
Minimum Cycle Bases: Faster and Simpler

KURT MEHLHORN and DIMITRIOS MICHAIL

Max-Planck-Institut für Informatik

Saarbrücken, Germany

We consider the problem of computing exact or approximate minimum cycle bases of an undi-
rected (or directed) edge-weighted graph G with m edges and n vertices. In this problem, a
{0, 1} ({−1, 0, 1}) incidence vector is associated with each cycle and the vector space over F2 (Q)
generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if
it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is
minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number
of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface
reconstruction.

There exists a set of Θ(mn) cycles which is guarantied to contain a minimum cycle basis. A
minimum basis can be extracted by Gaussian elimination. The resulting algorithm [Horton 1987]
was the first polynomial time algorithm. Faster and more complicated algorithms have been found
since then.

We present a very simple method for extracting a minimum cycle basis from the candidate set,
which improves the running time for sparse graphs. Furthermore, in the undirected case by using
bit-packing we improve the running time also in the case of dense graphs. Our results improve the
running times of both exact and approximate algorithms. Finally, we derive a smaller candidate
set with size in Ω(m) ∩ O(mn).

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph
Algorithms

General Terms: Algorithms, Design

Additional Key Words and Phrases: minimum cycle basis, sparse basis, cycle space

1. INTRODUCTION

Let G = (V, E) be an undirected graph with m edges and n vertices. A cycle of
G is any subgraph of G in which each vertex has even degree. Associated with
each cycle C is an incidence vector x, indexed by E, where for any e ∈ E, xe is 1
if e is an edge of C and 0 otherwise. The vector space over F2 generated by the
incidence vectors of cycles is called the cycle space of G. We assume w.l.o.g. that G
is connected. It is well known that this vector space has dimension N = m−n+1,
where m is the number of edges of G and n is the number of vertices. A maximal
set of linearly independent cycles is called a cycle basis. The edges of G have non-

Corresponding author: Dimitrios Michail
Authors’ addresses: Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123
Saarbrücken, Germany; email: {mehlhorn, michail}@mpi-inf.mpg.de .
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, October 2007, Pages 1–0??.

2 · Kurt Mehlhorn and Dimitrios Michail

negative weights assigned to them. A cycle basis where the sum of the weights of the
cycles is minimum is called a minimum cycle basis of G. We use the abbreviation
MCB to refer to a minimum cycle basis.

It is well known that the set of cycles of a graph form a matroid. Thus, the MCB
problem is solvable by the greedy algorithm. However, since a graph may have
an exponential number of cycles, further ideas are required for a polynomial time
algorithm. See the paper of Lee and Ryan [1992] concerning algorithmic aspects of
matroid theory. Moreover, the books by Deo [1974] and Bollobás [1998] contain an
in-depth coverage of cycle bases.

One of the most important areas of application of the MCB problem is electric
networks [Swamy and Thulasiraman 1981; de Pina 1995; Berger et al. 2004]. Many
problems arising in the design and analysis of electric networks can be formulated in
graph-theoretic terms. In fact, in the analysis of complex electric networks by graph
theoretical methods, a basic problem is to determine the solvability of the “network
equation”, a system of algebraic differential equations that describes the relation of
currents and voltages in a network as functions of time. In order to check structural
solvability of that system quickly by a heuristic matching approach, fast algorithms
are needed that compute sparse representations. The equations corresponding to
the Kirchhoff voltage law are critical, since for the remaining equations, a sparse
representation is readily available. Hence the central problem is that of computing
a sparse cycle basis to describe the “voltage law” part of the system.

Other applications are in structural engineering [Cassell et al. 1976], chemistry
and biochemistry [Gleiss 2001; Leydold and Stadler 1998], and surface reconstruc-
tion from point clouds [Tewari et al. 2006]. In most applications, the computation
of an MCB is a preprocessing step. The use of an MCB ensures sparseness and
translates into faster running times of the main algorithm.

There has been a considerable amount of work concerning minimum cycle bases.
An early paper is by Stepanec [1964]. Horton [1987] presented the first polyno-
mial time algorithm. Faster and/or alternative algorithms were later presented by
de Pina [1995], Golynski and Horton [2002], Berger et al. [2004], and Kavitha et
al. [2004]. The current fastest algorithm [Kavitha et al. 2004] has running time
O(m2n+mn2 log n). This assumes fast matrix multiplication. Without fast matrix
multiplication the fastest running time is O(m3 + mn2 log n) [de Pina 1995].

In the case of directed graphs (base field Q instead of F2) the methods used are
similar. However, the different base field introduces arithmetic complications since
the numbers handled can grow large. Moreover, directed cycle bases do not neces-
sarily project onto undirected cycle bases and thus extra ideas are required. The
best running times are O(m3n+m2n2 log n) deterministic and O(m2n+mn2 log n)
randomized [Hariharan et al. 2006].

1.0.0.1 Our results.. We present faster algorithms in both undirected and di-
rected graphs. For undirected graphs we derive an O(m2n/ logn+n2m) algorithm,
which is by a logarithmic factor faster for all graph densities. For directed graphs
we get an O(m3n) deterministic and an O(m2n) randomized algorithm. This is
a logarithmic improvement for sparse graphs. Also, our algorithm is simpler and
requires only O(n) shortest path computations (instead of O(nm) as in [de Pina
1995; Kavitha et al. 2004]). This may lead to further improvements.

ACM Journal Name, Vol. V, No. N, October 2007.

Minimum Cycle Bases: Faster and Simpler · 3

We also present faster approximation algorithms for the MCB problem. We give a
2-approximation with an O(m2

√

n/ log n+n2m+mω) running time. This improves

by a factor of log3/2 n the best known for relatively dense graphs. Moreover, we
give an improved algorithm which computes a (2k − 1)-approximate MCB, for any
integer k > 1, of an undirected graph with non-negative edge weights in time
O(n3+2/k/ logn + n3+1/k). This is again a logarithmic improvement.

The structure of the paper is as follows. In Section 2 we give some preliminaries
and discuss previous work and algorithms. There is a set of Θ(nm) candidate cycles
which is guarantied to contain an MCB; it can be constructed by n shortest path
computations. In Section 3 we present a subset of this set which is still guarantied
to contain an MCB. The new candidate set can still have size Ω(mn); however, it
should lead to an improvement in practice. Extracting the correct cycles from these
sets is the difficult part. In Section 4 we present a new simple and efficient way
to extract these cycles. All these results are presented w.r.t undirected graphs. In
Section 4.2 we extend them to directed graphs. Finally we show how to use these
results in order to obtain approximate MCBs in Section 5 and conclude with some
open problems in Section 6.

2. PRELIMINARIES AND RELATED WORK

Let T be any spanning tree in G(V, E), let e1, . . . , eN be the edges of E \T in some
arbitrary but fixed order, and let eN+1, . . . , em be the edges in T in some arbitrary
but fixed order. We frequently view cycles in terms of restricted incidence vectors,
that is, each cycle is a vector in {0, 1}N . It is easy to see that linear independence
of the restricted incidence vectors implies linear dependence of the full incidence
vectors and vice versa. Thus, we may restrict attention to the restricted incidence
vectors when discussing questions of linear independence.

We use S to denote subsets of E \T . Each such subset gives rise to an incidence
vector in {0, 1}N . We use 〈C, S〉 to denote the standard inner product of vectors
C and S. We say that a vector S is orthogonal to C if 〈C, S〉 = 0. In the field F2,
〈C, S〉 = 1 if and only if C contains an odd number of edges of S.

For a cycle C, we use w(C) =
∑

e∈C w(e) to denote its weight. We use wG(MCB)
to denote the weight of a minimum cycle basis of graph G. When it is clear by the
context we omit G and write w(MCB).

2.1 Previous algorithms

We briefly review previous work and algorithms.
The first approach is due to Horton [1987], later improved by Golynski and

Horton [2002]. The running time of their algorithm is O(mωn). Horton proved
that a set of O(mn) cycles contains an MCB. An MCB can then be found by
determining the least weight N = m − n + 1 linearly independent cycles from this
set, using Gaussian elimination. The set can be described as follows: For a vertex
v ∈ V and edge e ∈ E, let C[v, e] be the cycle consisting of e and the shortest paths
from v to the endpoints of e in G \ e. Horton’s collection, denoted by H, contains
cycles C[v, e] for all v ∈ V and e ∈ E.

The second approach, due to de Pina [1995], was further improved in [Kavitha
et al. 2004] to reach a time bound of O(m2n + mn2 log n). This is faster than

ACM Journal Name, Vol. V, No. N, October 2007.

4 · Kurt Mehlhorn and Dimitrios Michail

the collection approach. In these algorithms the cycles of an MCB are computed
sequentially. Assume that i − 1 cycles C1, C2, . . . , Ci−1 of an MCB are already
known. In order to compute cycle Ci we first compute a non-zero vector Si ∈
{0, 1}N , called a support vector, s.t. 〈Cj , Si〉 = 0 for all 1 ≤ j < i. Then cycle
Ci is the shortest cycle C in the graph G s.t. 〈C, Si〉 = 1. The fact that Ci is
not orthogonal to Si ensures linear independence, the shortest cycle computation
ensures the optimality of the resulting cycle basis.

The algorithm operates in N ≤ m phases, one for each cycle of the MCB. Com-
puting all necessary support vectors can be performed in O(mω) time. Computing
each cycle is performed by a reduction to n single source shortest path computa-
tions in an appropriate graph G(Si), which is different in each phase 1 ≤ i ≤ N .
Thus, we need O(n(m + n log n)) for each cycle using Dijkstra’s algorithm, for a
total of O(m2n + mn2 log n). This time bound dominates the O(mω) bound.

3. A REDUCED COLLECTION

In this section we define a collection of cycles R, which is a subset of Horton’s
collection, and still contains an MCB. Asymptotically R does not improve on the
size of H but in practice should be smaller.

The graph has non-negative edge weights. We can deal with length zero edges
in a pre- and post-processing step. Contract length zero edges and compute a
minimum cycle basis in the contracted graph. For any connected component of
length zero edges choose a spanning tree. Lift the MCB to the original graph by
inserting appropriate paths of length zero edges, i.e., if u and v are contracted into
the same node and a cycle uses edges incident to u and v, then fill the gap with a
path of length zero edges. Also for each length zero edge which does not belong to
the spanning tree, add a length zero cycle. In this way, we obtain an MCB of the
original graph.

So, we may assume that all edge weights are positive. Let now Z be a feedback

vertex set. A feedback vertex set is a set of vertices covering all cycles, i.e., every
cycle in the graph passes through a node in Z. Such a set can be found for example
by a greedy approach and Z = V certainly works. Computing the minimum feed-
back vertex set is known to be APX-hard. For undirected graphs a 2-approximation
can be computed efficiently [Bafna et al. 1999]. For each v ∈ V let Tv be a shortest
path tree rooted at v. We define the reduced Horton collection R to be all cycles
C[z, e] such that z ∈ Z and the endpoints of e lie in different subtrees of Tz (in
other words the least common ancestor of the endpoints of e is the root z).

Let C be any cycle and let z(C) ∈ Z∩C be a vertex which minimizes the number
of non-tree edges of C w.r.t Tz. We call z(C) the base node of C.

Lemma 3.1. R contains a minimum cycle basis.

Proof. Consider the greedy algorithm run on the set of all cycles. Cycles are
ordered lexicographically according to

(weight of C, number of edges outside Tz(C), number of edges in C) .

Observe that the cycles in R have second coordinate equal to one and hence come
first among cycles of equal weight.

ACM Journal Name, Vol. V, No. N, October 2007.

Minimum Cycle Bases: Faster and Simpler · 5

p = C[z, u] p pq = C[z, v] q

C[z, u] C[z, u] C[z, v]

C2 C2 C2C1 C1 C3

z(C)

u ve

z(C)

u ve

z(C)

u ve

q = C[z, v]

Fig. 1. The three cases in the proof of Lemma 3.1 (not showing symmetrical cases).

Let C be the first cycle that is selected by the greedy algorithm and that does
not belong to R. Let z = z(C) and let e = (u, v) be a non-tree edge on C. Let p
and q be the tree path in Tz connecting z to u and v, respectively. The cost of p is
at most the cost of either cycle path from z to u and the cost of q is at most the
cost of either cycle path from z to v.

Consider the cycles C1 = C[z, u] ◦ p, C2 = p ◦ e ◦ q, C3 = q ◦ C[z, v]. The weight
of C1, C2 and C3 is at most the weight of C.

We now distinguish cases (see Figure 3). Assume first that e is the only non-tree
edge on C. Then C1 and C3 are trivial cycles since p = C[z, u] and q = C[z, v]. If
u and v lie in distinct subtrees of Tz, then C ∈ R. This is a contradiction to the
choice of C. So assume that u and v belong to the same subtree. Let x be their
least common ancestor and let C′ be the cycle consisting of e and the tree paths
(in Tz) from x to v and u, respectively. Observe that these are not necessarily tree
path in Tx nor do we necessarily have x ∈ Z. Since all edges have positive weight
w(C′) < w(C) and hence C′ is considered before C. Also C = C′ as cycles; it is
only the representation which is different. So C is not the first cycle selected by
the greedy algorithm that does not belong to R.

Assume next that C contains more than one non-tree edge. In this case at least
one of the cycles C1 and C3 is non-trivial, and thus either C = C1 + C2 + C3, or
C = C1 + C2, or C = C2 + C3. In either case with respect to z all cycles have at
least one fewer non-tree edge than C and hence this is also true with respect to
their respective base vertices.

Thus all these cycles are before C in the ordering. Also, at least one of them
is independent of the current basis. So it was independent at the time is was
considered and hence should have been added. This either contradicts our definition
of C (first cycle outside R added to the basis) or the operation of the greedy
algorithm (a cycle not added although it is independent).

Since R ⊆ H, Horton’s collection also contains an MCB. For an alternative proof
see [Horton 1987]. We use A to denote the candidate set. If A = R, Z denotes a
node set covering all cycles, if A = H, Z = V .

4. THE NEW ALGORITHM

The algorithm proceeds as follows. Assume that we have cycles C1, . . . , Ci−1 of an
MCB and a non-trivial support vector Si ∈ {0, 1}N s.t. 〈Cj , Si〉 = 0 for all 1 ≤ j ≤
i − 1. In order to obtain Ci we look for the shortest cycle C ∈ A s.t. 〈C, Si〉 = 1.

ACM Journal Name, Vol. V, No. N, October 2007.

6 · Kurt Mehlhorn and Dimitrios Michail

input : Graph G(V, E).
output : An MCB of G.

Construct shortest path trees Tv for all z ∈ Z.
Construct candidate set A (sorted) in non-decreasing order of weight.

for i = 1 to N do

Compute non-trivial vector Si ∈ {0, 1}N s.t 〈Cj , Si〉 = 0 for 1 ≤ j < i

(as described in [Kavitha et al. 2004]).
For all trees Tv , v ∈ Z update vertex labels based on Si.
For each cycle C in the (sorted) candidate set A, compute 〈C, Si〉 using
the labels.
Return the least-weight cycle non-orthogonal to Si.

Fig. 2. The new algorithm

We do not describe here how to compute Si in each phase, the interested reader is
referred to [Kavitha et al. 2004]. We next show that the algorithm computes an
MCB. The proof is almost identical with the proof of de Pina’s original algorithm,
the only difference being that we search for cycles only in set A.

Theorem 4.1. The above algorithm returns an MCB.

Proof. Suppose not and let C1, . . . , CN ′ be the set of cycles returned by the
algorithm. Then, there exists an i, 0 ≤ i ≤ N ′ such that there exists a minimum
cycle basis B ⊆ A that contains {C1, . . . , Ci} and either i = N ′ < N or there is no
MCB in A containing {C1, . . . , Ci+1}.

Let B = {B1, . . . , BN}. In the former case there is clearly a Bj with 〈Bj , Si+1〉 =
1. Otherwise, we get that Si+1 = ∅ which is a contradiction. Thus, the algorithm
finds a Ci+1 and the case cannot arise. In the latter case, there are cycles in B s.t.
Ci+1 = B1 + B2 + · · · + Bk. We know that 〈Ci+1, Si+1〉 = 1 which implies that
there exists a 1 ≤ j ≤ k s.t. 〈Bj , Si+1〉 = 1. Note that both Ci+1 and Bj belong
to A and by construction Ci+1 is the shortest cycle in A non-orthogonal to Si+1.
Thus, w(Ci+1) ≤ w(Bj).

Let B′ = B ∪ {Ci+1} \ {Bj}. Then, w(B′) ≤ w(B). We also claim that B′ is a
basis. Observe that 〈Ci+1, Si+1〉 = 1 while 〈Cq, Si+1〉 = 0 for all 1 ≤ q ≤ i which
means that Bj cannot be any of the cycles C1, . . . , Ci. Moreover, if B′ is not a basis
then B is also not a basis.

Thus, B′ is an MCB in A s.t. {C1, . . . , Ci, Ci+1} ⊆ B′, a contradiction.

4.1 Cycles computation

Now that we established correctness we go on showing how to implement the search
for such cycles. We begin by describing the previous approach and then go on to
describe the new approach.

During phase i we have a non-trivial vector Si and need to compute the shortest
cycle in G s.t. 〈C, Si〉 = 1. Such a cycle C can be computed as follows. We set
up an auxiliary graph G† with two copies, say v′ and v′′, for each vertex v, and
two copies e′ and e′′ for each edge e = (u, v) ∈ E. If e ∈ Si, the copies are (u′, v′′)
and (u′′, v′) and if e 6∈ Si, the copies are (u′, v′) and (u′′, v′′). Then a shortest

ACM Journal Name, Vol. V, No. N, October 2007.

Minimum Cycle Bases: Faster and Simpler · 7

cycle C with 〈C, Si〉 = 1 corresponds to a shortest path connecting the two copies
of some vertex v minimized over all v. Such a path can be found by n shortest
path computations in the auxiliary graph. The time spend for this reduction is
O(n(m + n log n)) for each cycle.

The new computation is done by extracting the correct cycle from the candidate
collection. We thus need to describe how we represent A. For each vertex v ∈ Z
we run a single-source shortest path computation and store the resulting shortest
path tree, call it Tv; and for each w its distance d(v, w) from v. Tree Tv encodes
at most m cycles, namely cycles C[v, e] for all e ∈ E \ Tv s.t. the least common
ancestor of the endpoints of e is the root of Tv. Computation of the |Z| trees
requires O(n(m + n logn)) time.

For practical purposes we can also do the following. After computing all trees
we also compute the length of all cycles in time O(nm). Finally we sort these
O(nm) cycles in non-decreasing weight in time O(nm log n). This sorting is not
really necessary for our algorithm’s correctness.

Consider now phase i. Given the support vector Si ∈ {0, 1}N and a tree Tv we
traverse the tree from the root to the leaves. For each node w ∈ Tv we compute the
label (with respect to Si) ℓv(w). This label ℓv(w) is equal to 〈pv(w), Si〉 ∈ {0, 1}
where pv(w) denotes the path from v to w in Tv. This is done in O(n) time for
each tree and thus O(n|Z|) ∈ O(n2) for all trees.

Then we go over our sorted list of cycles. For a cycle C[v, e] we find Tv and the
endpoints of e = (u, w) in the tree. We assume that we can do this in constant time
by storing reverse pointers to the trees. Using ℓv(u), ℓv(w) and whether e belongs to
Si we can compute in constant time the value of 〈C[v, e], Si〉. We traverse our sorted
list until we find the first cycle C with an odd intersection with Si, i.e., 〈C, Si〉 = 1.
This cycle is Ci. Thus, searching for the cycle requires O(|Z|m) ∈ O(nm) time.
Since the algorithm needs to compute N ≤ m cycles C1, . . . , CN we perform the
above procedure at most m times. This gives us an O(m2n) algorithm. Observe
that the new algorithm is not only faster, but also simpler.

We next describe an improvement of the above technique to time O(nm2b +
m(n2 +nm/b)+T) where b is a parameter and T = mω is the time to compute the
support vectors. Setting b = 1

2 log m results in an O(m2n/ logn + mn2) algorithm.
The idea behind this improvement is the following. Consider an edge e = (u, v)

and the cycles C[v, e] for all v ∈ Z. We want to compute the inner product of these
cycles with Si and find the shortest non-orthogonal cycle in time O(n/ log n). We
do this by forming two vectors, one for u and one for v which contain values ℓw(v)
and ℓw(u) for all w ∈ Z. Moreover, we form a third vector which is either all ones
or all zeroes depending on whether e ∈ Si. All three vectors can be packed into
words of logarithmic length and thus we can do a bitwise x-or in O(n/ log n) time.
Each entry of the result corresponds to a vertex w of the graph and the value of
the entry is the inner product of cycle C[w, e] with Si. However, among the cycles
which are non-orthogonal with Si we need to find the one with minimum length.
In order to do this in o(n) we perform some preprocessing. We next describe the
above idea in more detail.

Assuming a fixed numbering of the vertices, we divide the vertices into blocks of
b vertices each. We perform the following precomputation. Consider a fixed block

ACM Journal Name, Vol. V, No. N, October 2007.

8 · Kurt Mehlhorn and Dimitrios Michail

B of vertices. There are 2b subsets of B. For each edge e and each block B we
compute a table of size 2b with one entry for each subset A of B. Call this entry
ie,B(A). We have

ie,B(A) = v where v ∈ A and C[v, e] is the cheapest cycle

among all cycles {C[z, e] | z ∈ A} .

For each e and B we can compute the table in time O(2b), so the total time of
precomputation is O(mn2b).

We now come to each phase i. In the first part, we compute a |Z| × n matrix.
For each node w and each tree Tv we compute the label ℓv(w) of w in Tv. Index the
rows by v and the columns by w. We next compute a compressed version of this
matrix. We pack b entries of each column in one word of size b. All of this takes
time O(n2).

We next scan the edges one by one. Consider edge e = (u, w). We scan the
columns corresponding to u and w in parallel. For each block B, we compute the
x-or of the corresponding block in column u, column w and vector of all ones (if
the label of e is one, i.e., 〈{e}, Si〉 = 1) or the vector of all zeroes (if the label of
e is zero, i.e., 〈{e}, Si〉 = 0). This gives us a subset A of B. It is the subset of
vertices v ∈ B such that 〈C[v, e], Si〉 6= 0. We index the appropriate table with A
and obtain the best cycle. All of this takes constant time per block and hence time
O(nm/b) per phase.

Theorem 4.2. A minimum cycle basis of an undirected graph with non-negative

edge weights can be computed in time O(m2n/ log n + n2m).

The above theorem assumes a RAM model of computation which allows bitwise
operations in constant time. In the context of our paper this assumption is no re-
striction because the linear algebra related part1 of our algorithm requires constant
time multiplication of numbers of logarithmic length.

4.2 Directed graphs

In directed graphs the situation is similar. A cycle in a directed graph is a cycle
in the underlying undirected graph with edges traversable in both directions. A
{−1, 0, 1} edge incidence vector is associated with each cycle: edges traversed by
the cycle in the right direction get 1 and edges traversed in the opposite direction
get −1. The cycle space is the space generated by these cycle vectors over Q. Note
that the weight of a cycle is simply the sum of the weight of its edges, independent
of the orientation of these edges.

Liebchen and Rizzi [2005] showed that the directed version of H contains a di-
rected MCB. Similarly, the approach with the support vectors computes an MCB.
We use [Hariharan et al. 2006] as background material. In phase i given a non-
trivial support vector Si ∈ ZN s.t. 〈Cj , Si〉 = 0 for 1 ≤ j ≤ i − 1, the algorithm
computes the shortest cycle C in G s.t. 〈C, Si〉 6= 0. However, since the base field is
no longer F2 the running times of deterministic algorithms suffer from extra cost in
arithmetic. Si is now a vector with integer coordinates. The coordinates are as large

1Computing the support vector Si in each phase i is performed using fast matrix multiplica-
tion [Kavitha et al. 2004].

ACM Journal Name, Vol. V, No. N, October 2007.

Minimum Cycle Bases: Faster and Simpler · 9

as NN and also the scalar product can be as large as NN . Computing the support
vectors deterministically can be performed in Õ(mω+1). Using randomization the
required time is O(mω) for a 3/4 success probability. In the randomized algorithm
one computes modulo a single prime of value about N2 and in the deterministic
algorithm one computes modulo N such primes.

Based on the above, two algorithms have been designed, a deterministic with
running time O(m3n + m2n2 log n) and a randomized with O(m2n + mn2 log n).
We show how to get rid off the logarithmic factors in sparse graphs.

The approach used in Section 4 can be used to compute the shortest cycle C[v, e]
with 〈C[v, e], Si〉 6= 0 (mod p) where p is prime as stated above. The algorithm
computes again the shortest path trees, using undirected single source shortest
path computations. We then make the trees directed by introducing the directions
of the edges of the graph G. During phase i given Si we again process each tree.
We traverse Tv top-down and compute for each node w ∈ Tv the label ℓv(w) =
〈pv(w), Si〉(mod p) ∈ Z where pv(w) denotes the path from the root of Tv to w.
Given the labels we can find the shortest cycle needed among the directed A in
time O(nm). For the deterministic algorithm we need to compute modulo N such
primes, thus getting an O(nm2) algorithm for each cycle.

This approach is faster and significantly simpler than previous methods which
used complicated modifications of Dijkstra’s algorithm with multiple frontiers.

Theorem 4.3. A minimum cycle basis in a directed graph with non-negative

edge weights can be computed in time O(m2n) with success probability 3/4 and in

time O(m3n) deterministically.

5. APPROXIMATION ALGORITHMS

It was shown in [Kavitha et al. 2004] that the support vectors approach produces
an ǫ-approximate MCB if in each phase 1 ≤ i ≤ N we compute a cycle C non-
orthogonal with Si and C is an ǫ-approximation of the shortest cycle in G non-
orthogonal with Si. The computation of such an approximate cycle is reduced to n
approximate shortest path computations in an appropriate graph G(Si). Note that
in each phase i we do shortest paths in a different graph. Recently, Baswana and
Kavitha [2006] developed a new algorithm to compute 2-approximate paths. The
algorithm has an O(m

√
n log n + n2) expected running time. Using this algorithm

the approach in [Kavitha et al. 2004] yields an O(m2
√

n log n+n2m+mω) expected
running time algorithm for a 2-approximate MCB.

In this section we develop faster algorithms which compute a 2-approximate MCB
for undirected graphs. Recently, Kavitha et al. [2007] constructed a set H2 ⊆ H
of O(m

√
n log n) cycles and proved that it contains a 2-approximate MCB. Con-

structing the n shortest path trees and identifying which of the cycles in H are part
of H2 can be done in expected time O(n(m + n logn)). Then it is straightforward
to use our new approach with set H2 without the extra bit packing. This would
give us an O(m2

√
n logn + n2m + mω) time algorithm. However, by changing the

definition of ie,B(A) in order to return only vertices such that C[v, e] ∈ H2, we get
an extra logarithmic speedup.

Theorem 5.1. A 2-approximate MCB of an undirected graph with non-negative

edge weights can be computed in expected time O(m2
√

n/ logn + n2m + mω).

ACM Journal Name, Vol. V, No. N, October 2007.

10 · Kurt Mehlhorn and Dimitrios Michail

In the same paper, for any integer k > 1, a (2k − 1)-approximation algorithm is
presented. This is a general technique (for both undirected and directed graphs)
where the approximate MCB computation is reduced to the computation of an
MCB of a (2k − 1)-spanner with O(n1+1/k) edges plus an additional O(mn1+1/k)
term. Combining this reduction with our new algorithm we get the following.

Theorem 5.2. A (2k−1)-approximate MCB, for any integer k > 1, of an undi-

rected graph with non-negative edge weights can be computed in time O(n3+2/k/ log n+
n3+1/k).

An important corollary of the above theorem is that an O(log n) approximation in
undirected graphs is computed in O(n3) time.

6. CONCLUSIONS AND OPEN PROBLEMS

We presented exact and approximate algorithms for computing minimum cycle
bases in undirected and directed graphs. Our new technique improves the running
time by a logarithmic factor, in some cases only for sparse graphs, in other for dense
as well. We remark that the important case is sparse graphs, commonly appearing
in practice. We also believe that this new approach is much simpler and more likely
to be further improved. It brings together all previous research on MCB algorithms.

This brings Horton’s collection approach into the foreground and, thus, raises an
important open question. We would like to asymptotically reduce the size of A,
identifying a smaller set guarantied to contain an MCB. This would immediately
improve all algorithms.

Furthermore, our algorithms exhibit an O(n2m) factor resulting from the label
computation when traversing the n shortest path trees in each of the m phases.
Is it possible to do bit compression while doing the traversal, thus reducing this
factor to O(n2m/ logn). This would imply o(n3) algorithms for sparse graphs and
would be a first important step into designing an O(mω) time algorithm for all
graph densities.

REFERENCES

Bafna, V., Berman, P., and Fujito, T. 1999. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12, 3, 289–297.

Baswana, S. and Kavitha, T. 2006. Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In Proceedings of the 47th Annual IEEE FOCS.

Berger, F., Gritzmann, P., and de Vries, S. 2004. Minimum cycle basis for network graphs.
Algorithmica 40, 1, 51–62.

Bollobas, B. 1998. Modern Graph Theory. Springer-Verlag.

Cassell, A. C., Henderson, J. C., and Ramachandran, K. 1976. Cycle bases of minimal
measure for the structural analysis of skeletal structures by the flexibility method. In Proc.
Royal Society of London Series A. Vol. 350. 61–70.

de Pina, J. 1995. Applications of shortest path methods. Ph.D. thesis, University of Amsterdam,
Netherlands.

Deo, N. 1974. Graph Theory with Applications to Engineering and Computer Science. Prentice
Hall.

Gleiss, P. M. 2001. Short cycles, minimum cycle bases of graphs from chemistry and biochemistry.
Ph.D. thesis, Fakultät Für Naturwissenschaften und Mathematik der Universität Wien.

Golynski, A. and Horton, J. D. 2002. A polynomial time algorithm to find the minimum cycle
basis of a regular matroid. In 8th Scandinavian Workshop on Algorithm Theory.

ACM Journal Name, Vol. V, No. N, October 2007.

Minimum Cycle Bases: Faster and Simpler · 11

Hariharan, R., Kavitha, T., and Mehlhorn, K. 2006. Faster randomized and deterministic

algorithms for minimum cycle bases in directed graphs. Preliminary versions of the results in
this paper appeared in ICALP’05 and ICALP’06. submitted for publication.

Horton, J. D. 1987. A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM
Journal of Computing 16, 359–366.

Kavitha, T., Mehlhorn, K., and Michail, D. 2007. New approximation algorithms for minimum
cycle bases of graphs. In 24th Annual Symposium on Theoretical Aspects of Computer Science
(STACS). Lecture Notes in Computer Science, vol. 4393. 512–523.

Kavitha, T., Mehlhorn, K., Michail, D., and Paluch, K. E. 2004. A faster algorithm for
minimum cycle basis of graphs. In 31st International Colloquium on Automata, Languages
and Programming, Finland. 846–857.

Lee, J. and Ryan, J. 1992. Matroid applications and algorithms. ORSA Journal on Comput-
ing 4, 1, 70–96.

Leydold, J. and Stadler, P. F. 1998. Minimal cycle bases of outerplanar graphs. Electron. J.
of Combinatorics 5, 1–14.

Liebchen, C. and Rizzi, R. 2005. A greedy approach to compute a minimum cycle basis of a
directed graph. Inf. Process. Lett. 94, 3, 107–112.

Stepanec, G. F. 1964. Basis systems of vector cycles with extremal properties in graphs. Uspekhi
Mat. Nauk 19, 171–175.

Swamy, M. N. S. and Thulasiraman, K. 1981. Graphs, Networks, and Algorithms. John Wiley
& Sons, New York.

Tewari, G., Gotsman, C., and Gortler, S. J. 2006. Meshing genus-1 point clouds using discrete
one-forms. Computers and Graphics. to appear.

ACM Journal Name, Vol. V, No. N, October 2007.

