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Abstract

Point samples of a surface in R
3 are the dominant output of a multitude of 3D

scanning devices. The usefulness of these devices rests on being able to extract
properties of the surface from the sample. We show that, under certain sampling
conditions, the minimum cycle basis of a nearest neighbor graph of the sample
encodes topological information about the surface and yields bases for the trivial
and non-trivial loops of the surface. We validate our results by experiments.
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1 Introduction

Point samples of a surface in R
3 are the dominant output of a multitude of

3D scanning devices. The usefulness of these devices rests on being able to
extract properties of the surface from the sample. Undoubtedly, the ultimate
application is to form a geometric approximation of the surface based on
the sample. The objective is typically to form a piecewise linear surface (i.e.
triangle mesh) whose geometry and topology are as similar to the original
as possible. For smooth surfaces and sufficiently dense samples, good and
efficient reconstruction algorithms are available, see e.g., the papers [1–8] and
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the survey by Dey [9]. For non-smooth surfaces or sparse samples, the problem
is open.

In some situations, e.g., when the above algorithms do not work satisfactorily,
it is desirable to compute some topological or geometric information about the
surface directly from the sample (e.g. the genus of the surface) without first
performing an explicit reconstruction. Moreover, sometimes this information
can facilitate the reconstruction process itself.

A recent paper by Tewari et al. [10] has shown how to construct a piecewise
linear approximation (i.e. a 3D triangle mesh) of a scanned surface of genus
one by first parameterizing the sample points. This parameterization relies
on the computation of so-called discrete harmonic one-forms, which may be
generated once the basic topological structure of the surface is determined.
More specifically, this is equivalent to computing a basis of the linear subspace
of all trivial loops on the surface. Beyond this application, it is sometimes
necessary to compute a basis of the so-called first homology group of the surface
(containing 2g loops for a surface of genus g) directly from the point cloud.
Informally, the trivial loops are those which bound topological disks on the
surface, otherwise they are non-trivial. This paper addresses these problems,
and shows under which sampling conditions can correct results be obtained.

Our main result is as follows: Let S be a compact manifold in R
3 and let P be

a finite set of points in S. We call P a point sample of S. We show that if S is
a smooth surface and P a sufficiently dense sample of S, the minimum cycle
basis of the nearest neighbor graph of P gives information about the genus of
S and yields bases for the set of trivial and non-trivial loops. Our experiments
suggest that the algorithm also works for some non-smooth surfaces.

For an integer k, the k-nearest neighbor graph Gk = Gk(P ) on P is an undi-
rected graph with vertex set P . It contains an edge between sample points a
and b if b is one of the k points closest to a and a is one of the k points closest
to b. The k-nearest neighbor graph is relatively easy to compute [11] and is
a popular starting point for many algorithms extracting information about S
from P . Some researchers define Gk in an unsymmetric way by requiring that
either b is k-closest to a or a is k-closest to b. We do not know whether our
results apply to the alternative definition.

A generalized cycle or simply cycle in an undirected graph G = G(V, E) is a
set C of edges with respect to which all nodes have even degrees. The sum of
two cycles is their symmetric difference. With the addition operation defined
in this manner, the set of cycles forms a vector space over the field of two
elements, the cycle space of G. A cycle basis is a basis of this vector space.
Every spanning tree gives rise to a basis. Each non-tree edge (i.e. chord) plus
the tree path connecting its endpoints forms a cycle. For a connected graph
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containing n vertices and m edges, every cycle basis contains exactly m−(n−1)
cycles. See [12] for more details. The weight of a cycle is the number of edges in
the cycle and the weight of a cycle basis is the total weight of the cycles in it.
A minimum cycle basis (MCB) is a cycle basis of minimum weight; in general,
it is not induced by a spanning tree. MCBs can be computed efficiently: the
currently best algorithm [13] runs in time O(m2n) using O(m2 + mn) space;
the practical performance seems to be much better [14].

In this paper we show that for suitably nice samples of smooth manifolds of
genus g and sufficiently large k, the k-nearest neighbor graph Gk has a cycle
basis consisting only of short (= length at most 2(k + 3)) and long (= length
at least 4(k + 3)) cycles. Moreover, the MCB is such a basis and contains
exactly m− (n−1)−2g short cycles and 2g long cycles. The short cycles span
the subspace of trivial loops and the long cycles form a homology basis; see
the next section for a definition. Thus, the MCB of Gk reveals the genus of S
and also provides a basis for the set of trivial cycles and a set of generators
for the non-trivial cycles of S. These cycles may then be used to parameterize
P and ultimately generate a piecewise linear manifold surface approximating
S, see Section 4.2.

We prove the statement for smooth manifolds, sufficiently dense samples, and
sufficiently large k. A dense sample is defined in a manner similar to that of
Amenta and Bern [3], as follows: The medial axis of a manifold S embedded
in R

3 is the closure of the set of points in R
3 with more than one nearest

neighbor on S. The local feature size f : S 7→ R assigns to every point in S
its least distance to the medial axis of S. The point sample P is called an
ǫ-sample of S, if every point x ∈ S has a point in P at distance at most ǫf(x).
If in addition ||p − q|| ≥ δf(p) for all distinct p, q ∈ P the sample P is called
an (ǫ, δ)-sample. This definition requires the sample to be dense with respect
to the local feature size, but at the same time samples cannot be arbitrarily
close. Our main result is now as follows: If P is an (ǫ, δ)-sample of a smooth
manifold for sufficiently small ǫ and k is sufficiently large (the meaning of
sufficiently large depends on ǫ and δ), the claim of the preceding paragraph
is true. The claim is also true if we use a weaker (more realistic in practice)
sampling assumption, namely locally uniform ǫ-samples [5].

2 Related Work

Constructing a geometric approximation of a surface from a set of n samples
of the surface has been the topic of many papers over the past decade (e.g. [1–
3,5,4,6–8] and survey by Dey [9]). The objective is typically to form a piecewise
linear surface (i.e. triangle mesh) whose geometry and topology are as similar
to the original as possible. The algorithms above solve the problem for smooth
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surfaces and sufficiently dense samples. The best asymptotic running time is
O(n log n) [5] and efficient implementations are available [6,15]. Certainly, once
this is done, it is relatively easy to extract less detailed information, such as
the genus of the surface or a homology basis. For example, a homology basis
of a manifold 3D mesh may be computed in O(n) time by an algorithm of
Vegter and Yap [16], and a shortest homology basis may be computed in
O(n2 log n + n2g + ng3) by an algorithm of Erickson and Whittlesey [17].

Our method is an alternative way for extracting topological information. It
provably works under the same conditions as the methods above and may work
more often in practice. Also, it shows that the nearest neighbor graph suffices
to deduce the topology and sometimes also the geometry, see Section 4.2.
Interestingly enough, the latter requires knowledge of the basis of trivial loops,
which are usually considered less interesting than the basis of non-trivial loops,
and have not been addressed in prior work.

Another approach to reveal the topological structure of a sampled surface is
to form an abstract simplicial complex on the point set (e.g. the Cech com-
plex [18], see also [19]), and then compute the homology of this combinatorial
object using simplicial homology [20]. This is defined in an manner analogous
to singular homology and can be formulated in a linear algebraic setup. A
theorem of Niyogi et al. [21] shows that for dense enough uniform samples,
the homology of a Cech complex of a sampled manifold is isomorphic to that
of the manifold, thus it suffices to compute these for the complex. More pre-
cisely, if P is ǫ/2-dense in S, i.e., every point in S has a sample point within

distance at most ǫ/2, and ǫ ≤
√

5/3τ where τ = minp∈S f(p) is the minimum
distance of S from its medial axis, and the complex C contains a j−1-simplex,
1 ≤ j ≤ 4, for every set {x1, . . . , xj} of sample points with non-empty common
intersection of the ǫ-balls centered at the points, C has the same homology as
the surface. In general, it is possible to compute the genus (and other Betti
numbers) of a simplicial complex embedded in R

d as the co-rank of a Lapla-
cian matrix derived from the complex, as defined by Friedman [22]. This will
require at least O(s2) time, where s is the size of the complex.

For the special case of a geometric simplicial complex in R
3, the genus can

be computed in time O(s) time [23,24]. However, the Cech complex defined
above is not a geometric complex and hence the results do not apply.

The size s of a Cech complex is in [Ω(n), Ω(n4)]. In practical situations, one can
hope for linear size, but probably with a fairly large constant. We conjecture
that our approach via the nearest neighbor graph is faster and also simpler.
Furthermore, it facilitates the computation of a basis for the set of trivial
cycles, which leads to a natural parameterization of the point cloud.
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3 Some Theory

We prove that our approach works for smooth surfaces, sufficiently dense sam-
ples, and sufficiently large k.

3.1 The Basic Idea

Let S be a compact 2-manifold of genus g with no boundary embedded in
R

3. For the sequel we will need to define a number of topological concepts.
Rather than give a complete formal exposition, which may be found in most
algebraic topology textbooks (e.g. [20]), we provide a more intuitive informal
set of definitions.

A closed simple curve on S is called a loop. The elements of the first homology
group of S are equivalence classes of loops. The identity element of this ho-
mology group is the equivalence class of separating loops, namely, loops whose
removal disconnects the surface. Two homology loops are in the same homol-
ogy class if one can be continuously deformed into the other via a deformation
that may include splitting loops at self-intersection points, merging intersect-
ing pairs of loops, or adding and deleting separating loops. A loop is trivial if
it is a separating loop and is non-trivial otherwise. A homology basis of S is
any set of 2g loops whose homology classes span all non-trivial loops.

Let P be a sample of S and Gk its k-nearest neighbor graph. For any edge
(a, b) of Gk we define a curve in S connecting a and b. Let us parameterize
the segment ab by length. Let p(t) = a + t(b− a) be the point with parameter
value t, 0 ≤ t ≤ 1 and let q(t) be a point on S nearest to p(t). We assume
that q(t) is unique. Then, q(t) traces a continuous curve on S connecting
a and b, which we denote by γab. In this way, we obtain a drawing of Gk

on S and cycles in Gk induce loops in S. In particular, cycles can induce
trivial or non-trivial loops, in which case we call them trivial or non-trivial
cycles, respectively. The assumption that q(t) is unique is not very stringent.
Observe that if q(t) is not unique, p(t) is a point on the medial axis and hence
max(f(a), f(b)) ≤ ||a − b||/2.

We next give general conditions under which every minimum cycle basis of Gk

contains exactly 2g long cycles, the long cycles induce a homology basis of S
over the reals, and all short (= non-long) cycles are trivial.

(1) L(γab) ≤ c1||a− b|| where c1 is a constant, i.e., the length of the curve γab

is not much larger than the length of the segment ab.
(2) There is a subgraph M of Gk (all vertices and a subset of the edges) such

that
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• the drawing restricted to M is an embedding,
• M is a mesh of genus g for S,
• the faces of M have bounded size, say at most c2 edges, and
• for every edge e ∈ Gk \ M , the shortest path in M connecting a and b

has bounded length, say bounded by c3.
(3) The minimal length of a non-trivial loop of S is Lmin and for every

edge (a, b) ∈ Gk the distance between its endpoints a and b is at most
Lmin/(2c1 max(c2, c3 + 1)).

Theorem 1 If the conditions above hold, every MCB of Gk contains exactly
m − (n − 1) − 2g short (length less than max(c2, c3 + 1)) and exactly 2g long
(length at least 2 max(c2, c3 + 1)) cycles. Moreover, the long cycles induce a
basis of the first homology group of S over the reals.

PROOF. The embedding of M has mM edges and f faces where f−mM +n =
2 − 2g. Consider the following set B of cycles: all face cycles of M but one
and for each edge e = (a, b) in Gk \ M the cycle consisting of e plus the
shortest path in M connecting a and b. Any cycle in B has length at most
max(c2, c3+1) and the cycles in B are independent. There are f−1+m−mM =
mM − n + 2 − 2g − 1 + m − mM = m − (n − 1) − 2g cycles in B.

Any cycle basis of Gk must contain at least 2g non-trivial cycles and these
cycles induce loops which span the homology group of S. Consider any non-
trivial cycle. It has length at least Lmin. For any edge (a, b) of Gk, the length
of γab is at most Lmin/(2 max(c2, c3 +1)) and hence any non-trivial cycle must
contain at least 2 max(c2, c3 + 1) edges.

We have now shown that there are m − (n − 1) − 2g independent cycles of
length at most max(c2, c3 + 1) and that every non-trivial cycle consists of at
least 2 max(c2, c3+1) edges. Consider now any MCB B∗ of Gk. It must contain
at least 2g long cycles. Assume that it contains less than m−(n−1)−2g short
cycles. Then, at least one cycle in B, call it C, is not spanned by the short
cycles in B∗, i.e., the representation of C as a sum of cycles in B∗ contains a
cycle D which is not short. Thus we can improve the total length of B∗ by
replacing D by C.

In Sections 3.3 and 3.4 we substantiate the theorem for smooth curves. We
will actually prove a stronger result. Note that in the previous theorem we
did not use the first condition. This condition will be useful later on when we
will also replace the global condition of maximal edge length (third condition
above) by a local condition depending on the local feature size.
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3.2 Sampling and Restricted Delaunay Triangulations

The local feature size is 1-Lipschitz continuous, i.e.,

Lemma 2 (Amenta and Bern [3]) For any two points p and q on S, |f(p)−
f(q)| ≤ ||p − q||.

Let DP and VP denote the Delaunay and the Voronoi diagram of P . The
Voronoi cell Vp ⊂ VP for a point p ∈ P is defined as the set of points x ∈ R

3

such that ||x − p|| ≤ ||q − x|| for any q ∈ P and q 6= p. The Delaunay
triangulation of P is the dual of VP . It has an edge pq if and only if Vp, Vq

share a face, has a triangle pqr if and only if Vp, Vq, Vr share an edge, and a
tetrahedron pqrs if and only if Vp, Vq, Vr and Vs share a Voronoi vertex. We
assume that the input sample P ∈ R

3 is in general position and that no vertex
of VP lies on S.

Consider the restriction of the Voronoi diagram VP to the surface S. This de-
fines the restricted Voronoi diagram VP |S, with restricted Voronoi cells Vp|S =
Vp ∩S. It is said to satisfy the ball property if each Vp|S is a topological 2-ball,
each nonempty pairwise intersection Vp|S ∩ Vq|S is a topological 1-ball, and
each nonempty triple intersection Vp|S ∩ Vq|S ∩ Vr|S is a single point.

The dual of the restricted Voronoi diagram defines the restricted Delaunay
triangulation DP |S. In more detail, an edge pq is in DP |S if and only if Vp|S∩Vq|S
is nonempty and a triangle pqr is in DP |S if and only if Vp|S ∩ Vq|S ∩ Vr|S
is nonempty. Our general position assumptions guarantee that there is no
tetrahedron in DP |S. It is known that the restricted Delaunay edges for an
ǫ-sample are short.

Lemma 3 (Amenta and Bern [3], see also Giesen and Wagner [25])
Let P be an ǫ-sample of S with ǫ < 1. Then (1) The distance between p ∈ P
and its nearest neighbor in P \ {p} is at most 2ǫ

1−ǫ
f(p) and (2) if pq is an edge

of the restricted Delaunay triangulation, ||p − q|| ≤ 2ǫ
1−ǫ

min{f(p), f(q)}.

For ǫ ≤ 0.08, the restricted Voronoi diagram is known to have the ball prop-
erty [3]. In this case the restricted Delaunay triangulation is a simplicial surface
homeomorphic to S [26]. The k-neighborhood graph contains the restricted
Delaunay triangulation if P is a sufficiently nice sample of S.

Lemma 4 (Andersson et al. [27]) Let P be an (ǫ, δ)-sample of S, let w =
2ǫ

1−ǫ
and let k ≥ (δ(1+w)+w)2

δ2(1−w)2−w4 . Then, the restricted Delaunay triangulation DP |S
is a subgraph of Gk.

Funke and Ramos [5] have shown how to turn any ǫ-sample into a locally
uniform ǫ-sample by using decimation. Locally uniform ǫ-samples are related
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to (ǫ, δ)-samples, but technically more involved. Locally uniform ǫ-samples are
considered a more realistic assumption in practice.

We have chosen to state our results in terms of (ǫ, δ)-samples, for ease of
exposition. We remark that the need for an (ǫ, δ)-sample instead of simply an
ǫ-sample, is the property that each sample point has only a constant number
of restricted Delaunay neighbors. Since locally uniform ǫ-samples also have
this property, our results are valid in this case as well. We remark that locally
uniform ǫ-samples are much more practical than (ǫ, δ)-samples.

We also state one more useful fact. At each point p ∈ S, there are two tangent
medial balls centered at points of the medial axis. The vectors from p to the
centers of its medial balls are normal to S, and S does not intersect the
interiors of the medial balls. Since f(p) is at most the radius of the smaller
medial ball, S is also confined between the two tangent balls of radius f(p).

3.3 Short Cycles

In this section we show that for an appropriate sampling density there exists
a linearly independent set of m − (n − 1) − 2g short cycles.

3.3.1 Warm-Up: The Planar Case

Consider a finite set P of points in the plane, its nearest neighbor graph Gk,
its Delaunay triangulation D(P ), and assume that D(P ) is contained in Gk.
We describe a cycle basis consisting only of short cycles. In the next section,
we will generalize the approach of this section to manifolds in R

3.

Consider the following set B of cycles. It contains (a) the face cycles of all
bounded faces of the Delaunay triangulation and (b) for each edge e = (a, b) ∈
Gk \ DP the cycle formed by e and the shortest path from a to b in DP .

Lemma 5 B is a cycle basis and any cycle in B has length at most k + 1.

PROOF. First we show that we have the right number of cycles. Let mp be
the number of edges of DP and let mk be the number of remaining edges. The
dimension of the cycle space is N = m − n + 1 = mp + mk − n + 1. DP is a
planar graph and therefore mp−n+1 = f −1 where f is the number of faces.
Thus, N = f − 1 + mk = |B|.

The bounded faces of DP are clearly linearly independent. The remaining
cycles are also linearly independent since each of them contains an edge which
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a

b

Fig. 1. An induced path from a to b formed with edges of the triangulation.

is not contained in any other cycle in B. This proves the first part of our
lemma.

We come to the second part. Bounded faces of DP have length 3. Consider
next an edge e = (a, b) ∈ Gk \ DP . The straight line segment ab from a to
b crosses some cells of the Voronoi diagram of P and induces a path a =
b0, b1, . . . , bl−1, bl = b in DP , namely the path through the sites owning these
cells, see Figure 1. The path is entirely contained in the circle with ab as its
diameter [28].

It remains to show that this cycle is short. Since e = (a, b) is an edge of Gk,
there can be at most k − 1 other points in this circle and hence any cycle in
B has length at most k + 1.

This cycle basis is not necessarily the minimum cycle basis of the graph.

3.3.2 The 3-dimensional Case

We consider essentially the same set of cycles as in the preceding section:
(a) all but one faces of the restricted Delaunay triangulation, and (b) for each
remaining edge e = (a, b) ∈ Gk\DP |S the cycle consisting of e plus the shortest
path from a to b in the restricted Delaunay triangulation. As in the planar
case, these cycles are linearly independent. It remains to prove that they are
short. In this section we will prove the following theorem.

Theorem 6 Let P be an ǫ-sample of S, let k < log 1+ǫ

1−ǫ

3
2
, and assume that

DP |S ⊆ Gk. Let (a, b) ∈ Gk \ DP |S. Then, there is a path from a to b in DP |S
of length at most 2k + 5.

Consider an edge e = (a, b) ∈ Gk\DP |S. The curve γab crosses some cells of the
restricted Voronoi diagram and induces a path pab = (a = b0, b1, . . . , bl−1, bl =
b) in the restricted Delaunay diagram, namely the path through the sites
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owning the cells. Since Gk contains the restricted Delaunay triangulation, pab

exists in Gk.

Lemma 7 Let e = (a, b) ∈ Gk \ DP |S and let B be the ball with ab as its
diameter. If the induced path pab is contained in B, then the cycle consisting
of e plus the direct path from a to b on the triangulation has length at most
k + 1.

PROOF. Since e ∈ Gk, the ball B contains at most k − 1 other points apart
from a and b.

The above lemma generalizes the planar case. Unfortunately, we are unable
to prove that pab runs within B. We therefore argue somewhat differently. We
first show that either there is a very short path in DP |S from a to b or both a
and b are far away from the medial axis. In the latter case we show that pab is
contained in a slightly bigger ball but still sufficiently small for our purposes.

Lemma 8 Let a and b be two points in P and assume that there is a path of
length l in DP |S from a to b. Let α = (1+ ǫ)/(1− ǫ). Then, α− 1 = 2ǫ/(1− ǫ)
and

||a − b|| ≤ (αl − 1) min(f(a), f(b)).

PROOF. We use induction on the length of the path. Let the path from a
to b in DP |S be a = q0, q1, q2, . . . , ql = b. For the base case l = 1 we have
||a − q1|| ≤ (α − 1)f(a) by Lemma 3. Assume that the statement holds for
paths of length l − 1, then

||a − b|| = ||a − ql||
≤ ||a − ql−1|| + ||ql−1 − ql||
≤ ||a − ql−1|| + (α − 1)f(ql−1) by Lemma 3

≤ ||a − ql−1|| + (α − 1)(f(a) + ||a − ql−1||) by Lemma 2

= (α − 1)f(a) + α||a − ql−1||
≤ (α − 1)f(a) + α(αl−1 − 1)f(a) by induction

= (αl − 1)f(a).

The same argument applies to b instead of a.

Lemma 9 Let (a, b) ∈ Gk, let λ ≥ 1 and assume

k < log 1+ǫ

1−ǫ

1 + λ

λ
. (1)
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Then, either there is a path of length at most k from a to b in the restricted
Delaunay triangulation or

f(a), f(b) > λ||a − b||. (2)

PROOF. Recall that α = 1+ǫ
1−ǫ

. Thus, inequality (1) implies αk−1 < 1/λ. Let
a = q0, q1, q2, . . . , ql−1, ql = b be a shortest path from a to b in the restricted
Delaunay triangulation. Furthermore, assume l > k and f(a) ≤ λ||a − b||.
Lemma 8 implies that

||a − qi|| ≤ (αi − 1)f(a) ≤ (αk − 1)f(a) < f(a)/λ ≤ ||a − b|| for 1 ≤ i ≤ k,

and hence there are k points closer to a than b is, a contradiction. The argu-
ment works symmetrically for b.

The above lemma states that it is enough to prove Theorem 6 when f(a), f(b) >
λ||a−b||. From now on, we proceed under this assumption for some λ ≥ 1. Let
us parameterize the segment ab by length. Let p(t) = a+ t(b−a) be the point
with parameter value t, 0 ≤ t ≤ 1 and let q(t) be the point on M nearest to
p(t). Note that q(t) is unique, because otherwise p(t) would be a point of the
medial axis contradicting the fact that f(a) > ||a − b||. Finally, let c denote
the mid-point of the segment ab and s(t) denote the site of the Voronoi cell
containing q(t).

Our goal is to prove that s(t) belongs to a ball of radius
√

3
2
||a − b|| centered

at c (Lemma 13) and that this ball contains at most 2(k + 3) sample points.
We begin with the latter.

Lemma 10 For (a, b) ∈ Gk and c as defined above, the ball B′ of radius√
3

2
||a − b|| centered at c contains at most 2(k + 3) sample points.

PROOF. Consider the ball Ba with center a and radius ||a−b||. Every sample
point in the interior of this ball is closer to a than b is. Thus, Ba has at most
k points in its interior. Also Ba has at most four points in its boundary by our
non-degeneracy assumption. Similarly, the ball Bb with center b and radius
||a − b|| also contains at most k + 4 points.

The ball B′ is completely contained in the union of Ba and Bb and thus it
contains at most 2(k + 4)− 2 points. The −2 accounts for the fact that a and
b are contained in both balls.

Next we estimate the distance from c to s(t).
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Lemma 11 ||c − s(t)|| ≤ ||a − b||/2 + 2||p(t) − q(t)||

PROOF. Assume w.l.o.g that ||a − p(t)|| ≤ ||b − p(t)||, otherwise we do the
computation with b. By the triangle inequality, ||c−s(t)|| ≤ ||c−p(t)||+||p(t)−
q(t)||+ ||q(t)− s(t)||. Since q(t) is closer to s(t) than any other sample point,
||q(t)− s(t)|| ≤ ||q(t)− a||. Moreover, ||q(t)− a|| ≤ ||q(t)− p(t)||+ ||p(t)− a||.
Finally ||a − p(t)|| + ||p(t) − c|| = ||a − b||/2.

It remains to bound ||p(t) − q(t)|| as a function of ||a − b||. We first estimate
the distance of q(t) from the medial axis.

Lemma 12 f(q(t)) > (λ − 1)||a − b||

PROOF. Assume w.l.o.g that ||a − p(t)|| ≤ ||b − p(t)||, otherwise we do
the computation with b. Since q(t) is the point in S closest to p(t), we have
||a− q(t)|| ≤ ||a−p(t)||+ ||p(t)− q(t)|| ≤ 2||a−p(t)|| ≤ ||a− b||. By Lemma 2
f(q(t)) ≥ f(a)−||a−q(t)|| and hence f(q(t)) ≥ f(a)−||a−b|| > (λ−1)||a−b||.

Lemma 13 For λ ≥ 2, ||p(t)−q(t)|| ≤
√

3−1
4

||a− b|| and ||c−s(t)|| ≤
√

3
2
||a−

b||.

PROOF. Consider the point q(t). By Lemma 12 there are two medial balls
with radius at least (λ−1)||a−b|| tangent to q(t). The surface passes between
these balls and does not intersect their interior, in particular, a and b do not
lie in the interior of these balls. Thus, the worst case (when ||p(t) − q(t)||
compared to ||a− b|| is maximized) occurs, when both lie on the boundary of
one of these balls (see Figure 2). Let m be the center of this ball and use Bm

to denote the ball. Consider the perpendicular bisector of segment ab passing
through m. It intersects segment ab at c and ball Bm at v. Also, p(t) is on the
segment q(t)m.

Distance ||p(t)− q(t)|| is upper bounded by ||c− v|| and thus we are left with
bounding ||c− v||. Referring to Figure 2 we see that the triangle acm is right.
Thus, ||c − m||2 = ||a − m||2 − ||a − c||2. Moreover,

||a − m|| = ||v − m|| = ζ ||a − b|| for some ζ ≥ λ − 1,

and ||a − c|| = ||a − b||/2. Combining all these,

||c − m|| =

√

ζ2 − 1

4
· ||a − b||.
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q(t)

a

b

p(t)c

v

Fig. 2. Bounding ||p(t) − q(t)|| in terms of ||a − b||.

Finally, ||c − v|| = ζ ||a − b|| − ||c − m|| and hence

||p(t) − q(t)|| ≤ ||c − v|| =



ζ −
√

ζ2 − 1

4



 ||a − b||

≤ (1 −
√

3/4)||a − b|| <

√
3 − 1

4
||a − b||.

This proves the first part of the lemma. The second part follows now from
Lemma 11 since, ||c − s(t)|| ≤ ||a − b||/2 + 2||p(t) − q(t)|| ≤

√
3||a − b||/2.

It is now easy to complete the proof of Theorem 6. Set λ = 2. Then, pab is
contained in the ball B′ and B′ contains at most 2(k+3) sample points. Thus,
pab has length at most 2k+5. Together with the edge e we get a cycle of length
at most 2(k + 3).

Recall that our goal is to satisfy the assumptions of Section 3.1. If we combine
Theorem 6 and Lemma 8 we get that the edges of Gk are small in length.

Corollary 14 Let α = (1 + ǫ)/(1 − ǫ). For any edge e = (a, b) ∈ Gk,

||a − b|| ≤ (α2k+5 − 1) min{f(a), f(b)}. (3)

Moreover, we will need the following lemma which can be easily derived
from [25, Lemma 10 and Theorem 4].

Lemma 15 (Giesen and Wagner [25]) Let a and b be two points of S such
that ||a−b|| ≤ η ·min(f(a), f(b)) with η ≤ 1/4. Then, L(γab) ≤ 4||a−b|| where
L(γab) denotes the length of γab.

Using Lemma 15 we can set c1 to 4 in Section 3.1.
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Fig. 3. Proving Theorem 16.

3.4 Long cycles

In this section we make precise how non-trivial cycles are long. The idea is
simple; non-trivial cycles have a certain minimum length and edges of Gk are
short. We will actually prove a stronger result. The length of a non-trivial
cycle is bounded from below by the maximum feature size of any point on the
loop. Combined with Lemma 15, we will obtain the desired result.

Assume that η = α2k+5 − 1 ≤ 1
4
. Let C be any non-trivial cycle of Gk. Substi-

tuting each edge (a, b) ∈ C by the curve γab gives us a non-trivial loop γ on
S. By Lemma 15 and Corollary 14 we get

L(γ) ≤ 4
∑

(a,b)∈C

||a − b|| ≤ 4
∑

(a,b)∈C

η min(f(a), f(b)),

and if |C| denotes the number of edges of C,

L(γ) ≤ 4η|C| max
a∈C

f(a). (4)

In order to get a lower bound on |C| we need to relate γ to its distance to the
medial axis. More precisely, we are going to show the following theorem which
might be of independent interest.

Theorem 16 Let γ be any non-trivial loop on S, then L(γ) ≥ max
p∈γ

f(p).

PROOF. Let p be a point on γ with maximum distance from the medial axis
and assume L(γ) < f(p) for the sake of contradiction. Let β be a non-trivial
loop of different homology class going through p (see Figure 3). At each point
x ∈ β there are two tangent balls with radius f(x) which do not contain any
point of S in their interior. One of these tangent balls when moving it along
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β (and adjusting its size accordingly) produces an object T , topologically
equivalent to a torus, around which γ loops non-trivially.

Let Bp be the ball with center p and radius 5L(γ)/6. For all x ∈ Bp∩β, the local
feature size is large, namely, f(x) ≥ f(p)−||p−x|| > L(γ)−5L(γ)/6 = L(γ)/6
and hence for x ∈ Bp ∩ β the ball defining T has radius at least L(γ)/6.

The loop γ stays inside a ball of radius L(γ)/2 centered at p and hence well
inside Bp. Since γ loops around T its length it least 2πL(γ)/6 > L(γ), a
contradiction.

We can now establish that non-trivial cycles in Gk are long.

Theorem 17 For appropriate values of ǫ, δ and k any non-trivial cycle C ∈
Gk has length |C| ≥ 1

4η
where η = α2k+5 − 1 ≤ 1

4
.

PROOF. Using inequality (4) and Theorem 16 we obtain

L(γ) ≤ 4η|C| max
a∈C

{f(a)} ≤ 4η|C|L(γ),

and the theorem follows.

Corollary 18 If η = α2k+5 − 1 < 1
16(k+3)

then all non-trivial cycles in Gk

have length larger than 4(k + 3).

PROOF. We fix k and ǫ to some constants according to (a) our assumptions
in Section 3.3, and (b) such that η < 1

16(k+3)
. Then, by Theorem 17 we have

|C| ≥ 1
4η

> 4(k + 3).

Putting everything together establishes Theorem 1.

Corollary 19 If the conditions in Section 3.1 hold, the sampling density is
high enough and k is large enough: every MCB of Gk contains exactly m −
(n − 1) − 2g short (length less than 2(k + 3)) and exactly 2g long (length at
least 4(k + 3)) cycles.

PROOF. Use DP |S as M in the assumptions of Section 3.1. By Lemma 15 we
can set c1 = 4. Theorem 6, Corollary 14 and Theorem 17 prove the remaining
assumptions. The corollary follows by the proof of Theorem 1 for c2 = 3 and
c3 = 2k + 5.
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ǫ valid k chosen k η short-cycles long-cycles

upper bound lower bound

10−2 [15, 20] 15 1.014 36 -

5 × 10−3 [14, 40] 14 0.391 34 -

10−3 [14, 202] 14 0.068 34 4

5 × 10−4 [14, 405] 14 0.033 34 8

10−4 [14, 2027] 14 0.0066 34 38

5 × 10−5 [14, 4054] 14 0.0033 34 76

Table 1
Evaluation of the various conditions for the separation of the minimum cycle basis
for different values of the sampling density ǫ.

3.5 Putting It All Together

Our assumptions so far suggest that given a (ǫ, δ)-sample and w = α−1 = 2ǫ
1−ǫ

,
we should choose k such that:

(δ(1 + w) + w)2

δ2(1 − w)2 − w4
≤ k < log 1+ǫ

1−ǫ

3

2
. (5)

There are values of ǫ such that inequality (5) cannot be satisfied. However,
as ǫ decreases the right hand side increases while the left hand side decreases.
Thus, both conditions can always be simultaneously satisfied for some dense
enough sample. The above conditions are what is required for the trivial cycles
of the MCB to have length at most 2(k + 3).

For the lower bound on the length of the non-trivial cycles of the MCB, we
also require that η = α2k+5 − 1 ≤ 1

4
, and in order for the length of the non-

trivial cycles to reach the desired number |C| ≥ 1
4η

> 4(k + 3) we require that

η = α2k+5 − 1 < 1
16(k+3)

.

We fix δ to 3w/8 ≈ 3ǫ/4 and evaluate, in Table 1, the bounds for different
values of ǫ.

Remark The lower and upper bounds presented in Table 1 are not tight.
Somewhat large constants appear due to the proof technique used. Perhaps,
by using some other proximity graph instead of the k-neighborhood or by
performing a different analysis, the bounds can be improved. This is especially
true for the value of ǫ required by the theory in order for the non-trivial cycles
to be longer than the trivial ones. In practice this is true for smaller values of
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Fig. 4. Point clouds of (a) double torus model with 767 points and (b) “bumpy torus”
model with 5044 points. The red cycles are the long non-trivial cycles extracted from
the MCB of Gk for k = 10.

k and sampling densities. The next section presents experimental data which
confirms this.

4 Experimental Validation

4.1 Genus Determination

This section presents experimental data on the size of trivial and non-trivial
cycles in the MCBs of point clouds sampled from compact manifolds. The main
observation is that the MCB cycles are separated into the two categories, short
trivial and long non-trivial, for rather small values of k and sampling density.
Moreover, the upper bound on the length of the trivial cycles is much less
than 2(k + 3) and the method also works for some non-smooth samples.

We study three different examples: (a) a genus 2 double torus with a sparse
point cloud (Figure 4), (b) a genus 1 surface with a dense point cloud (Fig-
ure 4), and (c) a genus 1 non-smooth surface (Figure 6).

Double torus: Since the model has genus 2 we expect the MCB to reveal
exactly 4 non-trivial cycles. The minimum value of k for this event to happen
is 6. All cycles but four of the MCB have length at most 8, two cycles have
length 13 and two 24. As k increases, this gap grows, for k = 8 two cycles have
length 11, two others have length 24 and all the rest at most 5. This continues
to be true as we increase k as long as the edges of the k-neighborhood graph
do not shortcut a handle.
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Fig. 5. Distribution of the lengths of the MCB cycles of Gk of the double and bumpy
torus models for k = 8.
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Fig. 6. Point cloud of the non-smooth model with 6078 points. On the left is the
original surface and the point cloud with the 2 non-trivial cycles revealed by the
MCB. On the right is the distribution of the lengths of the MCB cycles. All for
k = 22.

Although the proof of Lemma 10 does not apply in the case of the unsymmetric
k-neighborhood graph, where an edge is added even if only one endpoint is
a k-nearest neighbor of the other, in practice we observe the same behavior.
The values of k are even smaller for this case. For minimum k = 5 there are
two cycles of length 11, two of length 24 and the rest at most 6. For k = 9 all
MCB cycles are triangles except two with length 9 and two with length 14.
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Fig. 7. Attempts to reconstruct the non-smooth model by Tight-Cocone [6] on the
left and by the algorithm in [10] on the right.

Bumpy torus: The situation improves if the sampling is dense. The “bumpy
torus” model has genus one and thus we expect the MCB to reveal two non-
trivial cycles. For k = 6 the two non-trivial cycles have length 35 and 42 and
the rest at most 27. Due to the density of the sample as we increase k this
difference becomes more noticeable. For k = 10 the non-trivial cycles have
length 22 and 30 and the rest at most 12. For k = 12 the two non-trivial have
length 20 and 26 and the rest at most 9. Note also that in all these examples
almost all trivial cycles have length 3 or 4. For example, when k = 12 about
99% of the trivial cycles are triangles. See Figure 5 for a histogram of the
cycles length when k = 8.

Wedge torus: The non-smooth surface has genus one. We expect that as
long as k is not too large, our method should reveal two non-trivial cycles.
Figure 6 shows the two non-trivial cycles of the MCB for k = 22. Note that
this is a difficult instance for surface reconstruction. Even Cocone [29] based
implementations fail on this example, and the same is probably true for most
Delaunay methods. See Figure 7.

Discussion: In the examples above, the MCB was able to reveal the genus.
There were exactly 2g long cycles and long and short cycles are clearly dis-
cernible by length. However, in practice, if g is unknown, and the sampling
density not as high as it should be, how can g be determined from the MCB?
We suggest the following heuristic. Let l be the minimal integer such that
the MCB contains no cycle of length between l and 2l inclusive. Then, 2g is
the number of cycles of length larger than l. If this number is odd, this is an
indication of insufficient sampling density or a wrong value of k.

What can go wrong when the sample is not sufficiently dense or the value
of k is not chosen properly? When k is too small, the MCB might contain
long trivial cycles. When k is too large, Gk may contain edges between points
distant from each other in S and hence spurious long cycles may enter the
basis, see Figure 8. The figure also shows that non-smoothness by itself is not
an obstacle.
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too large k
spurious edge

edges are ok

too small k
long trivial cycles

Fig. 8. Several difficult situations. In the left figure due to symmetry a small choice
for k (k = 4) leads to long trivial cycles. In the upper right figure a large value of
k results in an edge which connects two parts of the surface which are distant from
each other. The lower right figure shows that edges near non-smooth features are
not a problem as long as k is not too large.

Fig. 9. Double and bumpy torus under Gaussian noise. In red color are the non-triv-
ial cycles extracted from the MCB of Gk.

What about noisy samples? Figure 9 shows the double and bumpy torus under
a small amount of Gaussian noise. The MCB was still able to distinguish trivial
and non-trivial cycles. The main observation here is that a small amount of
noise has little effect in instances where the non-trivial cycles are relative long
w.r.t the sampling density. On the other hand we expect problems if the length
of the non-trivial cycles is relatively close to the length of the trivial cycles.

Running time: The current fastest MCB algorithm requires O(m2n) time
in unweighted graphs. Since the k-nearest neighbor graph has O(kn) edges we
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need O(k2n3) time to compute an MCB. Due to this running time our method
is restricted to small-medium instances.

This running time can be reduced if we use an approximate MCB. Note that
a constant factor approximate MCB is bound to have similar properties as
the MCB itself, at least for higher sampling densities. A 2q − 1 approximate
MCB can be computed in time O(qmn1+2/q + mn(1+1/q)(ω−1)) [30] where ω <
2.376 [31] is the exponent of matrix multiplication. For denser graphs a 2q−1
approximate MCB can be computed in time O(n3+2/q).

We performed our experiments on a Pentium M 1.7GHz with 1GB of memory.
For k = 8 the MCB computation on the double torus took 0.36 seconds while
on the bumpy torus 12.01 seconds. The wedge torus required 1242 seconds
since k was 22 and thus the graph was a lot denser. We also experimented
with a 3-approximate MCB which in all cases managed to extract the non-
trivial loops. For k = 8 a 3-approximate MCB on the double torus took 0.15
seconds and on the bumpy torus 2.66 seconds. For k = 22 on the wedge torus
we spend 15.57 seconds to compute a 3-approximate MCB. We remark that
even a 5-approximate MCB was able to separate properly the cycles on the
wedge torus. The 5-approximate MCB computation required 5.16 seconds.

4.2 Application to Surface Reconstruction

In this section we outline the surface reconstruction algorithm of Tewari et
al. [10] for surface reconstruction. The interested reader is referred to their
paper for more details.

Tewari et al. [10] show that if a basis for the trivial loops of the manifold
may be computed from the sample of a 2-manifold of genus 1, it is possible
to parameterize the sample set, and then construct a piecewise-linear approx-
imation to the surface. They use the MCB of the k-nearest neighbor graph
to extract this basis, assuming that the non-trivial cycles are the two longest
ones. They observed that this is correct if the sample is dense enough, but
did not prove anything in this respect. Theorem 1 above shows under which
conditions this reconstruction algorithm provably constructs a triangulation
homeomorphic to the surface.

The parameterization based approach has its origins in Tutte’s “spring embed-
der” for planar graphs [32]. Tutte introduced a simple, yet powerful method for
producing straight-line drawings of planar graphs. The vertices of the outer
face are mapped to the vertices of a convex polygon and all other vertices
are placed at the centroid of their neighbors. Algorithmically, this amounts
to solving a linear system of equations. If we use pv to denote the location of
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Fig. 10. Reconstruction of the bumpy torus model by the algorithm in [10].

vertex v and Nv to denote the set of neighbors of v, this means

pv =
∑

w∈Nv

λvwpw and λvw = 1/|Nv| (6)

for every interior vertex v. Tutte proved that the coordinates computed in
this way define a non-degenerate embedding for any 3-connected planar graph.
Floater [33] showed that the result stays true if vertices are placed at arbitrary
convex combinations of their neighbors, i.e.,

∑

w∈Nv

λvw = 1 and λvw ≥ 0.

For the sequel, it is convenient to rewrite Equation (6) as

∑

w∈Nv

λvw(pw − pv) = 0

and to introduce xvw for the vector from v to w in the embedding. Gortler
et al. [34] extended the method to embeddings onto the torus. Given a 3-
connected map (= graph + cyclic ordering on the edges incident to any ver-
tex) of genus one, they viewed undirected edges {v, w} as pairs of directed
edges and associated a variable xvw with every directed edge. They used the
equations:

xvw + xwv = 0 for all edges (v, w) (symmetry)
∑

w∈Nv

λvwxvw = 0 for all vertices v (center of gravity)

∑

(w,v)∈δf

xwv = 0 for all faces f (face sums)

The first class of equations ensures that the vector from w to v is the same as
the vector from v to w, the second class ensures that v is a convex combination
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of its neighbors, and the third class ensures that the vectors along any face
boundary sum to zero. There are 2m unknowns and m+n+f equations. Two
equations are redundant (one center of gravity constraint and one face sum
constraint) and hence the rank of the system is m + n + f − 2 = 2m− 2 (this
uses the Euler theorem f − m + n = 2 − 2g = 0). Gortler et al. , extending
results of Gu and Yau [35], proved that two independent solutions can be used
as the x and y-coordinates of an embedding onto a torus.

Floater and Reimers [36] observed that Tutte’s method can also be used to
reconstruct surfaces with boundary of genus zero and Tewari et al. [10] ex-
tended the observation to closed surfaces of genus one, as follows. Construct
the k-nearest neighbor graph Gk of P and then set up the equations introduced
above. Face sum constraints are needed for a basis of the trivial cycles and this
is exactly what an MCB yields. The solution of the system defines an embed-
ding of P onto the torus. A triangulation, say the Delaunay triangulation, of
the embedded point set is computed and then lifted back to the original point
set. In this way a genus-1 surface interpolating P is obtained. The surface may
have self-intersections. Postprocessing can be used to improve the quality of
the mesh.

See Figure 7 and 10 for an attempt to reconstruct the non-smooth model and
the reconstruction of the bumpy torus model by this algorithm. Reconstruction
of non-smooth surfaces is an open problem.

5 Conclusions

In this work we have shown that given a suitably nice sample of a smooth
manifold of genus g and sufficiently large k, the k-nearest neighbor graph of
the sample has a cycle basis consisting only of short (= length at most 2(k+3))
and long (= length at least 4(k + 3)) cycles. Moreover, the MCB is such a
basis and contains exactly m − (n − 1) − 2g short cycles and 2g long cycles.
The short cycles span the subspace of trivial loops and the long cycles form
a homology basis. Thus, the MCB reveals the genus of S and also provides
a basis for the set of trivial cycles and a set of generators for the non-trivial
cycles of S. These cycles may then be used to parameterize P and ultimately
generate a piecewise linear manifold surface approximating S.

In our experiments we observe that the length separation of trivial and non-
trivial cycles happens already for relatively sparse samples. In addition, this
threshold is less than 2(k +3). Furthermore, our experiments suggest that the
method also works for some non-smooth surfaces.
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