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Abstract

We experimentally study the problem of assigning applicants to posts. Each applicant pro-
vides a preference list, which may contain ties, ranking a subset of the posts. Different opti-
mization criteria may be defined which depend on the desired solution properties. The main
focus of this work is to assess the quality of matchings computed by rank-maximal and popular
matching algorithms and compare this with the minimum weight matching algorithm which is
a standard matching algorithm that is used in practice.

Both rank-maximal and popular matching algorithms use common algorithmic techniques,
which makes them excellent candidates for a running time comparison. Since popular matchings
do not always exist, we also study the unpopularity of matchings computed by the aforemen-
tioned algorithms. Finally, extra criteria like total weight and cardinality are included, due to
their importance in practice. All experiments are performed using structured random instances
as well as instances created using real-world datasets.

1 Introduction

Consider the scenario where a set of applicants A has an interest in obtaining a set of posts P
and suppose that associated with each member of A is a preference list (possibly including ties)
comprising a subset of elements of P. A matching of A to P is an allocation of each applicant to
at most one post such that each post is filled by at most one applicant. Stated differently, it is a
matching in the bipartite graph G = (A∪P, E) where E consists of all pairs (a, p) where p belongs
in the ordered preference list of a. In order to represent ordered preference lists we assume that
each edge e = (a, p) ∈ E has a rank denoting the position of post p in the preference list of a.

In this setting, applicants have preferences over posts but posts are indifferent between ap-
plicants. We say that such an instance is a one-sided preference matching instance. When both
sides of the bipartite instance express preferences, the problem is the stable marriage problem. In
either case, there has been considerable research in the economics and algorithmics communities
concerning these scenarios. The interested reader, for the case of one-sided preference matchings
which is the focus of this work, is referred to [25, 12, 28]. The preference matching problem appears
in many real-world scenarios such as assigning students to universities, applicants to jobs, papers
to referees, etc.
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Rank-maximality [13] is one optimization measure that considers applicants collectively. Let us
call an edge that is the i-th choice of an applicant, a rank i edge. Rank-maximal matchings first
try to maximize the number of rank one edges. Then, given the maximum number of rank one
edges, rank two edges are maximized, and so on. Although rank-maximal matchings favor some
applicants, which applicants are favored is dependent on the complete setting, not on the individual
users’ choices.

Popular matchings, first studied by Gärdenfors [7] in the context of the stable marriage problem,
try to find matchings which are preferred by the majority of the participants. Given a matching
M , an applicant a ∈ A is either unmatched in M , or matched to some post denoted by M(a). We
say that an applicant a ∈ A prefers matching M ′ to M if (i) a is matched in M ′ and unmatched in
M , or (ii) a is matched in both M and M ′ and a prefers M ′(a) to M(a). M ′ is more popular than
M , denoted by M ′ � M , if the number of applicants that prefer M ′ to M exceeds the number of
applicants that prefer M to M ′. A matching M is popular if there is no matching M ′ that is more
popular than M . When only one side has preferences, Abraham et al. [1] gave a polynomial time
algorithm to compute a popular matching or to report that none exists. Extensions of the problem
have also been studied, see for example [19, 22].

The notion of popular matchings is a specialization of the Condorcet criterion in voting sys-
tems [5]. When viewed in such a context, matchings are candidates, applicants vote for matchings
and ties are allowed in the preference lists of the voters. The Condorcet criterion announces a
winner if that candidate can win a two-candidate election against all other candidates. In voting
systems, the Condorcet paradox is a situation where collective preferences can be cyclic. In terms
of popular matchings, this paradox translates to the fact that not all instances have a popular
matching. For example the complete instance with no ties where each applicant has the exact
same preference list, admits no popular matching. The problem resides with the fact that the more
popular than relation is not acyclic.

McCutchen [20] defined two quantities in order to measure the unpopularity of a matching.
Given any two matchings X,Y in G, let Φ(X,Y ) be the number of applicants who prefer X to Y .
Let also M denote the set of all matchings in G. The unpopularity margin of a matching M is
defined as

g(M) = max
M ′∈M

(Φ(M ′,M)− Φ(M,M ′)).

The unpopularity factor is defined as

u(M) = max
M ′∈M\Z(M)

Φ(M ′,M)

Φ(M,M ′)
,

where Z(M) is the set of all matchings N such that Φ(N,M) = Φ(M,N) = 0.
In the same paper McCutchen proves that finding a matching that minimizes either of the above

two quantities is NP-hard, and also presents two algorithms which given a matching M compute
u(M) and g(M) in polynomial time. Huang et al. [11] presented an algorithm which computes a
popular matching if one exists or an approximation under certain circumstances. Their algorithm
can be viewed as a continuation of the popular matching algorithm of Abraham et al. [1]. However,
in the worst case the approximation ratio can be as bad as O(n), where n is the number of vertices
of the instance. It is an open problem to derive an algorithm with a better approximation ratio.
On the other hand, one might be willing to compute a mixed matching, that is a probability
distribution on the set of all matchings of G. In that case, Kavitha et al.[15] showed that a popular
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mixed matching always exists and provided a polynomial time algorithm to find one. The definition
of a popular mixed matching extends naturally by using expectation.

The main purpose of this paper is to experimentally study matchings computed by various
recent one-sided preference matching algorithms with respect to their unpopularity. On the other
hand, since it would be unfair to judge algorithms based solely on the unpopularity, we include
additional quality measurements such as cardinality, total rank, maximum rank and running time.
We compare several different algorithms for the computation of rank-maximal matchings [13, 23],
the algorithm of [1] for the computation of popular matchings, and the algorithm of [11]. While
popular matchings seem to be unrelated to rank-maximal matchings, the algorithmic techniques
required in order to efficiently compute both types are very much related. Thus, all algorithms are
implemented using similar heuristics and graph representations. We briefly describe the algorithms
in Section 2. Our code uses LEDA [21] for various data structures and can be found at [17]. In
order to have a common point of reference, a minimum weight maximum cardinality matching
algorithm is also included in the comparison. This algorithm is a very common choice in practice.

The experimental comparison of the aforementioned algorithm is performed on instances created
by three random structured instance generators. All generated problem instances try to mimic
different real life situations, while maintaining as few parameters as possible. Section 3 contains a
description of the generators. In addition to synthetic datasets we experiment with two real-world
datasets: Zillow and NBA. In both cases, the created instances were based on the k-attribute
model [4, 3]. Zillow [29] is a website with real estate information, containing 2M records. NBA [24]
includes statistics about NBA players since 1973.

Section 4 contains the experiments. Section 4.1 compares the various algorithms based on their
running time. Despite the differences between the algorithms, the underlying data structures are
very similar. This allows us to identify the bottlenecks of each one. Our main observation here is
that the algorithms that are based on a reduction to the maximum weight matching are faster in
the case of rank-maximal matchings. Moreover, in several cases it is better to use a simple BFS
procedure in order to perform the necessary augmentations instead of using the Hopcroft-Karp al-
gorithm. Section 4.2 goes one step further and compares the matchings computed by the algorithms
with respect to their unpopularity factor. Note that different rank-maximal matchings might have
different unpopularity factors. We observe that the algorithm of Michail [23] computes matchings
with lower unpopularity factors, even when compared to the algorithm of Huang et al. [11] which
was specifically designed for this purpose. Finally we compare the various algorithms with respect
to the maximum rank, the total rank and the cardinality of the computed solutions.

2 Algorithms

We briefly introduce the algorithms that we use in this work. We try to be short and concise; for
more details we refer the reader to the respective papers. Table 1 lists the algorithms together with
their running time and space requirements.

2.1 Rank Maximal Algorithms

The algorithm in [13], which we denote as RMM, computes a rank-maximal matching in phases. In
the first phase a graph G1 is constructed from G by using only rank one edges. After computing a
maximum matching M1 in G1, the algorithm computes the Gallai-Edmonds decomposition [9]. The
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Algorithm Matching Type Running Time Space

RMM Rank-maximal. O(min(r
√
n, r + n)m) O(n+m)

RMM-BFS Rank-maximal. O((r + n)m) O(n+m)
MWM Rank-maximal. O(min(r

√
n, r + n)m) O(n+m)

MWM-BFS Rank-maximal. O((r + n)m) O(n+m)
EXP Rank-maximal. O(rn(m+ n logn)) O(r(n+m))
POP Popular if exists, nothing otherwise. O(

√
nm) O(n+m)

BND Popular if exists, bounded unpopularity otherwise. O(min(r
√
n, r + n)m) O(n+m)

MINW Maximum-cardinality minimum-weight. O(n(m+ n logn)) O(n+m)

Table 1: Algorithms. n is the number of vertices, m the number of the edges and r the maximum
rank of any edge in the input.

Gallai-Edmonds decomposition partitions the vertices of the graph into three disjoint sets, based
on whether they are reachable or not by even or odd length alternating paths from free vertices.
This decomposition provides important information such as (a) which vertices are matched in all
maximum matchings of G1, and (b) which edges of rank one are never used in any maximum
matching of G1. Based on this information the algorithm prunes from G several higher rank edges
as well as several rank one edges. The next step of the algorithm is to augment graph G1 with all
surviving rank two edges and arrive at a graph G2 where by augmentations a second maximum
matching M2 is computed. Again by computing the decomposition additional edges are pruned and
this procedure is iterated until all ranks have been added to the instance, or there are no more edges
left. Each phase is therefore one maximum matching computation, one BFS traversal in order to
compute the Gallai-Edmonds decomposition and a linear scan of the edges for the pruning step. The
maximum matching computation in phase i+1 is done using the Hopcroft and Karp [10] algorithm,
starting from an already computed partial matching, in time O(min(

√
n, |Mi+1| − |Mi| + 1) ·m)

where Mi is the maximum matching at phase i. Here m denotes the total number of edges of the
instance.

A considerable improvement in the running time can be achieved by rearranging the graph
representation based on the edge ranks. We use an adjacency list representation where each node’s
edges are sorted based on their ranks in non-decreasing order. This allows us to quickly augment
the matching in phase i using all remaining edges with rank ≤ i without traversing any edges of
higher rank. The algorithm’s total running time is O(min(r

√
n, r+n) ·m) where r is the maximum

rank of any edge in the input.
The choice of the algorithm that is used for the augmentations is likely to make a significant

difference. While the Hopcroft and Karp [10] algorithm has the best worst-case performance, using
BFS for augmentations (essentially the Ford-Fulkerson algorithm) can perform better in practice.
Setubal [26] suggests to use BFS in the case of repeatedly solving small instances, up to a thousand
vertices, as subproblems. The RMM contains several augmentations which are performed in a
partially solved instance. Moreover, as the phase number increases the augmenting paths become
fewer and longer. The reason is that augmenting paths must preserve the number of matched edges
of all previously considered ranks. The version of RMM which uses a simple BFS procedure in
order to perform augmentations is denoted as RMM-BFS.
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2.1.1 Reduction to Maximum Weight Matching

The rank-maximal matching problem can also be solved by a reduction to the maximum weight
matching problem, based on the fact that any matching has cardinality less than n. The idea of
the reduction is to assign weights to edges such that no collection of at most n larger rank edges
can outweigh one smaller rank edge. Let r ≤ n be the maximum rank of any edge. Then one
such possible assignment is to give a weight of nr−i to an edge of rank i. The problem with this
approach is that edge weights can be as large as nr−1 which is not polynomial in the input size.
This affects the running time and the space requirements of the algorithm. We have implemented
this reduction using LEDA’s O(n(m+n log n)) maximum weight matching [2] implementation. We
denote this implementation as EXP. Due to the extra cost of arithmetic, the space requirement is
O(r(n+m)) and the running time O(rn(m+ n log n)). In our implementation, as a heuristic, we
try to estimate an upper bound on the maximum weight that an edge might require. Depending on
this bound we either run the maximum weight matching using a long data type or using arbitrary
precision arithmetic.

The maximum weight reduction can also be performed implicitly [23]. The idea is to use
the decomposition theorem of Kao et al. [14] and an implicit representation of the weights using
dual variables. This implicit representation requires space polynomial in the input size. The
algorithm works again in phases and performs only maximum cardinality matching computations.
It can also be viewed as a scaling algorithm specialized for exponentially increasing weights. Note,
however, that applying a more general scaling algorithm would result in slower running times. For
example the scaling algorithm [8, 6] for the weight matching problem can be implemented such
that all arithmetic is performed on numbers with O(log n) bits, independent of the edge weights.
The resulting running time would be O(r

√
nm log n). The algorithm of [23] which we denote as

MWM needs O(min(r
√
n, r+n)m) running time and linear space. MWM uses the Hopcroft-Karp

algorithm for the maximum cardinality matching computation. Let MWM-BFS be the variant of
MWM which uses BFS in order to perform the augmentations.

2.1.2 Initialization Heuristics

The implementations of RMM, RMM-BFS, MWM and MWM-BFS use the greedy heuristic before
computing the initial matching M1. While the choice of the heuristic, which selects an initial
(not necessarily maximum) matching, has been shown [16] to influence performance of matching
algorithms, we expect it to have a lesser effect in this particular setting. The reason is that between
phases there is already a precomputed matching which needs to be augmented to a maximum
matching. Moreover, implementing stronger heuristics would require special attention from an
engineering point of view. The reason is that any data structures used by such a heuristic, should
be initialized only once as a whole and then only partially in every phase of the algorithm, something
which requires extra bookkeeping. Even if this not the case, this issue deviates significantly from
the main focus of this work, and therefore is not explored any further.

2.2 Algorithms for Popular Matchings

Let G1 denote the graph G(A∪P, E1) where E1 is the set of edges of rank one, i.e. all first choices.
The popular matching algorithm of Abraham et al. [1] is based on the observation that in any
popular matching M the rank one edges must be a maximum cardinality matching in G1.
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Using this observation the set of useful edges is restricted in two categories: (a) for each applicant
all her first choices, i.e., rank one edges (b) for each applicant the set of most preferred choices
in her preference list that do not interfere with the maximality of the rank one edges. The term
interference here means that if such an edge is matched, then the rank one edges of the matching
would not be a maximum cardinality matching in G1. A popular matching is an applicant complete
rank-maximal matching in this reduced instance; we may enforce this condition by adding last resort
posts to the instance. Computing which posts do not interfere with the maximality of rank one
edges is done as described in the rank-maximal matching algorithm using the Gallai-Edmonds
decomposition. The algorithm has a running time of O(

√
nm) since it is a rank-maximal matching

computation with edges of only two ranks. We call our implementation POP.
Popular matchings do not always exist. The algorithm in [11], however, is always guaranteed

to produce a matching, even if the instance does not admit a popular one. The algorithm can be
viewed as a continuation of the popular matching algorithm. If the reduced instance described in
the previous paragraph does not admit an applicant complete matching, the algorithm continues
by adding a third set of edges which is the next most preferred choices of each applicant which do
not interfere with the maximality of the matching computed with only the first two edge sets. This
constitutes the 3rd phase and can be again determined by the Gallai-Edmonds decomposition. We
continue this process until we compute an applicant complete matching, a guaranteed outcome due
to the existence of last resort posts. Assuming the algorithm terminates in round k, the computed
matching M has u(M) ≤ k − 1. This algorithm is designated as BND.

3 Instances

We next describe our structured instance generators as well as the real-world datasets used in our
experiments.

3.1 Highly Correlated

Highly correlated instances are problem instances where most of the applicants have a global
and consistent knowledge of the posts’ reputation. Let na be the number of applicants and np
the number of posts. Posts are already ranked from an outside source, in some particular order
p1, p2, . . . , pnp , a ranking which is well known to all applicants and is gladly accepted. The goal
is to have preferences which are based on the intuition that if two posts pi and pj are far apart
from each other in the global ranking then it should be highly likely that they are far apart in each
applicant’s ranking as well.

We model such instances based on the following parameters: (a) number of applicants na and
number of posts np, (b) a probability d that an edge exists in the instance, (c) a probability t
that the rank of an edge e = (a, p) is the same with the rank of its predecessor in a’s adjacency
list. Instances are created in the following way. For each applicant a we randomly sample with
probability d all posts, resulting in a subset {p′1, p′2, . . .} which is subsequently sorted based on the
total order p1, p2, . . . , pnp . For each post p′i we create an edge (a, p′i). Ranks are assigned as follows.
Edge (a, p′1) is first assigned a rank of one. Then with probability t the edge (a, p′i+1) is assigned
the same rank as (a, p′i) and with probability 1− t is given one higher rank than (a, p′i).

These instances are denoted as HC and are referred to as highly correlated since preferences
lists have a high degree of similarity among applicants.
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3.2 Variable Size Exponential

In several real-world assignment situations, the number of available positions is relatively low
compared to the applicants. Moreover, there exists a total ordering p1, p2, . . . , pnp of the positions
which is known in advance to all applicants (perhaps from an organization responsible for ranking
the posts). Since people usually have a very strong opinion about their top choices and relatively
weaker opinion about their last choices, this total ordering is strict at the beginning but allows
equality towards the end. Based on this observation we divide posts into clusters of exponentially
increasing size. We maintain the following invariant. If an applicant assigns rank i to a post of
cluster Pj , then the applicant ranks all posts of the cluster Pj as rank i.

The generator which we call VS has the following parameters: (a) the number of applicants na
and posts np, (b) an instance density parameter d, and (c) a parameter λ controlling the distribution
of posts into clusters. Our goal is now to add an edge from an applicant a ∈ A to the first bnp · dc
posts as follows. We initially add edge (a, p1) with rank one. When adding an edge (a, pi) we decide
the rank based on the parameter λ. With probability e−λi the rank is increased by one and with
probability 1− e−λi the same rank is used.

3.3 Uniform Random

These instances have (a) the number of applicants na and posts np, (b) an instance density param-
eter d, and (c) a probability t that the rank of an edge e = (a, p) is the same with the rank of its
predecessor in a’s adjacency list. Each applicant selects a preference list of size bnp · dc randomly
with uniform probability. Assume that applicant a has the preference list p1, p2, . . . , pbnp·dc. Ranks
are assigned as follows. Edge (a, p1) is first assigned a rank of one. Then with probability t the
edge (a, pi+1) is assigned the same rank as (a, pi) and with probability 1 − t is given one higher
rank. These instances are referred as UNI.

3.4 Real-world Datasets

In addition to the aforementioned instances, we also experimented with artificially constructed
instances based on two real world datasets [29, 24]. The same setting as [27] was used, where
preference matchings are considered in the context of databases. It is quite common in such
practical situations, when trying to describe preference matching instances, to use the k-attribute
model [4, 3]. In this model, assuming that posts have k attributes, we associate them with points
in Rk. Each applicant’s ranking of the posts is defined by a linear function of these attributes,
and then her preference list is determined by projecting the post’s points onto some line. From a
computational point of view, such a model is quite attractive, due to its compactness in size.

Zillow is a website with real estate information, containing 2M records with attributes. NBA
includes statistics about 12278 NBA players since 1973. In the following we use the term real
estate dataset in order to refer to this dataset. In the case of the real estate dataset we used three
attributes, namely, number of bathrooms, number of bedrooms, and living area. We selected three
important offensive attributes in NBA: points, offensive rebounds, and assists.

The parameters that were used is (a) number of applicants na, (b) number of posts np and
(c) length d of the preference list of each applicant. The instances were created by sampling np
applicants uniformly at random from the appropriate dataset. Then na applicants were constructed
by choosing the coefficients again uniformly at random, with the additional restriction that they
are normalized in order to sum up to one. For each of these applicants the first d choices were
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added as edges. As an example, assume that we have a 3 dimensional space with three posts
p1 = (1, 3, 4), p2 = (4, 1, 0), p3 = (0, 0, 10) and two applicants a1 = (0.5, 0.5, 0), a2 = (0.1, 0.8, 0.1).
We can easily see that a1 has the following preference list p2, p1, p3 while a2 has p1, p2, p3. Ties are
resolved arbitrarily.

4 Experiments

All experiments were performed on an AMD OpteronTM Processor 1214 running at 2.2Ghz with
1MB cache and 4GB of main memory. The system was running Linux while both LEDA and our
code were compiled with a 64-bit version of GCC 4.1. In all experiments we generated 100 instances
for each set of parameters and averaged the results. Note that the goals of this section are twofold:
(a) to observe the different behavior of the algorithms on the same instances, and (b) to assess the
difficulty of each instance category. Some preliminary experiments, with HC and random instances,
were also reported in [11].

4.1 Running Time

In this section we compare the performance of the different rank-maximal matching algorithms
(RMM, RMM-BFS, MWM, MWM-BFS, EXP), the algorithms for popular matchings (POP, BND)
and the minimum weight matching algorithm (MINW). The algorithms POP and MINW are in-
cluded as reference points. By performing only a constant number of rounds, the first one achieves a
worst-case running time of O(

√
nm), but might not return a matching in the case that the instance

does not admit a popular matching. The second one is used very often in practice and has excellent
performance. The default implementation of MINW in LEDA, used in this work, has a worst-case
running time of O(n · (m+ n log n)) [2].

The execution times in seconds can be found in Table 2 and Table 3, categorized by the different
instances. The first column denotes the type of instance by presenting the values of the various
parameters. Recall that we use na and np to denote the number of applicants and posts respectively,
i.e., n = na + np. Our first step is to categorize the different instances based on their difficulty
with respect to the running times. HC instances are the most difficult due to the fact that all
applicants prefer the same posts in the same order. Houses in the real estate dataset are all from
one particular region and thus have similar characteristics. This correlation causes real estate
instances to resemble HC instances. On the other hand, NBA players’ performance does not relate
easily across different teams and thus the NBA dataset is more evenly distributed. Subsequently,
NBA instances are easier than the corresponding instances in the real estate case. VS instances are
much easier to solve. This is due to the fact that applicants are willing to settle between different
posts, recall that preferences are partitioned in clusters of exponentially increasing sizes. Finally,
UNI instances are the easiest of them all.

For HC, VS and UNI instances we performed experiments for na = np = 250 and na = np = 500.
Both sparse and dense instances are used by setting the parameter d controlling edge density to
0.02, 0.5 and 1.0. Parameter t, denoting the probability of ties, is restricted to t = 0.0, t = 0.25 and
t = 0.5. Larger values result in easier instances, with the extreme case of t = 1.0 where all ranks
are the same and thus instances are solvable by any maximum cardinality matching computation.
In the case of the VS instances the existence of ties depends on the cluster sizes which are in turn
dependent on the parameter λ where we use values 0.05, 0.1 and 0.25. The parameter d in the
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RMM RMM-BFS MWM MWM-BFS EXP POP BND MINW

(na = np, d, t) Highly Correlated Random (HC) Instances [sec]
(250, 0.02, 0.0) 0.02322 0.00358 0.00566 0.00544 0.00092 0.00827 0.02477 0.00064
(250, 0.02, 0.25) 0.00414 0.00326 0.00340 0.00321 0.00092 0.00615 0.00636 0.00064
(250, 0.02, 0.5) 0.00380 0.00311 0.00372 0.00355 0.00091 0.00547 0.00544 0.00063
(250, 0.5, 0.0) 47.082 7.090 0.858 0.802 0.403 0.103 30.007 0.096
(250, 0.5, 0.25) 0.374 0.294 0.109 0.069 0.601 0.103 0.710 0.094
(250, 0.5, 0.5) 0.295 0.227 0.095 0.064 0.526 0.102 0.361 0.088
(250, 1.0, 0.0) 112.263 39.972 3.182 2.979 5.448 0.225 88.832 0.573
(250, 1.0, 0.25) 0.885 0.863 0.285 0.151 4.959 0.220 2.215 0.508
(250, 1.0, 0.5) 0.696 0.629 0.236 0.137 4.474 0.219 0.947 0.472
(500, 0.02, 0.0) 0.44654 0.02175 0.03100 0.02942 0.00376 0.03401 0.38385 0.00281
(500, 0.02, 0.25) 0.04751 0.01535 0.01133 0.01019 0.00379 0.03615 0.04159 0.00278
(500, 0.02, 0.5) 0.02552 0.01429 0.01222 0.01108 0.00367 0.03246 0.03226 0.00271
(500, 0.5, 0.0) 918.548 223.601 6.874 6.386 5.622 0.510 693.710 0.713
(500, 0.5, 0.25) 3.142 2.030 0.718 0.323 9.217 0.501 24.043 0.751
(500, 0.5, 0.5) 2.433 1.456 0.596 0.299 8.357 0.494 9.075 0.727
(500, 1.0, 0.0) 2058.951 762.307 24.643 23.232 61.487 1.051 1735.360 4.374
(500, 1.0, 0.25) 7.046 5.950 1.955 0.662 47.446 1.006 56.567 3.908
(500, 1.0, 0.5) 5.352 4.152 1.529 0.603 42.164 0.988 22.130 3.738

(na = np, d, λ) Variable Exponential (VS) Instances [sec]
(250, 0.02, 0.05) 0.00637 0.00348 0.00335 0.00317 0.00092 0.00785 0.00780 0.00064
(250, 0.02, 0.1) 0.00498 0.00335 0.00337 0.00318 0.00093 0.00745 0.00749 0.00063
(250, 0.02, 0.25) 0.00326 0.00316 0.00341 0.00326 0.00092 0.00510 0.00507 0.00063
(250, 0.5, 0.05) 0.174 0.160 0.074 0.062 0.204 0.090 0.182 0.057
(250, 0.5, 0.1) 0.145 0.132 0.105 0.096 0.138 0.090 0.221 0.051
(250, 0.5, 0.25) 0.137 0.114 0.133 0.123 0.064 0.151 0.275 0.047
(250, 1.0, 0.05) 0.984 0.336 0.294 0.257 0.328 0.181 0.343 0.126
(250, 1.0, 0.1) 1.567 0.272 0.410 0.374 0.165 0.179 0.448 0.096
(250, 1.0, 0.25) 1.619 0.222 0.416 0.389 0.104 0.545 0.549 0.078
(500, 0.02, 0.05) 0.05045 0.01547 0.01106 0.00994 0.00378 0.03462 0.05266 0.00276
(500, 0.02, 0.1) 0.03557 0.01479 0.01101 0.00980 0.00375 0.03596 0.03621 0.00278
(500, 0.02, 0.25) 0.01652 0.01371 0.01053 0.00959 0.00359 0.02299 0.02300 0.00266
(500, 0.5, 0.05) 1.174 0.707 0.611 0.575 1.005 0.396 2.239 0.316
(500, 0.5, 0.1) 1.384 0.617 0.733 0.702 0.708 0.395 3.130 0.276
(500, 0.5, 0.25) 1.252 0.558 0.707 0.675 0.499 1.536 2.115 0.245
(500, 1.0, 0.05) 19.138 1.436 1.935 1.723 1.133 0.781 2.881 0.558
(500, 1.0, 0.1) 20.868 1.163 2.112 1.945 0.635 0.781 2.965 0.425
(500, 1.0, 0.25) 17.080 0.954 1.905 1.793 0.461 4.554 4.540 0.337

(na = np, d, t) Uniform Random (UNI) Instances [sec]
(250, 0.02, 0.0) 0.00275 0.00349 0.00389 0.00352 0.00107 0.00487 0.00488 0.00154
(250, 0.02, 0.25) 0.00301 0.00350 0.00419 0.00366 0.00113 0.00502 0.00500 0.00151
(250, 0.02, 0.5) 0.00323 0.00350 0.00467 0.00394 0.00135 0.00514 0.00511 0.00151
(250, 0.5, 0.0) 0.090 0.134 0.119 0.075 0.103 0.101 0.101 0.052
(250, 0.5, 0.25) 0.084 0.128 0.110 0.070 0.085 0.099 0.099 0.049
(250, 0.5, 0.5) 0.080 0.123 0.096 0.064 0.091 0.097 0.097 0.047
(250, 1.0, 0.0) 0.199 0.286 0.312 0.158 0.245 0.220 0.221 0.109
(250, 1.0, 0.25) 0.190 0.275 0.279 0.147 0.256 0.214 0.213 0.105
(250, 1.0, 0.5) 0.181 0.264 0.235 0.134 0.282 0.208 0.208 0.101
(500, 0.02, 0.0) 0.01226 0.01650 0.01449 0.01157 0.00652 0.01747 0.01757 0.00608
(500, 0.02, 0.25) 0.01245 0.01597 0.01559 0.01195 0.00784 0.01835 0.01873 0.00587
(500, 0.02, 0.5) 0.01245 0.01555 0.01718 0.01257 0.01080 0.01974 0.01946 0.00575
(500, 0.5, 0.0) 0.485 0.629 0.801 0.364 0.556 0.494 0.496 0.264
(500, 0.5, 0.25) 0.456 0.610 0.713 0.339 0.623 0.478 0.477 0.252
(500, 0.5, 0.5) 0.428 0.581 0.590 0.307 0.735 0.468 0.467 0.241
(500, 1.0, 0.0) 1.058 1.313 2.282 0.747 1.301 1.044 1.046 0.552
(500, 1.0, 0.25) 0.983 1.264 1.951 0.688 1.402 1.011 1.009 0.523
(500, 1.0, 0.5) 0.924 1.219 1.551 0.626 1.621 0.985 0.978 0.503

Table 2: Running Time in Seconds for Various Algorithms. (na = number of applicants, np =
number of posts, d = density, t = tie probability, λ = distribution parameter)
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RMM RMM-BFS MWM MWM-BFS EXP POP BND MINW

(na = np, d) NBA Instances [sec]
(250, 10) 0.01644 0.00836 0.00655 0.00583 0.00183 0.00917 0.01303 0.00140
(250, 125) 0.348 0.267 0.110 0.073 0.380 0.101 0.249 0.105
(250, 250) 0.868 0.831 0.314 0.166 3.579 0.209 0.826 0.432
(500, 10) 0.09333 0.01641 0.01406 0.01288 0.00366 0.03556 0.04745 0.00280
(500, 250) 3.463 1.555 0.678 0.356 5.198 0.479 2.462 0.840
(500, 500) 7.044 4.958 1.878 0.770 30.276 0.985 10.922 3.309

(na = np, d) Real Estate Instances [sec]
(250, 10) 0.08648 0.01042 0.01160 0.01096 0.00184 0.01095 0.05794 0.00134
(250, 125) 11.004 1.171 0.560 0.390 0.346 0.101 4.957 0.090
(250, 250) 33.287 6.178 2.584 2.072 4.478 0.219 17.004 0.478
(500, 10) 0.35340 0.01969 0.02633 0.02500 0.00361 0.03340 0.26010 0.00274
(500, 250) 219.684 12.369 5.367 3.535 4.698 0.498 92.640 0.653
(500, 500) 499.709 92.554 22.641 22.881 42.340 1.033 263.262 3.448

Table 3: Running Time in Seconds for Various Algorithms. (na = number of applicants, np =
number of posts, d = degree of each applicant)

case of the NBA and real estate instances denotes the degree of each applicant. We use d = 10 for
sparse instances, d = np/2 and d = np for dense instances.

We begin by assessing the performance of rank maximal matching algorithms. The first obser-
vation is that in almost all cases the variants which use a simple BFS procedure in order to find
augmenting paths perform significantly better than the Hopcroft-Karp variant. MWM-BFS is faster
than MWM in all cases but one. The exception is the real estate instances with na = np = 500 and
degree of each applicant equal to 500. Even in this case, however, the running time is almost the
same. RMM-BFS is faster than RMM except in the UNI instances. Comparing RMM and MWM
we see that MWM behaves better in the most difficult instances while RMM takes the lead in
easier instances like UNI. The situation becomes less clear, when their BFS variants are considered.
Nevertheless, the MWM-BFS scales better that the RMM-BFS.

If all rank maximal matching variants are included in a single comparison there is no clear dis-
tinction. However, either MWM-BFS or EXP behave better than the rest; there are two exceptions
(a) in VS instances for na = np = 500, d = 0.5 and λ = 0.1 and (b) in real estate instances for
na = np = 500 and degree d = 500. It seems that using the reduction to the maximum weight
matching, either implicitly or explicitly, is the best way to compute rank maximal matchings. The
performance of EXP directly depends on the magnitude of the edge weights, which in turn depends
on the number of distinct ranks. In practice, the best choice would be to use a hybrid algorithm
which depending on the number of distinct ranks would switch from one algorithm to the other.
The threshold on the number of different ranks, should be computed experimentally depending on
the particular problem instances.

Recall that MWM and MWM-BFS have better worst case complexity than EXP. The reason
that EXP in some cases outperforms both MWM and MWM-BFS algorithms, is that they perform
a number of rounds which depends on the number of distinct ranks. The dependency on the ranks of
EXP is only in the magnitude of the edge weights. Moreover, the extraO(n) factor in the complexity
of the EXP is based on the observation that the algorithm might need to perform arithmetic
with numbers that are as large as Θ(nr) where r ≤ n. However, the best case complexity of
implementations of arbitrary precision arithmetic depends on the magnitude of the actual numbers
involved in each arithmetic operation. In sparse instances, due to the very few distinct ranks, EXP
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is much faster than the rest, achieving similar performance to MINW. The same happens in VS
instances with large values of λ, where the number of distinct is again small. On the other hand,
EXP behaves poorly in dense instances where the best performance with respect to execution times
is achieved by MWM-BFS.

The performance of the BND algorithm resembles the performance of RMM. The reason for
this is that both algorithms perform the same operations, i.e., (a) compute in each round the
Gallai-Edmonds decomposition in order to decide which edges are still relevant or can be pruned
from the instance, (b) prune these edges, and (c) augment the matching to a new maximum. The
main difference of the two algorithms is the selection of the edges that are going to be considered
in each phase. RMM chooses edges of the next rank while BND selects edges is a more dynamic
fashion. The high computational cost of the augmentations is responsible for the performance of
these algorithms. At the beginning and at the end of the algorithm this computation is relatively
inexpensive. During the middle phases, however, it becomes significantly more expensive since
there are still a lot of free vertices while augmenting paths are long in length. In general, any
variations between RMM and BND are due to the fact that the number of rounds is dependent on
the particular preferences. Our implementation of BND uses the Hopcroft-Karp algorithm for the
augmentations. Nevertheless, we expect to see a performance similar to RMM-BFS if we replace
the augmentations by a BFS procedure.

4.2 Unpopularity and Other Criteria

Using only running times for the comparison would result, as expected, in choosing MINW as
the best choice. This section considers additional properties such as the unpopularity factor [20],
in order to compare the different preference matching algorithms. The unpopularity factor of a
matching M is finite if the matching is pareto efficient, i.e., we cannot change M to make someone
better off without making anyone else worse off. Intuitively it captures the largest alternating path
that we can find such that all applicants get promoted to better choices at the expense of the last
applicant who becomes free. A matching is popular if and only if its unpopularity factor is at most
one.

Tables 4 and 5 contain the unpopularity factors of the matchings computed by the various
algorithms. Algorithm POP is not included as (a) it may not return a matching and (b) the
first phases of BND return a popular matching if one exists. Although the unpopularity factor is
always an integer, we compute averages over 100 instances, and thus both tables contain fractional
numbers. The results of Tables 4 and 5 suggest that popular matchings existed in very few instances.
For a detailed study of the existance of popular matchings in random graphs the interested reader
is referred to [18]. The first observation is that MINW is never the algorithm which computes
the matching with the lowest unpopularity factor and is several times the one with the worst
unpopularity factor. Furthermore, Tables 4 and 5 suggest that the ranking of instances based on
their difficulty with respect to the running time is preserved also with respect to the unpopularity
factor. Thus, HC instances are the most difficult followed by real estate, NBA, VS and finally UNI
instances. This is natural as, at least in the case of BND, the unpopularity factor of the computed
matching depends on the number of rounds that the algorithm requires.

Different rank-maximal matchings, while having the same signature (number of edges of each
rank) and therefore also the same cardinality, may have different unpopularity factors. Comparing
algorithms with their BFS counterparts, we observe that switching from RMM to RMM-BFS and
from MWM to MWM-BFS does not result in any significant change in unpopularity. Moreover,
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RMM RMM-BFS MWM & MWM-BFS EXP BND MINW

(na = np, d, t) Highly Correlated Random (HC) Instances
(250, 0.02, 0.0) 5.00 5.00 5.00 5.00 5.00 5.00
(250, 0.02, 0.25) 1.38 1.38 1.38 1.38 1.38 1.38
(250, 0.02, 0.5) 1.00 1.00 1.00 1.00 1.00 1.00
(250, 0.5, 0.0) 125.00 125.00 125.00 125.00 125.00 125.00
(250, 0.5, 0.25) 49.28 49.77 12.80 49.12 28.01 54.28
(250, 0.5, 0.5) 31.25 31.54 10.38 31.26 16.43 35.45
(250, 1.0, 0.0) 249.00 249.00 249.00 249.00 249.00 249.00
(250, 1.0, 0.25) 104.93 105.56 29.00 104.30 54.79 114.78
(250, 1.0, 0.5) 68.31 68.88 22.65 68.27 31.71 76.76
(500, 0.02, 0.0) 10.00 10.00 10.00 10.00 10.00 10.00
(500, 0.02, 0.25) 2.92 2.97 2.74 2.98 2.25 3.03
(500, 0.02, 0.5) 1.54 1.54 1.54 1.54 1.54 1.54
(500, 0.5, 0.0) 250.00 250.00 250.00 250.00 250.00 250.00
(500, 0.5, 0.25) 98.59 99.00 18.31 98.12 50.14 108.69
(500, 0.5, 0.5) 62.79 63.38 14.69 62.61 28.90 71.52
(500, 1.0, 0.0) 499.00 499.00 499.00 499.00 499.00 499.00
(500, 1.0, 0.25) 207.18 208.71 41.16 206.07 99.44 226.69
(500, 1.0, 0.5) 135.28 135.65 31.70 134.86 56.71 152.85

(na = np, d, λ) Variable Exponential (VS) Instances
(250, 0.02, 0.05) 2.09 2.12 2.15 2.12 2.00 2.14
(250, 0.02, 0.1) 1.85 1.85 1.85 1.85 1.85 1.85
(250, 0.02, 0.25) 1.01 1.01 1.01 1.01 1.01 1.01
(250, 0.5, 0.05) 11.43 11.48 5.41 11.41 6.96 12.98
(250, 0.5, 0.1) 6.34 6.31 3.90 6.31 4.08 7.39
(250, 0.5, 0.25) 3.11 3.12 3.04 3.13 2.33 3.61
(250, 1.0, 0.05) 11.73 11.74 4.66 11.72 6.83 16.72
(250, 1.0, 0.1) 6.04 6.08 2.84 6.02 4.00 9.47
(250, 1.0, 0.25) 2.70 2.77 1.67 2.71 2.09 4.68
(500, 0.02, 0.05) 3.24 3.36 3.07 3.24 2.85 3.38
(500, 0.02, 0.1) 2.38 2.45 2.49 2.47 2.00 2.52
(500, 0.02, 0.25) 1.09 1.09 1.09 1.09 1.09 1.09
(500, 0.5, 0.05) 11.57 11.60 5.20 11.59 6.62 13.65
(500, 0.5, 0.1) 6.29 6.30 3.70 6.30 4.01 7.32
(500, 0.5, 0.25) 3.08 3.10 3.04 3.07 2.13 3.68
(500, 1.0, 0.05) 11.58 11.69 4.26 11.55 6.28 17.52
(500, 1.0, 0.1) 5.88 5.87 2.71 5.83 3.88 9.82
(500, 1.0, 0.25) 2.66 2.64 1.65 2.61 2.01 4.70

(na = np, d, t) Uniform Random (UNI) Instances
(250, 0.02, 0.0) 2.63 2.75 2.52 2.87 1.94 4.12
(250, 0.02, 0.25) 2.31 2.35 2.28 2.54 1.48 3.69
(250, 0.02, 0.5) 2.12 2.19 2.05 2.23 1.14 3.18
(250, 0.5, 0.0) 4.36 4.32 3.64 4.36 2.11 4.13
(250, 0.5, 0.25) 4.05 4.07 3.30 4.05 2.02 3.76
(250, 0.5, 0.5) 3.35 3.45 2.71 3.41 2.01 3.11
(250, 1.0, 0.0) 4.58 4.58 3.80 4.58 2.16 4.01
(250, 1.0, 0.25) 4.03 4.05 3.45 4.03 2.01 3.73
(250, 1.0, 0.5) 3.56 3.55 2.88 3.55 2.03 3.06
(500, 0.02, 0.0) 3.21 3.26 3.07 3.30 2.00 4.38
(500, 0.02, 0.25) 3.06 3.12 2.90 3.18 1.99 3.93
(500, 0.02, 0.5) 2.60 2.63 2.31 2.77 1.77 3.23
(500, 0.5, 0.0) 5.00 4.96 4.25 5.04 2.23 4.37
(500, 0.5, 0.25) 4.65 4.64 3.93 4.71 2.04 3.90
(500, 0.5, 0.5) 4.05 4.07 3.28 4.11 2.01 3.26
(500, 1.0, 0.0) 5.15 5.16 4.27 5.16 2.33 4.37
(500, 1.0, 0.25) 4.72 4.71 3.90 4.71 2.02 3.96
(500, 1.0, 0.5) 4.17 4.17 3.37 4.18 2.03 3.22

Table 4: Unpopularity Factors for Various Algorithms (na = number of applicants, np = number
of posts, d = density, t = tie probability, λ = distribution parameter)
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RMM RMM-BFS MWM & MWM-BFS EXP BND MINW

(na = np, d) Real Estate Instances
(250, 10) 7.98 8.03 7.70 8.00 7.63 8.69
(250, 125) 75.26 75.28 59.45 75.30 69.72 82.61
(250, 250) 162.53 162.72 136.51 162.63 150.60 164.13
(500, 10) 8.10 8.10 8.10 8.10 8.10 8.83
(500, 250) 124.41 124.58 90.85 124.64 111.98 142.95
(500, 500) 286.27 286.36 230.18 286.44 260.35 295.65

(na = np, d) NBA Instances
(250, 10) 4.08 4.09 3.79 4.09 4.07 4.52
(250, 125) 26.65 26.77 10.85 26.64 18.36 31.67
(250, 250) 63.78 63.90 16.36 63.85 49.18 64.10
(500, 10) 4.95 4.99 4.16 5.02 4.01 5.12
(500, 250) 43.22 43.40 12.44 43.32 26.71 50.56
(500, 500) 99.81 99.95 21.11 99.90 67.13 96.04

Table 5: Unpopularity Factors for Various Algorithms. (na = number of applicants, np = number
of posts, d = degree of each applicant)

EXP and RMM exhibit similar unpopularity factors. This is not the case, however, with MWM
which shows a different behavior. Rather surprisingly MWM and MWM-BFS compute matchings
which have better unpopularity factors even when compared to the matchings computed by BND.
More specifically, one of BND, MWM or MWM-BFS always computes the matching with the lowest
unpopularity factor. In easier instances such as sparse instances or even dense UNI instances
the BND computes better matchings, while MWM and MWM-BFS compute significantly better
matchings in all other cases. These issues may be worthy of further investigation. On the negative
side, rank-maximal matchings are not always a good solution. As observed in [11], there are
instances of the problem which admit a popular matching but any rank-maximal matching of such
an instance has an unpopularity factor of Θ(n).

Apart from the unpopularity factor we also compared the algorithms based on the total, the
maximum rank as well as the cardinality of the computed matchings. The results can be found at
Tables 6 and 7 using as a point of reference the MINW algorithm. Since rank maximal matchings
have the same signature, there is no distinction between RMM, RMM-BFS, MWM, MWM-BFS
or EXP. By definition MINW computes matchings with maximum cardinality and minimum total
rank. The last four columns of Tables 6 and 7 present total rank as a percentage increase and
cardinality as a percentage decrease over the corresponding MINW result. Again, as we compute
averages over 100 instances, tables contain fractional numbers.

In dense UNI instances, MINW computes matchings with significantly lower total rank and
much smaller maximum rank. In sparse UNI instances, RMM and BND become more competitive,
in both maximum as well as in total rank. In some cases even a decrease of total rank can be
observed, which is ofcourse accompanied by a cardinality decrease. Whether minimum total rank
or maximum cardinality is more desirable is a subject of the actual application at hand. The
situation is difference in more difficult instances like HC and VS. The increase in maximum rank
or total rank is much smaller and moreover there is no cardinality change. Table 6 suggests that
rank-maximal matchings exhibit better properties than matchings computed by BND. In NBA
and real estate instances, independently of the edge density, all matchings exhibit very similar
maximum ranks. A noteworthy difference is observed in the cardinality of the matchings in the
case of sparse instances. This difference is accompanied by a similar change in the total rank. The
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Maximum Rank Total Rank Cardinality
RMM BND MINW RMM BND RMM BND

(na = np, d, t) Highly Correlated Random (HC) Instances
(250, 0.02, 0) 5 5 5 0% 0% 0% 0%
(250, 0.02, 0.25) 1.38 2.13 1.38 0% +13.91% 0% 0%
(250, 0.02, 0.5) 1 1 1 0% 0% 0% 0%
(250, 0.5, 0.0) 125 125 125 0% 0% 0% 0%
(250, 0.5, 0.25) 91.25 98.57 86.67 +3.35% +11.11% 0% 0%
(250, 0.5, 0.5) 59.32 69.01 54.69 +5.33% +19.07% 0% 0%
(250, 1.0, 0.0) 250 250 250 0% 0% 0% 0%
(250, 1.0, 0.25) 203.4 195.78 182.14 +4.67% +4.82% 0% 0%
(250, 1.0, 0.5) 143.42 136.21 120.28 +7.89% +8.22% 0% 0%
(500, 0.02, 0.0) 10 10 10 0% 0% 0% 0%
(500, 0.02, 0.25) 3.93 6.55 3.89 +0.0529942% +55.54% 0% 0%
(500, 0.02, 0.5) 1.54 3.59 1.54 0% +23.67% 0% 0%
(500, 0.5, 0) 250 250 250 0% 0% 0% 0%
(500, 0.5, 0.25) 184.27 195.18 177.19 +2.67% +8.07% 0% 0%
(500, 0.5, 0.5) 120.93 135.98 113.75 +4.32% +13.88% 0% 0%
(500, 1.0, 0.0) 500 500 500 0% 0% 0% 0%
(500, 1.0, 0.25) 399.63 388.12 367.67 +03.48% +3.54% 0% 0%
(500, 1.0, 0.5) 278.6 267.65 243.03 +5.99% +6.09% 0% 0%

(na = np, d, λ) Variable Exponential (VS) Instances
(250, 0.02, 0.05) 2.52 3.7 2.52 0% +33.25% 0% 0%
(250, 0.02, 0.1) 1.85 3.41 1.85 0% +32.47% 0% 0%
(250, 0.02, 0.25) 1.01 1.02 1.01 0% +0.2% 0% 0%
(250, 0.5, 0.05) 19.56 26.27 18.82 +3.02% +16.41% 0% 0%
(250, 0.5, 0.1) 10 15.25 9.98 +1.95% +19.38% 0% 0%
(250, 0.5, 0.25) 4.02 7.17 4.02 +0.28% +19.52% 0% 0%
(250, 1, 0.05) 28.33 28.76 25.05 +4.16% +4.27% 0% 0%
(250, 1, 0.1) 16.25 16.87 14.54 +2.77% +3.25% 0% 0%
(250, 1, 0.25) 8.19 8.64 7.56 +1.17% +1.99% 0% 0%
(500, 0.02, 0.05) 4.41 7.24 4.37 +0.08% +42.36% 0% 0%
(500, 0.02, 0.1) 2.97 5.1 2.95 +0.057% +57.02% 0% 0%
(500, 0.02, 0.25) 1.09 1.28 1.09 0% +2.27% 0% 0%
(500, 0.5, 0.05) 20.03 28.13 19.82 +2.31% +14.47% 0% 0%
(500, 0.5, 0.1) 10.1 16.63 10 +1.25% +18.72% 0% 0%
(500, 0.5, 0.25) 4.07 7.58 4.04 +0.2% +21.46% 0% 0%
(500, 1.0, 0.05) 29.24 29.95 26.32 +2.55% +2.69% 0% 0%
(500, 1.0, 0.1) 16.82 17.41 15.39 +1.74% +1.93% 0% 0%
(500, 1.0, 0.25) 8.55 9.02 8.05 +0.69% +1.19% 0% 0%

(na = np, d, t) Uniform Random (UNI) Instances
(250, 0.02, 0.0) 5 5 4.99 -20.54% -20.33% -7.24% -9.82%
(250, 0.02, 0.25) 4.72 4.89 4.76 -15.98% -17.91% -5.59% -8.76%
(250, 0.02, 0.5) 4.01 4.16 3.91 -9.87% -14.4% -3.39% -7.13%
(250, 0.5, 0.0) 78.97 42.56 7.31 +51.56% +53.62% -0.18% -0.024%
(250, 0.5, 0.25) 55.51 37.48 5.62 +35.26% +43.73% -0.16% -0.008%
(250, 0.5, 0.5) 33.83 29.77 4.04 +18.36% +28.86% -0.13% -0.1%
(250, 1.0, 0.0) 129.07 55.33 7.47 +69.5% +56.31% 0% 0%
(250, 1.0, 0.25) 84.2 39.86 5.67 +49.2% +45.96% 0% 0%
(250, 1.0, 0.5) 51.53 40.75 3.98 +27.52% +34.69% 0% 0%
(500, 0.02, 0.0) 9.85 9.93 8.05 -6.86% +0.87% -3.94% -5.1%
(500, 0.02, 0.25) 8.65 8.83 6.05 -5.63% +0.56% -3.05% -4.08%
(500, 0.02, 0.5) 6.71 7.06 4.42 -4.01% +0.77% -1.87% -2.63%
(500, 0.5, 0.0) 146.77 63.01 8.29 +64.72% +56.45% -0.1% -0.02%
(500, 0.5, 0.25) 116.47 49.75 6.32 +49.66% +47.04% -0.09% -0.006%
(500, 0.5, 0.5) 74.43 52.08 4.49 +28.21% +36.05% -0.08% 0%
(500, 1.0, 0.0) 238.17 118.82 8.42 +84.06% +64.58% 0% 0%
(500, 1.0, 0.25) 174.29 52.76 6.52 +62.31% +48.21% 0% 0%
(500, 1.0, 0.5) 116.51 53.97 4.46 +37.1% +36.93% 0% 0%

Table 6: Maximum, Total Rank and Cardinality for Various Algorithms.. (Table presenting total
rank as a percentage increase and cardinality as a percentage decrease compared to the MINW.
The results for RMM are valid for all rank-maximal matching algorithms.)
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Maximum Rank Total Rank Cardinality
RMM BND MINW RMM BND RMM BND

(na, np) Real Estate Instances
(250, 10) 9.85 9.85 9.95 -11.09% -10.10% -6.70% -6.31%
(250, 125) 124.72 124.95 125 -9.61% -9.49% -5.9% -5.87%
(250, 250) 250 250 250 +1.58% +1.55% 0% 0%
(500, 10) 10 10 10 -13.16% -13.08% -7.94% -7.86%
(500, 250) 249.44 250 249.99 -9.54% -9.41% -6.03% -6.01%
(500, 500) 500 500 499.97 +1.57% +1.58% 0% 0%

(na, np) NBA Instances
(250, 10) 9 9.24 9 -10.57% +4.11% -5.67% -3.64%
(250, 125) 92.89 92.94 92.95 -18.68% -14.71% -10.05% -8.85%
(250, 250) 196 196 195.96 +2.91% +3.35% 0% 0%
(500, 10) 7 7 7 -3.03% +7.83% -1.57% -2.1%
(500, 250) 155.88 155.89 157.71 -18.21% -15.02% -10.27% -8.36%
(500, 500) 327 327 327 +3.43% +3.23% 0% 0%

Table 7: Maximum, Total Rank and Cardinality for Various Algorithms.. (Table presenting total
rank as a percentage increase and cardinality as a percentage decrease compared to the MINW.
The results for RMM are valid for all rank-maximal matching algorithms.)

positive observation here is that, in dense instances, both rank-maximal algorithms and the BND
algorithm compute matchings with the same cardinality as MINW and a very small total rank
increase.

5 Conclusions

We compared several rank-maximal matching algorithms and two algorithms for popular matchings
regarding their running time performance, the unpopularity factor of their produced matchings as
well as other criteria such as cardinality, total rank and maximum rank. It should be clear that
instances where applicants have strong correlation on their preferences are more difficult to solve.
The results presented in the paper should help the interested reader decide, whether switching
from a maximum cardinality minimum weight matching algorithm to a more preferences tailored
algorithm makes sense.

We have also identified that the technique of reducing the problem to the maximum weight
matching problem and solving it with the implicit reduction of [23], tends to perform better and
to produce matchings with smaller unpopularity factors. Moreover, the degradation in total or
maximum rank is only a small percentage.
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