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Abstract

We consider the problem of computing a minimum cycle basis of an
undirected non-negative edge-weighted graph G with m edges and n ver-
tices. In this problem, a {0, 1} incidence vector is associated with each
cycle and the vector space over F2 generated by these vectors is the cycle
space of G. A set of cycles is called a cycle basis of G if it forms a basis for
its cycle space. A cycle basis where the sum of the weights of the cycles
is minimum is called a minimum cycle basis of G. Minimum cycle basis
are useful in a number of contexts, e.g. the analysis of electrical networks
and structural engineering.

The previous best algorithm for computing a minimum cycle basis has
running time O(mωn), where ω is the best exponent of matrix multipli-
cation. It is presently known that ω < 2.376. We exhibit an O(m2n +
mn2 logn) algorithm. When the edge weights are integers, we have an
O(m2n) algorithm. For unweighted graphs which are reasonably dense,
our algorithm runs in O(mω) time. For any ε > 0, we also design an
1 + ε approximation algorithm. The running time of this algorithm is
O((mω/ε) log(W/ε)) for reasonably dense graphs, where W is the largest
edge weight.

1 Introduction

Let G = (V,E) be an undirected graph with m edges and n vertices. A cycle of
G is any subgraph of G in which every vertex has even degree. Associated with
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each cycle C is an incidence vector x, indexed on E, where for any e ∈ E

xe =

{
1 if e is an edge of C,

0 otherwise.

The vector space over F2 generated by the incidence vectors of cycles is called
the cycle space of G. It is well-known that when G is connected, this vector
space has dimension m− n+ 1, where m is the number of edges of G and n is
the number of vertices. A maximal set of linearly independent cycles is called a
cycle basis.

The edges of G have non-negative weights assigned to them. A cycle basis
where the sum of the weights of the cycles is minimum is called a minimum
cycle basis of G. We consider the problem of computing a minimum cycle basis
of G. We sometimes use the abbreviation MCB to refer to a minimum cycle
basis.

The problem of computing a minimum cycle basis has been extensively stud-
ied, both in its general setting and in special classes of graphs. Its importance
lies in understanding the cycle structure of a graph and its use as a preprocess-
ing step in several algorithms. That is, a cycle basis is used as an input for a
later algorithm, and using a minimum cycle basis instead of any arbitrary cycle
basis reduces the amount of work that has to be done by this later algorithm.
Such algorithms include algorithms for diverse applications like electrical circuit
theory [2], structural engineering [1], and surface reconstruction [22].

History of the problem: The problem of finding low-cost cycle bases, or in
other words sparse cycle bases, has been considered in the literature multiple
times, see for example [21, 26, 13, 16]. Horton [12] was the first to present a
polynomial time algorithm for finding a minimum cycle basis in a non-negative
edge weighted graph. The running time of his algorithm is O(m3n). Later,
Hartvigsen and Mardon [10] studied the structure of minimum cycle bases and
characterized graphs whose short cycles1 form a minimum cycle basis. They
essentially characterized those graphs for which an algorithm of Stepanec [21]
always produces a minimum cycle basis. Hartvigsen [9] also introduced another
vector space associated with the paths and the cycles of a graph, the U -space.
Hartvigsen extended Horton’s approach to compute a minimum weight basis for
this space as well. Hartvigsen and Mardon [11] also studied the minimum cycle
basis problem when restricted to planar graphs and designed an O(n2 log n)
time algorithm.

Horton defined a set M of mn cycles which he proved to be a superset of an
MCB and then extracted the MCB as the shortest m−n+1 linearly independent
cycles from M using Gaussian elimination. Golynski and Horton [8] observed
that the shortest m−n+1 linearly independent cycles could be obtained from M
in O(mωn) time using fast matrix multiplication algorithms, where ω is the best
exponent for matrix multiplication. It is presently known [4] that ω < 2.376.
The O(mωn) algorithm was the best known algorithm for the MCB problem.

1A cycle C is considered a short cycle if it is the shortest cycle through one of its edges.
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De Pina [5] gave an O(m3 +mn2 log n) algorithm. His approach is different
from that of Horton; it is similar to the algorithm of Padberg and Rao [18] for
the minimum weighted T -odd cut problem. Our new algorithm is based on de
Pina’s approach.

For an experimental study of minimum cycle basis algorithms, see [17].
Fundamental cycle bases are cycle bases induced by spanning trees. There

is a cycle for each non-tree edge consisting of the non-tree edge plus the tree
path connecting its endpoints. The problem of computing a minimum weight
fundamental cycle basis is NP-complete [6]. The minimum cycle basis problem
is also NP-complete when negative edge weights are allowed.

In this paper we obtain the following new results: For graphs with arbitrary
non-negative edge weights, we give an O(m2n+mn2 log n) algorithm, improving
upon the current O(mωn) upper bound. In particular, whenever m ≥ n log n,
we have an O(m2n) algorithm. Also, when the edge weights are integers, we
have an O(m2n) algorithm. When the edge weights are small integers (which
also includes unweighted graphs), we have an Õ(mnω) + O(mω) algorithm. If
the graph is reasonably dense, that is, if m ≥ n1+1/(ω−1)poly(log n), the O(mω)
term dominates and so this is an O(mω) algorithm.

We use an all pairs shortest paths (APSP) algorithm as a subroutine in our
algorithm. The running time of our algorithm is O(m) times the running time
of an all pairs shortest paths computation in G. Using Dijkstra’s algorithm for
the APSP computation, we obtain the above time of O(m2n+mn2 log n). We
obtain the better running times for integer edge weights and unweighted graphs
by using faster all pairs shortest path algorithms for these cases [20, 7, 23, 24].
Similarly, when the graph is sparse, using faster APSP algorithms our algorithm
can be made faster2. Using the APSP algorithm in [19], the running time of
our algorithm is O(m2nα(m,n)), where α(m,n) is Tarjan’s inverse Ackermann
function.

We also look at approximation algorithms for computing a minimum cy-
cle basis in a graph. Given any c > 1, we have a c-approximation algo-
rithm by relaxing the shortest paths subroutine to a c-stretch paths subrou-
tine. (A c-stretch (s, t) path is a path which is at most c times the length
of a shortest (s, t) path.) The running time of our algorithm which com-
putes a cycle basis whose weight is at most twice the weight of an MCB is
Õ(m3/2n3/2) + O(mω) using the result in [3] to compute 2-stretch paths. For
reasonably dense graphs (say, m ≥ n1.5/(ω−1.5)poly(log n)), this is an O(mω)
algorithm. Using the all pairs (1+ε)-stretch paths algorithm [25], for any ε > 0,
we have an Õ(mnω/ε log(W/ε)) + O(mω) algorithm to compute a cycle basis
which is at most 1 + ε times the weight of an MCB, where W is the largest
edge weight in the graph. If m ≥ n1+1/(ω−1)poly(log n) and all edge weights are
polynomial in n, this is an O(mω/ε log(1/ε)) algorithm. We also give an O(mω)
algorithm to construct a witness of a minimum cycle basis.

The rest of this paper is organized as follows. In Sections 2 and 3 we present
a simple algebraic framework (based on de Pina’s algorithm) for computing a

2Our algorithm cannot be made to run faster than mω though.
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minimum cycle basis in a graph. In Section 4 we give our algorithm. In Section 5
we give a c-approximation algorithm to compute a cycle basis whose weight is
≤ c · weight of an MCB. In Section 6 we give an algorithm to obtain a certificate
or witness of a minimum cycle basis.

2 A Simple MCB Algorithm

Let G = (V,E) be an undirected graph with m edges and n vertices, and with
non-negative weights on its edges. We may assume G to be connected since a
minimum cycle basis of a graph is the union of the minimum cycle bases of its
connected components. If G is connected, N = m − n + 1 is the dimension of
the cycle space of G.

De Pina [5] gave the combinatorial algorithm in Figure 1 to compute a
minimum cycle basis in G. Let T be any spanning tree in G. Let e1, . . . , eN be
the edges of G \ T in some arbitrary but fixed order.

Initialize S1,i = {ei} (i = 1, ..., N).
For k = 1, . . . , N do the following:

1. Find a minimum weight cycle Ck with an odd number of edges in Sk,k.

2. Define for i = k + 1, . . . , N :

Sk+1,i =

{
Sk,i if Ck has an even number of edges in Sk,i

Sk,i 4 Sk,k if Ck has an odd number of edges in Sk,i

{ where 4 denotes symmetric difference }

The algorithm returns {C1, ..., CN}.

Figure 1: De Pina’s combinatorial algorithm for computing an MCB.

We give some explanations. The algorithm defines sets Sk,i for k ≤ i ≤ N .
A simple induction shows that ei ∈ Sk,i ⊆ {e1, . . . , ek, ei} for all k and i. In
particular, ek ∈ Sk,k. The fundamental cycle formed by ek and the tree path
connecting its endpoints intersects Sk,k only in edge ek and hence the set of
cycles with an odd number of edges in Sk,k is non-empty. Thus the execution
of the algorithm is well defined.

Before we show the correctness of de Pina’s algorithm, we interpret it alge-
braically. We feel that the algebraic formulation gives more insight into why
the algorithm works. Also, it will lead to an improved implementation.

An algebraic description: A cycle in G can be viewed in terms of its inci-
dence vector. So each cycle is a vector (with 0’s and 1’s in its coordinates) in the
space spanned by all the edges. Here we only look at these vectors restricted to

4



the coordinates indexed by {e1, ..., eN}. That is, each cycle can be represented
as a vector in {0, 1}N .

In SIMPLE-MCB (see Figure 2) we compute the cycles of a minimum cycle
basis and their witnesses. A witness S of a cycle C is a subset of {e1, ..., eN}
which proves that C belongs to a minimum cycle basis. We will view these
witnesses or subsets in terms of their incidence vectors over {e1, ..., eN}. Hence,
both cycles and their witnesses are vectors in the space {0, 1}N .
〈C, S〉 stands for the standard inner product or dot product of the vectors

C and S. We say that a vector S is orthogonal to C if 〈C, S〉 = 0. Since we are
in the field F2, observe that 〈C, S〉 = 1 if and only if C contains an odd number
of edges of S.

For i = 1 to N do the following:

1. Let Si be any arbitrary non-zero vector in the subspace orthogonal to
{C1, C2, ..., Ci−1}, i.e., Si 6= ~0 and 〈Ck, Si〉 = 0 for k ∈ {1, . . . , i− 1}.
[Initially, S1 is any arbitrary non-zero vector in the space {0, 1}N .]

2. Compute a minimum weight cycle Ci such that 〈Ci, Si〉 = 1.

Figure 2: SIMPLE-MCB: An algebraic framework for computing an MCB

Since each Si is non-zero, it has to contain at least one edge e from G \ T .
The cycle Ce formed by the edges of T and e has intersection of size exactly 1
with Si. So, there is always at least one cycle C satisfying 〈C, Si〉 = 1.

It is easy to see that Ci is independent of C1, .., Ci−1. This is because any
vector v in the span of {C1, ..., Ci−1} satisfies 〈v, Si〉 = 0 since 〈Cj , Si〉 = 0
for each 1 ≤ j ≤ i − 1. But Ci satisfies 〈Ci, Si〉 = 1. Hence, Ci does not lie
in the subspace spanned by {C1, . . . , Ci−1}. Thus, it follows immediately that
{C1, ..., CN} is a basis. Let us now prove that {C1, ..., CN} is a minimum cycle
basis.

Theorem 1. The set {C1, C2, ..., CN} determined by SIMPLE-MCB is a min-
imum cycle basis.

Proof. (from [5]) Suppose not. Then there is some i, 0 ≤ i < N , such that
{C1, ..., Ci} is contained in some minimum cycle basis B but there is no minimum
cycle basis containing {C1, ..., Ci, Ci+1}. Since B is a basis, there exist cycles
B1, ..., Bk in B such that

Ci+1 = B1 +B2 + · · ·+Bk. (1)

Since 〈Ci+1, Si+1〉 = 1, there exists some Bj in the above sum such that
〈Bj , Si+1〉 = 1. But Ci+1 is a minimum weight cycle such that 〈C, Si+1〉 = 1
and hence the weight of Ci+1 is at most the weight of Bj .

Let B′ = B ∪ {Ci+1} \ {Bj}. Since Bj is equal to the sum of Ci+1 and
{B1, . . . , Bk} \ {Bj} (by Equation (1)), B′ is also a basis. And B′ has weight at
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most the weight of B which is a minimum cycle basis. So B′ is also a min-
imum cycle basis. Finally observe that Bj cannot be equal to any one of
C1, ..., Ci because 〈Bj , Si+1〉 = 1 whereas 〈Cl, Si+1〉 = 0 for all l ≤ i. Thus
{C1, C2, ..., Ci+1} ⊆ B′, a contradiction to the definition of i.

We have now shown the correctness of the algorithm SIMPLE-MCB (Fig-
ure 2), which is equivalent to the combinatorial algorithm in Figure 1. There
are two subroutines in SIMPLE-MCB: computing a non-zero vector Si in the
subspace orthogonal to {C1, ..., Ci−1} and computing a minimum weight cycle
Ci such that 〈Ci, Si〉 = 1. We next show how to compute the cycle Ci and
in Section 3 we shall see a simple method to compute a non-zero vector Si
orthogonal to C1, . . . , Ci−1.

2.1 Computing the cycles

Given Si, it is easy to compute a minimum weight cycle Ci with 〈Ci, Si〉 = 1
by computing n shortest paths in an appropriate graph Gi. The construction
is well-known. The graph Gi is defined from G = (V,E) and Si ⊆ E in the
following manner.

Gi has two copies of each vertex v ∈ V . Call them v+ and v−.
for every edge e = (v, u) ∈ E do

if e /∈ Si then
Add edges (v+, u+) and (v−, u−) to the edge set of Gi.

else
Add edges (v+, u−) and (v−, u+) to the edge set of Gi.

end if
In either case assign their weights to be the same as the weight of e.

end for

Gi can be visualized as two levels of G (the + level and the − level). Within
each level, we have edges of E \ Si. Between the levels we have the edges of Si.
See Figure 3 for an example. Every v+ to v− path in Gi induces a cycle in G by
identifying the vertices and edges in Gi with their corresponding vertices and
edges in G. For instance, the path 1−–2+–4+–1+ in Gi in Figure 3 corresponds
to the cycle 1-2-4-1 in G. Because we identify both v+ and v− with v, any v+

to v− path in Gi corresponds to a cycle C in G.
More formally, take the incidence vector of any path (over the edges of Gi)

and obtain an incidence vector over the edges of G by identifying (v∗, u†) with
(v, u) where ∗ and † are + or −. Suppose the path contained two copies of
the same edge (it could have contained both (v+, u−) and (v−, u+) for some
(v, u)). Then add the number of occurrences of that edge modulo 2 to obtain
an incidence vector over the edges of G.

Lemma 1. Let p be the shortest (v+, v−) path in Gi for any v ∈ V . Then p
induces a minimum weight cycle C in G with an odd number of edges in Si.
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[The + level]

[The − level]

4+

2+
3+1+

4−
3−

2−

1−

Figure 3: An example of the graph Gi when the graph G has 4 vertices {1, 2, 3, 4}
and 4 edges {(1, 2), (1, 4), (2, 4), (3, 4)} and only the edge (1, 2) is in Si. Since
the edge (1, 2) ∈ Si, we have the edges (1−, 2+), (1+, 2−) going across the + and
− levels. The edges not in Si, i.e., (1, 4), (2, 4), (3, 4) have copies inside the +
level and inside the − level.

Proof. Since the endpoints of p are v+ and v−, p has to contain an odd number
of edges of Si. This is because only edges of Si provide a change of sign and p
goes from a + vertex to a − vertex. We might have deleted some edges of Si
while forming C since those edges occurred with a multiplicity of 2. But this
means that we always delete an even number of edges from Si. Hence, C has
an odd number of edges of Si present in it. Also, the weight of C is at most the
weight of p since edges have non-negative weights.

We next prove that C is a minimum weight cycle containing an odd number
of edges in Si. Let C ′ be any other cycle in G with an odd number of edges of
Si in it. If C ′ is not a simple cycle, then C ′ is a union of simple cycles (with
disjoint edge sets) and at least one of those simple cycles C0 should have an odd
number of edges of Si present in it. And the weight of C0 is at most the weight
of C ′.

Let u be any vertex in C0. We lift C0 to a path p′ from u+ to u− of cost equal
to the cost of C0 as follows: p′ starts in u+. When C0 uses an edge (x, y) ∈ Si, p′
uses the edge (x+, y−) or (x−, y+) depending on whether the current endpoint
of p is x+ or x−. When C0 uses an edge (x, y) 6∈ Si, p′ uses the edge (x+, y+)
or (x−, y−) depending on whether the current endpoint of p is x+ or x−. Since
C0 is a cycle, p′ ends in u+ or u−, and since C0 uses an odd number of edges in
Si, p

′ must end in u−. Finally the weight of p′ is equal to the weight of C0.
But p was the minimum weight (v+, v−) paths in Gi for any v ∈ V . Hence,

the weight of p is at most the weight of p′ which in turn is at most the weight of
C ′. Thus the weight of C is at most the weight of C ′ and hence C is a minimum
weight cycle using an odd number of edges in Si.

The computation of the path p can be done by computing n shortest (v+, v−)
paths (each by Dijkstra’s algorithm) in Gi and taking their minimum or by one
invocation of an all-pairs-shortest paths algorithm in Gi. This computation
takes O(n(m + n log n)) time. Note that depending on the relation between
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m and n, the algorithm can choose which shortest path algorithm to use. For
example, in the case when the edge weights are integers or the unweighted case it
is better to use faster all-pairs-shortest paths algorithms than to run Dijkstra’s
algorithm n times.

Since we have to compute totally N such cycles C1, C2, ..., CN , we spend
O(mn(m+ n log n)) time, since N = m− n+ 1.

3 Computing the Subsets

We will now consider the problem of computing the subsets Si, for i = 1 to N .
We want Si to be a non-zero vector in the subspace orthogonal to {C1, ..., Ci−1}.

The simplest way to compute Si is to look for a non-zero solution S to the
linear system 〈S,Cj〉 = 0, 1 ≤ j < i. The Cj form a i− 1 by N matrix of rank
i−1. We compute a rank i−1 submatrix using Gaussian elimination (it can be
shown that the first i−1 components of the Cj form a non-singular matrix), set
a component of S outside the submatrix to zero and solve for the components
of S indexed by the submatrix. All of this takes time O(N3) = O(m3) per
iteration.

We next describe an alternative method which is more in line with de Pina’s
version of the algorithm and takes only time O(N2) per iteration. We maintain
a basis of the subspace orthogonal to {C1, ..., Ci−1}. Any vector in that basis
will then be a non-zero vector in the subspace.

When i = 0, the orthogonal subspace is the full space {0, 1}N . We set
Sj = {ej} for all j, 1 ≤ j ≤ N . This corresponds to the standard basis of the
space {0, 1}N . At the beginning of phase i, we have {Si, Si+1, ..., SN} which is
a basis of the space C⊥ orthogonal to the space C spanned by {C1, ..., Ci−1}.
We use Si to compute Ci and update {Si+1, ..., SN} to a basis {S′i+1, ..., S

′
N} of

the subspace of C⊥ that is orthogonal to Ci. The update step of phase i is as
follows: For i+ 1 ≤ j ≤ N , let

S′j =

{
Sj if 〈Ci, Sj〉 = 0

Sj + Si if 〈Ci, Sj〉 = 1

Lemma 2. S′i+1, ..., S
′
N form a basis of the subspace orthogonal to C1, ..., Ci.

Proof. We will first show that S′i+1, ..., S
′
N belong to the subspace orthogonal to

C1, ..., Ci. We know that Si, Si+1, ..., SN form a basis of the subspace orthogonal
to C1, ..., Ci−1. Since each S′j , i+ 1 ≤ j ≤ N is a linear combination of Sj and
Si, it follows that S′j is orthogonal to C1, ..., Ci−1. If an Sj is already orthogonal
to Ci, then we leave it as it is, i.e., S′j = Sj . Otherwise, 〈Ci, Sj〉 = 1, and we
update Sj as S′j = Sj + Si. Since both 〈Ci, Sj〉 and 〈Ci, Si〉 are equal to 1, it
follows that each S′j is now orthogonal to Ci also. Hence, S′i+1, ..., S

′
N belong to

the subspace orthogonal to C1, ..., Ci.
Now we will show that S′i+1, ..., S

′
N are linearly independent. Suppose there

is a linear dependence among them. Substitute S′j ’s in terms of Sj ’s and Si in
the linear dependence relation. Si is the only vector that might occur more than
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once in that relation and hence the relation is non-trivial contradicting the linear
independence of Si, Si+1, ..., SN . Hence, S′i+1, ..., S

′
N are linearly independent.

This completes the description of the algorithm SIMPLE-MCB. Let us now
bound the running time of this algorithm. During the update step of the i-th
iteration, the cost of updating each Sj , j > i is N and hence it is N(N − i) for
updating Si+1, ..., SN . Since we have N iterations, the total cost of maintaining
this basis is N3, which is O(m3).

The total running time of the algorithm SIMPLE-MCB, by summing the
costs of computing the cycles and witnesses, is O(m3 + mn2 log n). So, using
Dijkstra’s algorithm or a faster algorithm for computing all-pairs-shortest-paths
is not really crucial; the time taken to compute the Si’s is the real bottleneck.

4 A Faster Implementation

Recall our approach to compute the vectors Si. We maintained a basis of C⊥
in each iteration for a cost of O(m2) per iteration. Note that we need just
one vector from the subspace orthogonal to {C1, ..., Ci}. But the algorithm
maintains N − i such vectors: Si+1, ..., SN . This is the limiting factor in the
running time of the algorithm. In order to improve the running time of SIMPLE-
MCB, we relax the invariant that Si+1, ..., SN form a basis of the subspace
orthogonal to C1, ..., Ci. Since we need just one vector in this subspace, we can
afford to relax this invariant and maintain the correctness of the algorithm.

In SIMPLE-MCB in the i-th iteration we update Si+1, ..., SN . Our idea
now is to update only those Sj ’s where j is close to i and to postpone the
update of the later Sj ’s. During the postponed update, many Sj ’s can be
updated simultaneously. This simultaneous update is implemented as a matrix
multiplication step. And using a fast algorithm for matrix multiplication causes
the speedup.

Our main procedure is called extend cb. The procedure extend cb works in
a recursive manner. We present in Figure 4 the overall algorithm FAST-MCB
and the procedure extend cb.

The procedure extend cb({C1, ..., Ci}, {Si+1, . . . , Si+k}, k) computes k new
cycles Ci+1, ..., Ci+k of the minimum cycle basis using the subsets Si+1, . . . , Si+k.
We maintain the invariant that these subsets are all orthogonal to C1, ..., Ci. It
first computes Ci+1, ..., Ci+bk/2c using Si+1, . . . , Si+bk/2c. At this point, the
remaining subsets Si+bk/2c+1, . . . , Si+k need not be orthogonal to the new cy-
cles Ci+1, ..., Ci+bk/2c. Our algorithm then updates Si+bk/2c+1, . . . , Si+k so that
they are orthogonal to Ci+1, ..., Ci+bk/2c and they continue to be orthogonal to
C1, ..., Ci. Finally it computes cycles Ci+bk/2c+1, . . . , Ci+k.

Let us see a small example as to how this works. Suppose N = 4. We
initialize the subsets Si, i = 1, ..., 4 and call extend cb, which then calls itself
with only S1 and S2 and then only with S1 and so computes C1. Then it updates
S2 so that 〈C1, S2〉 = 0 and computes C2. Then it simultaneously updates S3
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The algorithm FAST-MCB:

• Initialize the cycle basis with the empty set and initialize Sj = {ej} for
1 ≤ j ≤ N .

• Call the procedure extend cb({}, {S1, . . . , SN}, N).

A call to extend cb({C1, ..., Ci}, {Si+1, . . . , Si+k}, k) extends the cycle basis by
k cycles. Let C denote the current partial cycle basis which is {C1, ..., Ci}.

The procedure extend cb(C, {Si+1, . . . , Si+k}, k):
• if k = 1, compute a minimum weight cycle Ci+1 such that 〈Ci+1, Si+1〉 =

1.

• if k > 1, use recursion.

1. call extend cb(C, {Si+1, . . . , Si+bk/2c}, bk/2c) to extend the current
cycle basis by bk/2c elements. That is, the cycles Ci+1, ..., Ci+bk/2c
are computed in a recursive manner.

During the above recursive call, Si+1, ..., Si+bk/2c get updated. Call
their final versions (at the end of this step) as S′i+1, ..., S

′
i+bk/2c.

2. call update({S′i+1, . . . , S
′
i+bk/2c}, {Si+bk/2c+1, ..., Si+k}) to update

{Si+bk/2c+1, ..., Si+k}. Let {Ti+bk/2c+1, ..., Ti+k} be the output re-
turned by update.

3. call extend cb(C∪{Ci+1, ..., Ci+bk/2c}, {Ti+bk/2c+1, . . . , Ti+k}, dk/2e)
to extend the current cycle basis by dk/2e cycles. That is, the
cycles Ci+bk/2c+1, ..., Ci+k will be computed recursively.

Figure 4: FAST-MCB: A faster minimum cycle basis algorithm

and S4 which were still at their initial values so that the updated S3 and S4

(which we call T3 and T4) are both orthogonal to C1 and C2. Then it computes
C3 using T3 and updates T4 and then computes C4.

Observe that whenever we compute Ci+1 using Si+1, we have the property
that Si+1 is orthogonal to C1, ..., Ci. The difference is the function update which
allows us to update many Sj ’s simultaneously to be orthogonal to many Ci’s.
As mentioned earlier, this simultaneous update enables us to use the fast matrix
multiplication algorithm which is crucial to the speedup. We next describe these
steps in detail.
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The function update:

When we call function update({S′i+1, . . . , S
′
i+bk/2c}, {Si+bk/2c+1, ..., Si+k}), the

sets Si+bk/2c+1, ..., Si+k need not all be orthogonal to the space spanned by
C ∪{Ci+1, ..., Ci+bk/2c}. We know that Si+bk/2c+1, ..., Si+k are all orthogonal to
C and now we need to ensure that the updated Si+bk/2c+1, ..., Si+k (call them
Ti+bk/2c+1, . . . , Ti+k) are all orthogonal to C∪{Ci+1, ..., Ci+bk/2c}. We now want
to update the sets Si+bk/2c+1, ..., Si+k, i.e., we want to determine Ti+bk/2c+1,
. . . , Ti+k such that for each j in the range for i+ bk/2c+ 1 ≤ j ≤ i+ k we have

1. Tj is orthogonal to Ci+1, . . . , Ci+bk/2c and

2. Tj continues to remain orthogonal to C1, ..., Ci.

So, we define Tj (for each i+ bk/2c+ 1 ≤ j ≤ i+ k) as follows:

Tj = Sj + a linear combination of S′i+1, . . . , S
′
i+bk/2c.

This makes sure that Tj is orthogonal to the cycles C1, . . . , Ci because Sj and all
of S′i+1, ..., S

′
i+bk/2c are orthogonal to C1, . . . , Ci. The coefficients of the linear

combination will be chosen such that Tj will be orthogonal to Ci+1, . . . , Ci+bk/2c.
Let

Tj = Sj + aj1S
′
i+1 + aj2S

′
i+2 + · · ·+ ajbk/2cS

′
i+bk/2c.

We will determine the coefficients aj1, ..., ajbk/2c for all i+ bk/2c+ 1 ≤ j ≤ i+k
simultaneously. Writing all these equations in matrix form, we have


Ti+bk/2c+1

...

...
Ti+k

 = (A I) ·



S′i+1

. . .
S′i+bk/2c
Si+bk/2c+1

. . .
Si+k


whereA is a dk/2e×bk/2cmatrix whose `-th row has the unknowns aj1, ..., ajbk/2c,
where j = i+ bk/2c+ `. And Tj represents a row with the coefficients of Tj as
its row elements.

Let us multiply both sides of this equation with an N ×bk/2c matrix whose
columns are the cycles Ci+1, . . . , Ci+bk/2c. That is,


Ti+bk/2c+1

...

...
Ti+k

·
(
CTi+1 . . . C

T
i+bk/2c

)
= (A I)·



S′i+1

. . .
S′i+bk/2c
Si+bk/2c+1

. . .
Si+k

·
(
CTi+1 . . . C

T
i+bk/2c

)
.

Then the left hand side is the 0 matrix since each of the vectors Ti+bk/2c+1, ..., Ti+k
has to be orthogonal to each of Ci+1, ..., Ci+bk/2c. Let
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(
X
Y

)
=



S′i+1

. . .
S′i+bk/2c
Si+bk/2c+1

. . .
Si+k

 ·
(
CTi+1 . . . C

T
i+bk/2c

)

where

X =

 S′i+1

. . .
S′i+bk/2c

 · (CTi+1 . . . C
T
i+bk/2c

)
and

Y =

 Si+bk/2c+1

. . .
Si+k

 · (CTi+1 . . . C
T
i+bk/2c

)
.

Then

0 = (A I) ·
(
X
Y

)
.

We now look at this problem as a problem in linear algebra.

A Problem in Linear Algebra: Consider the following problem. We are
given an invertible bk/2c × bk/2c matrix X and a dk/2e × bk/2c matrix Y and
we want to find a dk/2e × bk/2c matrix A such that

(A I) ·
(
X
Y

)
= 0 .

Here 0 stands for the dk/2e×bk/2c zero-matrix and I stands for the dk/2e×
dk/2e identity matrix. We need AX+Y = 0 or A = −Y X−1 = Y X−1 since we
are in the field F2. We can determine A in time kω using fast matrix multipli-
cation and matrix inverse algorithms since X is invertible.

Let us now go back to the implementation of update. We have the problem
of the preceding paragraph if we show that X is invertible. The matrix

X =


〈S′i+1, Ci+1〉 . . . 〈S′i+1, Ci+bk/2c〉
〈S′i+2, Ci+1〉 . . . 〈S′i+2, Ci+bk/2c〉

...
...

...
〈S′i+bk/2c, Ci+1〉 . . . 〈S′i+bk/2c, Ci+bk/2c〉

 =


1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1 . . . ∗
...

...
...

...
...

0 0 0 . . . 1


is an upper triangular matrix with 1’s on the diagonal, since each S′j is the
final version of the subset Sj used when Cj is computed, which means that
〈S′j , Cj〉 = 1 and 〈S′j , C`〉 = 0 for all ` < j. Hence, X is invertible. Thus,

A = Y X−1. Hence, we can compute all the coefficients aj1, ..., ajbk/2c for all

12



i+ bk/2c+1 ≤ j ≤ i+k simultaneously using matrix multiplication and matrix
inversion algorithms.

By the implementation of the function update, Lemma 3 follows.

Lemma 3. When k = 1, i.e., we call extend cb({C1, ..., Ci}, Si+1, 1), the vector
Si+1 is orthogonal to {C1, ..., Ci}. And Si+1 always contains the edge ei+1.

Hence, just before we compute Ci+1, we always have a non-zero vector Si+1

orthogonal to {C1, ..., Ci}. And Ci+1 is a minimum weight cycle such that
〈Ci+1, Si+1〉 = 1. Hence, the correctness of FAST-MCB follows from Theorem
1.

4.1 The running time of FAST-MCB

Let us analyze the running time of the algorithm FAST-MCB. The recurrence
of the algorithm is as follows:

T (k) =

{
cost of computing a minimum weight odd cycle Ci in Si if k = 1

2T (k/2) + cost of update if k > 1

Cost of update. The computation of matrices X and Y takes time mkω−1

using the fast matrix multiplication algorithm. To compute X (and similarly Y )
we are multiplying bk/2c×N by N×bk/2c matrices. We split the matrices into
2N/k square blocks and use fast matrix multiplication to multiply the blocks.
Thus multiplication takes time (2N/k)(k/2)ω = O(mkω−1). We can also invert
X in O(kω) time and we also multiply Y and X−1 using fast matrix multipli-
cation in order to get the matrix A. And we use the fast matrix multiplication
algorithm again, to multiply the matrix (A I) with the matrix whose rows are
S′i+1, ...Si+k to get the updated subsets Ti+bk/2c+1, ...Ti+k.

Using the algorithm described in Section 2.1 to compute a shortest cycle Ci
that has odd intersection with Si, the recurrence turns into

T (k) =

{
O(mn+ n2 log n) if k = 1

2T (k/2) +O(kω−1m) if k > 1

This solves to T (k) = O(k(mn + n2 log n) + kω−1m). Thus T (m) = O(mω +
m2n+mn2 log n). Sincemω < m2n, this reduces to T (m) = O(m2n+mn2 log n).

For m > n log n, this is T (m) = O(m2n). For m ≤ n log n, this is T (m) =
O(mn2 log n). Thus we have shown the following theorem.

Theorem 2. A minimum cycle basis of an undirected weighted graph can be
computed in time O(m2n+mn2 log n).

Our algorithm has a running time of O(mω +m · n(m+ n log n)), where the
n(m + n log n) term is the cost to compute all pairs shortest paths. This term
can be replaced with a better term when the graph is unweighted or the edge
weights are integers or when the graph is sparse.
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When the edges of G have integer weights, we can compute all pairs shortest
paths in time O(mn) [23, 24], that is, we can bound T (1) by O(mn). These
algorithms assume a RAM model of computation which allows bitwise and/or
shift operations in constant time. Other shortest path algorithms work in the
addition-comparison model. In the context of our paper, the assumption of
constant time bitwise and shift operations is no restriction, because the linear
algebra related parts of our algorithms’ require constant time multiplication of
numbers of logarithmic length.

When the graph is unweighted or the edge weights are small integers, we can
compute all pairs shortest paths in time Õ(nω) [20, 7]. When such graphs are
reasonably dense, say m ≥ n1+1/(ω−1)poly(log n), then the mω term dominates
the running time of our algorithm. We conclude with the following theorem.

Theorem 3. A minimum cycle basis in a graph with integer edge weights
can be computed in time O(m2n). For unweighted graphs which satisfy m ≥
n1+1/(ω−1)poly(log n), for some fixed polynomial, we have an O(mω) algorithm
to compute a minimum cycle basis.

5 An Approximation Algorithm for Minimum
Cycle Basis

The bottleneck in the running time of our minimum cycle basis algorithm is the
computation of a minimum weight cycle Ci such that 〈Ci, Si〉 = 1. Suppose we
relax our constraint that our cycle basis should have minimum weight and ask
for a cycle basis whose weight is at most α times the weight of an MCB. Then
can we give a faster algorithm?

We show a positive answer to the above question. For any parameter α > 1,
we present below an approximation algorithm which computes a cycle basis
whose weight is at most α times the weight of a minimum cycle basis. To the
best of our knowledge, this is the first time that an approximation algorithm
for the MCB problem is being given.

This algorithm is obtained by relaxing the base step (k = 1) in procedure
extend cb of our FAST-MCB algorithm (Figure 4). In the original algorithm,
we computed a minimum weight cycle Ci+1 such that 〈Ci+1, Si+1〉 = 1. Here,
we relax it to compute a cycle Di+1 such that 〈Di+1, Si+1〉 = 1 and the weight
of Di+1 is at most α times the weight of a minimum weight cycle that has
odd intersection with Si+1. The method of updating the subsets Si would be
identical to the way the update step is done in FAST-MCB.

We compute a set of cycles {D1, . . . , DN} in our approximation algorithm
using the following idea (Figure 5).

The linear independence of the Di’s follows from the existence of Si’s. That
is, 〈Di, Si〉 = 1 while 〈Dk, Si〉 = 0 for all k = 1, . . . , i − 1 shows that Di is lin-
early independent of D1, . . . , Di−1. Similarly, note that the subsets {S1, ..., SN}
are linearly independent since each Si is independent of {Si+1, ..., SN} because
〈Di, Si〉 = 1 whereas 〈Di, Sj〉 = 0 for each j > i.
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For i = 1 to N do the following:

• Let Si be any arbitrary non-zero vector in the subspace orthogonal to
{D1, D2, ..., Di−1}, i.e., Si 6= ~0 and 〈Dk, Si〉 = 0 for k = 1 to i− 1.

• Compute a cycle Di such that 〈Di, Si〉 = 1 and the weight of Di ≤ α ·
the weight of a minimum weight cycle that has odd intersection with
Si.

Figure 5: APPROX-MCB: An α-approximate MCB

Now we would like to prove the correctness of the algorithm in Figure 5.
Let |C| denote the weight of cycle C. We need to show that

∑N
i=1 |Di| ≤

α · weight of MCB. Let Ai be a shortest cycle that has odd intersection with
Si. The set {A1, ..., AN} need not be linearly independent since the subsets Si’s
were not updated according to the Ai’s. The following lemma was originally
shown in [5] in order to give an equivalent characterization of the MCB problem
as a maximization problem. We present a simple proof of the lemma here.

Lemma 4.
∑N
i=1 |Ai| ≤ weight of MCB.

Proof. We will look at the Ai’s in sorted order, i.e., let π be a permutation on
[N ] such that |Aπ(1)| ≤ |Aπ(2)| ≤ ... ≤ |Aπ(N)|. Let {C1, ..., CN} be the cycles
of an MCB and let |C1| ≤ |C2| ≤ ... ≤ |CN |. We will show that for each i,
|Aπ(i)| ≤ |Ci|. That will prove the lemma.

We will first show that 〈Ck, Sπ(`)〉 = 1 for some k and ` with 1 ≤ k ≤ i ≤ ` ≤
N . Otherwise, the N−i+1 linearly independent vectors Sπ(i), Sπ(i+1), ..., Sπ(N)

belong to the subspace orthogonal to C1, ..., Ci; however, this subspace has
dimension only N − i.

This means that |Aπ(`)| ≤ |Ck| since Aπ(`) is a shortest cycle such that
〈Aπ(`), Sπ(`)〉 = 1. But by the sorted order, |Aπ(i)| ≤ |Aπ(`)| and |Ck| ≤ |Ci|.
This implies that |Aπ(i)| ≤ |Ci|.

Since |Di| ≤ α · |Ai| for each i, it follows from the above lemma that∑N
i=1 |Di| ≤ α· weight of MCB. Thus, Theorem 4 follows.

Theorem 4. The linearly independent cycles {D1, ..., DN} computed by the
algorithm APPROX-MCB have weight at most α times the weight of a minimum
cycle basis.

5.1 The running time of APPROX-MCB

Since all the steps of APPROX-MCB, except the base step corresponding to
computing a cycle, are identical to FAST-MCB, we have the following recurrence
for APPROX-MCB:

T (k) =

{
cost of computing an α-stretch cycle Di that is odd in Si if k = 1

2T (k/2) +O(kω−1m) if k > 1
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So the running time of APPROX-MCB depends on which parameter α is
used in the algorithm. We will compute an α-stretch cycle Di that is odd in Si
by using the same method as in Section 2.1. But instead of a shortest (v+, v−)
path in Gi, here we would compute an α-stretch (v+, v−) path. It is easy to see
that the minimum of such paths would correspond to an α-stretch cycle in G
that has odd intersection with Si.

When α = 2, we use the result in [3] to compute 2-stretch paths which
would result in 2-stretch cycles. Then algorithm APPROX-MCB runs in time
Õ(m3/2n3/2) + O(mω). For reasonably dense graphs (say, number of edges
m ≥ n(1.5+δ)/(ω−1.5) for a constant δ > 0), this is an O(mω) algorithm.

For 1 + ε approximation, we use the all pairs (1 + ε)-stretch paths algorithm
[25]. Then we have an Õ(mnω/ε log(W/ε)) + O(mω) algorithm to compute a
cycle basis which is at most 1 + ε times the weight of an MCB, where W is the
largest edge weight in the graph. If m ≥ n1+1/(ω−1)poly(log n) for a constant
δ > 0 and all edge weights are polynomial in n, then APPROX-MCB is an
O(mω/ε log(1/ε)) algorithm.

6 Computing a Certificate of Optimality

We conclude with the problem of constructing a certificate to verify a claim that
a given set of cycles C = {C1, ..., CN} forms an MCB. A certificate is an “easy
to verify” witness of the optimality of our answer.

For example, the sets Si, 1 ≤ i ≤ N in our algorithm from which we calculate
the cycles C = {C1, ..., CN} of the minimum cycle basis, are a certificate of the
optimality of C. The verification algorithm would consist of verifying that the
cycles in C are linearly independent and that each Ci is a minimum weight cycle
such that 〈Ci, Si〉 = 1.

Though asymptotically, this verification algorithm and FAST-MCB have
the same running time, the constants would be much smaller in the verification
algorithm and also this algorithm would be conceptually much simpler. This
motivates the following question: given a set of cycles {C1, ..., CN}, compute its
certificate.

The following algorithm computes witnesses S1, ..., SN given C1, ..., CN .

1. Compute a spanning tree T . Let {e1, ..., eN} be the edges of G \ T .

2. Form the 0-1 N ×N matrix C =
(
CT1 . . . C

T
N

)
, where the i-th column of C

is the incidence vector of Ci over {e1, ..., eN}.
3. Compute C−1. The rows of C−1 are our witnesses or certificate.

If the matrix inversion algorithm returns an error, it means that C is
singular. That is, {C1, ..., CN} are linearly dependent. Hence, they cannot
form a cycle basis.

The rows of C−1 form our witnesses S1, S2, ..., SN . The property that we
want from S1, ..., SN is that for each i, 〈Ci, Si〉 = 1. Since C−1C is the identity
matrix, this property is obeyed by the rows of C−1.
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Suppose each Ci is a minimum weight cycle such that 〈Ci, Si〉 = 1. Then by

Lemma 4, this means that
∑N
i=1 |Ci| ≤ weight of an MCB. Since {C1, ..., CN}

are linearly independent (by the existence of C−1), it means that {C1, ..., CN}
forms a minimum cycle basis.

On the other hand, if for some i, Ci is not a minimum weight cycle such that
〈Ci, Si〉 = 1, then by replacing Ci with a minimum weight cycle that has odd
intersection with Si (as in the proof of Theorem 1), we get a cycle basis with
smaller weight.

Hence, the cycles {C1, ..., CN} form an MCB if and only if each Ci is a
minimum weight cycle such that 〈Ci, Si〉 = 1. Since the inverse of an N × N
matrix can be computed in O(Nω) time, we have the following theorem.

Theorem 5. Given a set of cycles C = {C1, ..., CN} we can construct a certifi-
cate {S1, ..., SN} in O(mω) time.

7 Conclusions

In this paper we considered the problem of computing a minimum cycle basis in
an undirected graph. We gave an O(m2n+mn2 log n) algorithm for this problem
where m is the number of edges and n is the number of vertices. Improved
running time estimates were given in special cases like integer edge weights or
when the graph is unweighted.

We also considered the approximate minimum cycle basis problem. Faster
algorithms were presented for this problem using approximate shortest paths
algorithms. Quite recently faster constant time approximation algorithms were
presented in [14].

It would be very interesting to design a faster algorithm also for the general
problem.
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