least costly cycle to the most, until we find a cycle with an odd intersection
with our current witness S. Figure 6 plots for dense graphs the number of cycles
in the Horton set and the number of queries required in order to extract the
MCB from this set. In the case of unweighted graphs, the number of queries is
substantially smaller than in the case of weighted graphs. This is exactly the
reason why the hybrid algorithm outperforms the others in unweighted dense
graphs.

4 Conclusions

In this paper we described an efficient implementation of an O(m3 +mn2 log n)
algorithm for calculating a minimum cycle basis of an undirected graph. Using
several heuristics we improved its best case in order to achieve low running times.
By experimenting on sparse and dense graphs we justified, for random graphs,
the usefulness of our heuristics. We also observed that the O(m2n + mn2 log n)
factor is the bottleneck of the algorithm in practice.

Moreover, we compared our implementation with a new “hybrid” algorithm
which combines the two different approaches used by the previous algorithms
for solving the minimum cycle basis problem. This algorithm has running time
O(m2n2) and performs very well in practice for dense unweighted graphs.

Finally, we performed a comparison between the various implementations
available in order to compute a minimum cycle basis and our new implementa-
tion. These experimental results suggest that future research should focus on
computing each cycle using a different approach which needs less that n shortest
path computations. This could be accomplished as an independent problem or
in relation with the structure of the particular sets S which are produced during
the MCB algorithm’s execution.

References

[1] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle basis for network
graphs. Algorithmica, 40(1):51–62, 2004.

[2] Boost. C++ Libraries, 2001. http://www.boost.org.

[3] A. C. Cassell, J. C. Henderson, and K. Ramachandran. Cycle bases of
minimal measure for the structural analysis of skeletal structures by the
flexibility method. Proc. Royal Society of London Series A, 350:61–70,
1976.

[4] L. O. Chua and L. Chen. On optimally sparse cycle and coboundary basis
for a linear graph. IEEE Trans. Circuit Theory, CT-20:495–503, 1973.

[5] D. Coppersmith and S. Winograd. Matrix multiplications via arithmetic
progressions. Journal of Symb. Comput., 9:251–280, 1990.

15

[6] J.C. de Pina. Applications of Shortest Path Methods. PhD thesis, University
of Amsterdam, Netherlands, 1995.

[7] A. Golynski and J. D. Horton. A polynomial time algorithm to find the
minimum cycle basis of a regular matroid. In 8th Scandinavian Workshop
on Algorithm Theory, 2002.

[8] Craig Gotsman, Kanela Kaligosi, Kurt Mehlhorn, Dimitrios Michail,
and Evangelia Pyrga. Cycle bases of graphs and sampled manifolds.
Technical Report MPI-I-2005-1-2008, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, December 2005. Ac-
cepted for publication in Computer Aided Geometric Design.

[9] J. D. Horton. A polynomial-time algorithm to find a shortest cycle basis
of a graph. SIAM Journal of Computing, 16:359–366, 1987.

[10] M. Huber. Implementation of algorithms for sparse cycle bases of graphs.,
2002. http://www-m9.ma.tum.de/dm/cycles/mhuber.

[11] Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna E.
Paluch. A faster algorithm for minimum cycle basis of graphs. In 31st Inter-
national Colloquium on Automata, Languages and Programming, Finland,
pages 846–857, 2004.

[12] Kreisbasenbibliothek. CyBaL, 2004. http://www-m9.ma.tum.de/dm/
cycles/cybal.

[13] K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[14] Kurt Mehlhorn and Dimitrios Michail. Implementing minimum cycle ba-
sis algorithms. In Sotiris E. Nikoletseas, editor, Experimental and Effi-
cient Algorithms, 4th International Workshop, WEA 2005, Santorini Is-
land, Greece, May 10-13, 2005, Proceedings, volume 3503 of Lecture Notes
in Computer Science, pages 32–43. Springer, 2005.

[15] Geetika Tewari, Craig Gotsman, and Steven J. Gortler. Meshing genus-1
point clouds using discrete one-forms. Computers and Graphics, 2006. to
appear.

16

