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An instance of the stable marriage problem is an undirected bipartite graph G = (X ∪̇W, E) with
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prefers a to its partner in M or is indifferent between them. A matching is strongly stable if there
is no blocking edge with respect to it. We give an O(nm) algorithm for computing strongly stable
matchings, where n is the number of vertices and m is the number of edges. The previous best
algorithm had running time O(m2). We also study this problem in the hospitals-residents setting,
which is a many-to-one extension of the above problem. We give an O(m
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computing a strongly stable matching in the hospitals-residents problem, where ph is the quota
of a hospital h. The previous best algorithm had running time O(m2).
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1. INTRODUCTION

An instance of the stable marriage problem is an undirected bipartite graph G =
(X ∪̇ W, E) where the adjacency lists of vertices are linearly ordered with ties
allowed. As is customary, we call the vertices of the graph men and women, respec-
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x1: w1, w2 w1: x2, x1

x2: {w1, w2} w2: x2, x1

Fig. 1. Both women prefer x2 to x1. The man x1 prefers w1 to w2 and x2 is indifferent between
the women. The instance is complete and hence any strongly stable matching must match all men
and all women. The matching {(x1, w1), (x2, w2)} is not strongly stable since w1 prefers x2 to x1

and x2 is indifferent between w1 and w2. The matching {(x1, w2), (x2, w1)} is not strongly stable
since w2 prefers x2 to x1 and x2 is indifferent between w1 and w2.

tively1. Each person seeks to be assigned to a person of the opposite sex and her/his
preference is given by the ordering of her/his adjacency list. In a’s list, if the edges
(a, b) and (a, b′) are tied, we say that a is indifferent between b and b′, and if the
edge (a, b) strictly precedes (a, b′), we say that a prefers b to b′. Preference lists are
not necessarily complete, meaning that each person may rank only a subset of the
persons of the opposite sex. Note that preference lists are consistent in the sense
that a person a appears in b’s list if and only if b appears in a’s list. Consistency of
preference lists will be assumed throughout. A pair (a, b) is acceptable if each of a
and b are on the other’s preference list. All edges e ∈ E correspond to acceptable
pairs. We use n for the number of vertices and m = |E| for the number of edges.
A stable marriage problem is called complete if G is the complete bipartite graph.

A matching M is a set of edges no two of which share an endpoint. If (a, b) ∈ M
we call b the partner of a. A matching M is strongly stable if there is no edge
(a, b) ∈ E \ M (called a blocking edge) such that by becoming matched with each
other, one of a and b (say, a) is better off and b is not worse off. A person a
is better off means that she/he is either unmatched in M or strictly prefers b to
her/his partner in M , and a is not worse off if she/he is either better off or is
indifferent between b and her/his partner in M . In other words, a would prefer to
be matched with b and b would not object to the change.

In this paper, we consider the problem of computing a strongly stable matching.
One of the motivations for this form of stability is the following. Suppose we have
a matching M and there exists a blocking edge (a, b). Suppose it is a that becomes
better off by becoming matched to b. It means that a is willing to take some action
to improve her/his situation and as b’s situation would not get worse, she/he might
yield to a. If there exists no such edge, then M can be considered to be stable since
no two vertices a and b, where (a, b) is in E \M , improve by changing their present
state and becoming matched with each other. Observe that not every instance
of the stable marriage problem has a strongly stable solution. Figure 1 shows an
instance of the stable marriage problem with no strongly stable solution.

The stable marriage problem can also be studied in the more general context of
hospitals and residents. This is a many-to-one extension of the classical men-women
version. An instance of the hospitals-residents problem is again an undirected
bipartite graph (R ∪̇ H, E) with linearly ordered (allowing ties) adjacency lists.
Each resident r ∈ R seeks to be assigned to exactly one hospital, and each hospital
h ∈ H has a specified number ph of posts, referred to as its quota. A matching M
is a set of edges, no two of which share the same resident, and at most ph of the

1We use x, x′, x′′ to denote men, w, w′, w′′ to denote women, a, a′, b, b′ to denote persons of
either sex.
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edges in M can share the hospital h.

A blocking edge to a matching is defined similarly as in the case of men-women.
An edge (a, b) ∈ E \ M is a blocking edge to M if a would prefer to be matched
with b and b would not object to the change. A matching is strongly stable if there
is no blocking edge with respect to it. Again we assume that the preference lists are
consistent. We also consider the problem of computing a strongly stable matching
in this setting. Observe that the classical stable marriage problem is a special case
of this general problem by setting ph = 1 for all hospitals.

In this paper we give an O(nm) algorithm to determine a strongly stable match-
ing for the classical stable marriage problem or report that no such matching exists.
We also give an O(m

∑
h∈H ph) algorithm to compute a strongly stable matching

in the hospitals-residents problem or report that no such matching exists. The pre-
vious results for computing strongly stable matchings are as follows. Irving [Irv94]
gave an O(n4) algorithm for computing strongly stable matchings for men-women
in complete stable marriage instances where there are equal number of men and
women. In [Man99] Manlove extended the algorithm to incomplete bipartite graphs;
the extended algorithm has running time O(m2). In [IMS03] an O(m2) algorithm
was given for computing a strongly stable matching for the hospitals-residents prob-
lem.

Our new algorithm for computing a strongly stable matching for the classical
stable marriage problem can be viewed as a specialization of Irving’s algorithm,
i.e., every run of our algorithm is a run of his, but not vice versa. We obtain the
improved running time by introducing the concept of levels. Every vertex has a
level associated with it; the level of a vertex can change during the algorithm. We
use the levels of vertices to search for special matchings which are level-maximal

and this makes the running time of the algorithm O(nm). We also use the above
ideas in the hospitals-residents problem and obtain an improvement over [IMS03].
We do not assume that the input graphs are complete bipartite graphs.

The stable marriage problem has great practical significance. The hospitals-
residents problem has widespread application to matching schemes that match
graduating medical students to hospital posts [Irv98; Roth84; CRMS]. The classi-
cal results in stable marriage are the Gale/Shapley theorem and algorithm [GS62].
In these instances, it is assumed that there are no ties and each person ranks all
the members of the opposite sex in strict order of preference. Then there always
exists at least one stable matching and the Gale/Shapley algorithm finds one in
O(n2) time. However, when ties are allowed, finding a stable matching seems more
difficult. There are, in fact, two more notions of stability in matchings. The match-
ing M is said to be weakly stable (or, super-stable) if there does not exist a pair
(a, b) ∈ E\M such that by becoming matched to each other both a and b are better
off (respectively, neither of them is worse off). The problem of finding a weakly
stable matching of maximum size was recently proven to be NP-hard [IMMM99].
There is a simple O(n2) algorithm [Irv94] to determine if a super-stable matching
exists or not and to compute one, if it exists. Gusfield and Irving [GI89] covers
plenty of results obtained in the area of stable matchings.

In Section 2 we present our O(nm) algorithm for strongly stable matchings for
the classical stable marriage problem. In Section 3 we present our O(m

∑
h∈H ph)
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algorithm for the hospitals-residents problem. We conclude with some open prob-
lems in Section 4.

2. THE ALGORITHM FOR STRONGLY STABLE MARRIAGE

We review a variant of Irving’s algorithm [Irv94] in Section 2.1 and then describe
our modifications in Section 2.2. Algorithm 1 contains a concise write-up of our
algorithm.

2.1 Irving’s algorithm

We review a variant of Irving’s algorithm for strongly stable matchings. The al-
gorithm proceeds in phases and maintains two graphs G′ and Gc; G′ and Gc are
subgraphs of G. Gc is the current graph of edges Ec in which we compute maxi-
mum matchings and G′ is the graph of edges E′ not considered relevant yet. In each
phase, a certain subset of the edges of G′ is moved to Gc. Also edges get deleted
from G′ and Gc. We use Ei to denote the edges moved in phase i and E≤i to denote
the edges moved in the first i phases. Initially, we have G′ = G and Ec = ∅.

At the beginning of phase i, Ec ⊆ E<i and we have a maximum matching M
in Gc. Also, if a man is free with respect to M then no edges of Ec are incident
to him. Let Ei consist of the most preferred edges2 in E′ of each free man. We
say that every free man in succession proposes to all women currently at the top
of his list. When a woman receives a proposal from a man x, she deletes all strict
successors of x from E′ and Ec. This may also remove edges in M .

Observe, that the rules for adding and deleting edges guarantee that if (a, b) ∈ Ec

and (a, b′) ∈ Ec then a is indifferent between b and b′. For a free man x, all his top
choices are moved to Ec and hence edges in E′ go to strictly inferior women. A
woman keeps only the best proposals made to her and hence edges in E′ go either
to strictly superior men or to men tied with her choices in Ec.

Next we extend M to a maximum matching in Ec. During this process, further
edges may be deleted. We iterate over the free men in an arbitrary order. Let x be
any free man. If there is an augmenting path starting at x, we use it to increase
the cardinality of the matching. Otherwise, let Z be the set of men reachable from
x by alternating paths and let N(Z) be the set of women adjacent to Z in Ec. For
each woman w ∈ N(Z) we delete3 all lowest ranked edges in Ec ∪ E′ (i.e, all edges
tied for the last place in the list restricted to Ec ∪ E′) incident to her. This is at
least one edge (x′′, w) ∈ Ec and zero or more edges (x′, w) ∈ E′.

At the end of the phase, we have a maximum matching in Ec. Also, every free
man x is isolated in Gc since the edges incident to x were removed when we searched
for an augmenting path starting from x.

The algorithm terminates when all free men have run out of proposals. Let M be
the final matching and let Gc be the final graph. Then M is a maximum matching
in Gc and all free men are isolated in Gc and G′. M is a strongly stable matching
in G if no woman that was ever non-isolated in Gc during the execution of the

2Recall that E′ ⊆ E and that adjacency lists are linearly ordered with ties allowed.
3We slightly deviate from Irving’s algorithm here. We delete edges whenever we identify a free
man which cannot be matched. Irving first computes a maximum matching in Ec and then deletes
edges.
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Set phase number i = 1, E′ = E and Ec = ∅ and each man to be free
M = ∅
repeat

while ∃ a free man x who has a non-empty list do
move all top choice edges e = (x, w) of x in E′ to Ec and delete all
edges (x′, w) from E′ ∪ Ec which w ranks strictly after e

end

Let Ei be the edges moved to Ec

forall free men x w.r.t. M do

if an alternating path from x to a free woman exists then
let w be a free woman [of maximal level ] reachable from x by an
alternating path and let p be an alternating path from x to w
M = M ⊕ p

else
let Z be the set of men reachable from x by alternating paths and
let N(Z) be the women adjacent to them in Ec

forall women w ∈ N(Z) do
delete all lowest ranked edges in Ec ∪ E′ incident to w

end

end

end

i = i + 1
until all free men have run out of proposals

declare M strongly stable if every woman that was ever non-isolated in Gc

during the execution of the algorithm is matched in M . Otherwise, there is no
strongly stable matching

Algorithm 1: Two algorithms for strongly stable marriage. The algorithms
differ by the phrase [of maximal level ]. Without the phrase, the algorithm may
augment the current matching along any augmenting path and the running time
is O(m2). With the phrase, an augmenting path to a woman of maximal level
(see Section 2.2) must be used. The running time improves to O(nm).

algorithm is free with respect to M .
The following Lemmas were shown in [Irv94; Man99].

Lemma 2.1. If an edge e = (x, w) is deleted during the execution, it cannot block

any matching output by the algorithm.

Proof. Let M be a matching output by our algorithm. Suppose e was deleted
in phase i. This means that w had some edge incident to her during phase i in Gc.
So, w has to be matched in M . Otherwise, our algorithm would have declared that
there is no strongly stable matching. So, in M , w has to be paired to a man she
prefers to x. And hence, e is non-blocking.

Lemma 2.2. If the algorithm returns a matching, the matching is strongly stable.

Proof. Assume otherwise, i.e., the algorithm returns a matching M and yet a
blocking edge e = (x, w) exists. Then e was never deleted during the execution
by Lemma 2.1 and hence e ∈ Ec ∪ E′ when the algorithm terminates. By the
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termination condition and since M is declared strongly stable, x must be matched
in M . Since e blocks M , x cannot prefer his partner in M to w, and since the edge
connecting x with his partner in M is not deleted, x cannot prefer w to his partner
in M . Thus x is indifferent between w and his partner in M . When x proposed
to his partner in M , he also proposed to w. At this time (x, w) was added to Gc.
Thus w was non-isolated node during the execution of the algorithm and hence is
matched in M . The partner of w is tied with x in w’s preference list and hence e
is non-blocking.

Let us call an edge strongly stable, if it belongs to some strongly stable matching.

Lemma 2.3. No strongly stable edge is ever deleted during the execution of the

algorithm.

Proof. Assume otherwise, and let e = (x, w) be the first strongly stable edge
deleted by the algorithm. Let M be a strongly stable matching containing e. We
distinguish cases according to why e was deleted.

Assume first that e is deleted because w receives a better proposal, say from x′.
Then w strictly prefers x′ to x. When x′ proposes to w, all edges (x′, w′) with w′

strictly preceding w in x′’s preference list have been discarded already and hence
none of them can be strongly stable. We conclude that the partner of x′ in M is
either tied with w or after w in the preference list of x′, and x′ is before x in w’s
preference list. Thus (x′, w) blocks M , a contradiction.

Assume next that at some point of the execution we have a free man x0 from
which no augmenting path starts. Let Ec be the edge set of the current graph when
we search for augmenting paths from x0 and let Mc be the current matching. Let
Z be the set of men reachable from x0 by alternating paths and let N(Z) be the
women adjacent to them in Ec. Then |Z| = |N(Z)|+ 1 and every woman in N(Z)
is matched with a man in Z by Mc. Also w ∈ N(Z) and e is a lowest ranked edge

incident to w. Let Ẽ be the set of lowest ranked edges incident to women in N(Z),

i.e., Ẽ is the set of edges which the algorithm removes after discovering the fact
that no augmenting path starting at x0 exists.

Consider M ∩ Ẽ, let U ′ be their female endpoints and let Z ′ be their male
endpoints. Then w ∈ U ′ and hence U ′ 6= ∅. Also, M matches men in Z ′ and
women in U ′ with each other, Thus |Z ′| = |U ′| ≤ |N(Z)| < |Z|.

We next show the existence of an edge e′ = (x′, w′) ∈ Ec with x′ ∈ Z \ Z ′ and
w′ ∈ U ′ and then show that it blocks M . Assume that Mc contains no such edge.
Then Mc pairs the women in U ′ with men in Z ′ and since |Z ′| = |U ′|, Mc pairs the
men in Z ′ with the women in U ′. We conclude x0 ∈ Z \ Z ′ as x0 is free. Consider
the alternating path (with respect to Mc) from x0 to w and let e′ = (a, b) be the
first edge on this path with b ∈ U ′ ∪ Z ′. If b ∈ Z ′, e′ is a matching edge and hence
a ∈ U ′, contradicting that (a, b) is the first edge on this path with b ∈ U ′ ∪ Z ′.
Thus b ∈ U ′ and a ∈ Z \ Z ′ and we have shown the existence of the desired edge.

Since w′ ∈ U ′, this implies that w′ is matched in M to a man tied with x′ in her
preference list. And in M , x′ is either unmatched or matched to a woman strictly
after w′ in his preference list. To see this note that x′ cannot be matched in M
with any edge that has already been deleted, by the assumption that (x, w) is the
first strongly stable edge deleted. The only remaining case is if x′ is matched in
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M with a woman w′′ who is tied with w′ in his preference list and edge (x′, w′′) is

not already deleted. But then edge (x′, w′′) ∈ Ẽ, a contradiction to the fact that
x′ ∈ Z \ Z ′. We conclude that (x′, w′) blocks M , a contradiction.

Lemma 2.4. Assume a strongly stable matching exists. Then the algorithm re-

turns a strongly stable matching. Also all strongly stable matchings have the same

cardinality and match the same set of men and women.

Proof. Let M0 be a strongly stable matching. By Lemma 2.3, no edge of
M0 is ever deleted and hence M0 ⊆ Ec ∪ E′ at termination. Let M be the final
matching computed by the algorithm. We show first that |M | = |M0| and that
both matchings match the same set of men and women.

All men free in M are isolated in Ec ∪ E′ and hence are free in M0. Thus every
man matched by M0 is also matched by M and hence |M0| ≤ |M |. Assume that
there is a woman w which is non-isolated in Gc and free with respect to M0. Let
(x, w) ∈ Ec be an edge incident to w. Then (x, w) blocks M0 since x cannot strictly
prefer its partner in M0 to w. Thus M0 matches all non-isolated woman of Gc and
M certainly cannot match more women. Thus |M | ≤ |M0|. We conclude that both
matchings have the same cardinality and match exactly the non-isolated nodes of
Gc. This proves the second claim.

Assume next that the algorithm declares that M is not stable. By the above, M
matches all non-isolated nodes of Gc.

Suppose there is a woman w which is free in M and was non-isolated during the
execution of the algorithm. Then w is also free in M0. Let e = (x, w) be the last
edge incident to w during the execution. After e was deleted, no edge in Ec ∪ E
incident to x is strictly before e in the preference list of x. Thus e blocks M0.

The algorithm runs in O(m2) time since the cost summed over all phases is
O(m · (1 + number of successful augmenting path computations)). The number of
augmenting path computations is at most m since a matched man becomes free
only if the matching edge incident to him is deleted. For a detailed analysis we
refer the interested reader to [IMS03].

2.2 The New Algorithm

We show how to modify the algorithm so that it runs in time O(nm). Our method
maintains level-maximal matchings and uses level-maximal augmenting paths.

The running time of the algorithm for finding a strongly stable matching is ac-
tually the time spent on looking for augmenting paths. We introduce the notion of
the level of an edge and the level of a vertex which will help us to search for aug-
menting paths in a streamlined manner. The vertices with higher levels are given
precedence when searching for augmenting paths. When we search for augmenting
paths with this precedence and we succeed in finding one, then we can show that
the level numbers of all the edges traversed are at least the level number of the
unmatched vertex at the end of the augmenting path. This allows us to bound the
total number of edges traversed in our search for augmenting paths.

Definition 2.5. Let Ei be the edges added to Gc in phase i and define the level

l(e) of an edge to be the phase when this edge was first added to Gc. Edges never
added to Gc have no level assigned to them.
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So, the set of edges ever added to Gc consists of the disjoint union E1 ∪E2 ∪ ...Er,
where r is the total number of phases in the algorithm. Note that r ≤ m.

Definition 2.6. Define the level l(v) of a vertex v to be the minimum level of the
edges in Gc incident to v. The level of an isolated vertex is undefined.

Definition 2.7. The level l(M) of a matching M is the sum of the levels of the
matched women. A matching M is level-maximal if l(M) ≥ l(M ′) for any matching
M ′ which matches the same men.

The following lemma is immediate.

Lemma 2.8. For a man, all incident edges in Gc have the same level. All women

adjacent to a man of level i have level at most i. When a woman loses an incident

edge in Ec she loses all her incident edges in Ec.

We next characterize level-maximal matchings and show how to maintain them.

Lemma 2.9. A matching M is level-maximal iff there is no alternating path from

a free woman to a woman of lower level.

Proof. If there is such an alternating path, then the endpoint of the path is a
matched woman. Augmentation increases the level of the matching and does not
change the set of matched men.

For the converse, assume that M is not level-maximal. Let M ′ be level-maximal
and matching the same men. Then M ⊕M ′ is a set of alternating paths and cycles.
Augmenting a cycle does not change the level sum. Thus there must be at least
one path whose augmentation to M increases the level sum. Since the degree of
every man in M ⊕M ′ is either zero or two, the path must connect two women, one
free in M and one free in M ′.

Lemma 2.10. If M is level-maximal, x is a free man with respect to M , w is

a woman of maximal level reachable from x by an augmenting path and p is an

augmenting path from x to w, then N = M ⊕ p is level-maximal.

Proof. Let us look at an alternating path p′ from a free woman w′ to a matched
woman w′′ (all with respect to N). We will show that l(w′) ≤ l(w′′) and therefore
by Lemma 2.9 it follows that N is level-maximal.

If p′ does not contain any edge from p, then p′ was an alternating path from
a free woman w′ to a matched woman w′′ in M . Since M is level-maximal, by
Lemma 2.9, l(w′) ≤ l(w′′).

Let us then assume that p′ contains some edge(s) from p.
Let x′ denote the first vertex on the path p′ that belongs to p, which we meet

while traversing p′ from w′. Let e′ denote the first edge belonging to p (Figure 2).
The vertex x′ must be a man because all edges incident to vertices on p that do not
belong to p cannot belong to the matching N - so the edge of p′ that leads to x′ is
unmatched by N and recall that we started the traversal of p′ from the unmatched
woman. So, e′ is matched by N . Let us now look at this part of p that has x′ at
its one end and does not contain e′. It has the man x, that was free in M , at its
other end (possibly x = x′). Since M ⊕ p = N , the matched edges of path p were
exactly the other way around before the augmentation, that is, those edges that
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Fig. 2. The thick edges belong to the matching N

are now present in the matching N were not present in the matching M and vice
versa. It means that w′ was reachable by an alternating path from x in M . Since
w is a woman of maximal level reachable from x in M , l(w′) ≤ l(w).

Analogously, let w2 denote the first vertex on the path p′ that belongs to p which
we meet when we traverse p′ beginning from the matched woman w′′. Let e′′ denote
the first edge belonging to p (Figure 2). It is not difficult to notice that w2 must
be a woman. Now, if we look at that part of p that has w2 at one end and does
not contain e′′, then we notice that it has the woman w at its other end (possibly
w = w2). Thus in M there existed an alternating path from the free woman w to
the matched woman w′′ and hence, by Lemma 2.9, l(w) ≤ l(w′′).

Combining the observations, we get that l(w′) ≤ l(w′′).

Lemma 2.11. M is a level-maximal matching at all times of the execution.

Proof. We use induction on the steps of the algorithm. Initially, M is empty
and therefore level-maximal. For the induction step assume that M is level-maximal
at the beginning of phase i.

First, every free man proposes to the women at the top of his list. This introduces
the edge set Ei. The level of non-isolated women does not change, the level of women
previously isolated and not isolated anymore is set to i. M is still level-maximal.
Assume otherwise, then there must be an alternating path from a free woman to
a woman of lower level. This path must use one of the new edges. The new edges
are incident to free men, a contradiction.

Every woman keeps only her best proposals. For a particular woman w this has
one of two effects: either she does not drop any incident edge or she keeps only
edges in Ei (not necessarily all of them). The matching M may be reduced in size.
Let us use M ′ to denote the resulting matching. We claim that it is level-maximal.
Assume otherwise, then there must an alternating path p from a free woman to
a woman of lower level. It cannot use any of the new edges since new edges are
incident to free men. Thus p can use only old edges. Also p cannot start at a woman
of level i since only new edges are incident to such a woman. Thus p starts at a
woman of level less than i and hence the woman is free with respect to M . Since
M ′ ⊆ M , p is alternating with respect to M , a contradiction to the level-maximality
of M .

Next, we consider the free men in turn and search for augmenting paths. Let x
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be a free man.
If no augmenting path starting at x exists, let Z be the set of men reachable by

alternating paths from x and let N(Z) be their neighbors. Then |Z| > |N(Z)|. We
delete all lowest rank edges incident to the women in N(Z). This may decrease the
size of the matching. The matching clearly stays level-maximal.

If an augmenting path exists, let p be an augmenting path to a woman of maximal
level. We use p to increase the cardinality of the matching. By Lemma 2.10, the
resulting matching is level-maximal.

2.3 The Search for Augmenting Paths and the Analysis

We come to the implementation of the search for augmenting paths and the analysis.
Let x be a free man. We need to determine a free woman w of maximal level

that is reachable from x and an augmenting path from x to w. Let p be such
an augmenting path. Then all women on this path have level at least l(w) by
Lemma 2.9. Note that l(w) ≤ l(x). This is because all the women adjacent to
x have level at most l(x), so if w is adjacent to x, then l(w) ≤ l(x). If w is not
adjacent to x and if l(w) > l(x), then p contains an alternating path from a free
woman of higher level (that is, w) to a matched woman of lower level (the neighbor
of x). This contradicts the level-maximality of the matching. Note that the same
holds for each man x′ in p.

We organize the search in rounds l(x), l(x) − 1, l(x) − 2, . . . . In round j, we
explore all augmenting paths starting in x and exploring only edges out of vertices
of level j or larger. We stop in round j when a free woman of level j is reached
by the search or if the alternating tree rooted at x has reached its full size. In the
former case, j is the maximal level of a woman reachable from x by an augmenting
path. In the latter case, no free woman is reachable from x. If the search has not
stopped yet, the frontier of the search consists of women of level less than j. In the
next round, we continue the search from all women of level j − 1 in the frontier.

In order to find these women, we maintain an array A of buckets (= linear lists)
which implements a simple priority queue. All buckets are initially empty. At
the beginning of round j, bucket Bl, l ≤ j contains the women of level l in the
frontier. We also keep an (unsorted) list of the non-empty buckets and the total
number of women contained in the buckets. We initialize the bucket structure by
putting the neighbors of x into the appropriate buckets and setting j to l(x). In
round j, we continue the search from the women in bucket j. If the bucket is
empty and the number of unexplored women is positive, we decrease j by one. If
the bucket is empty and the number of unexplored women is zero, we stop. There
is no augmenting path starting at x (failure). If the bucket is non-empty, let w
be a woman in the bucket. We remove w from the bucket. If w is free, we stop
(success): w is the highest ranked woman reachable from x. If w is matched, we
explore alternating paths from w (starting with matched edges) until a woman of
level less than j is reached. These women are then added to their appropriate
buckets. When the search stops, we empty all buckets using the list of non-empty
buckets.

Let j(x) be the minimal bucket index from which we remove a woman. In the
case of failure this is the minimal level of a woman reachable from x and in the case
of success this is the maximum level of a woman reachable from x by an augmenting
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r1: {h1, h2} h1: r2, r1

r2: {h1, h2} h2: r2, r1

Fig. 3. When h1 and h2 are regarded as the same hospital h with quota 2, then there is a strongly
stable matching which matches both r1 and r2 to h. However, when two copies of h are made,
say, h1 and h2 as shown here, then this instance becomes similar to Figure 1 where there is no
strongly stable matching.

path.
The time for the search from x is proportional to the number k of edges explored

in the search plus l(x) − j(x) + 1. We charge this cost as follows:
In the case of failure we charge one unit each to each edge deleted (this accounts

for k) and we charge l(x)− j(x)+1 to the minimum level woman w reachable from
x. The first kind of charges adds up to m since every edge is deleted at most once.
The second kind of charge is less than the difference of the current level of w and
the next level of w. Since the maximum level is m, for any woman the total charge
of the second kind is bounded by m. We conclude that the total cost of unsuccessful
searches is O(nm).

In the case of success, we charge both costs to w. Observe that all edges explored
have level at least l(w) (= j(x)) and at most i (= the phase number) and that the
level of w jumps to at least i + 1 if it ever becomes free again. Thus every edge can
be charged at most once to w. Also l(x) − j(x) + 1 is bounded by the difference
between the current level of w and the next level of w. Thus the total charge to w
is bounded by O(m). The total cost of successful searches is therefore bounded by
O(nm).

Theorem 2.12. Strongly stable matchings for the classical stable marriage prob-

lem can be computed in time O(nm).

Note that the running time of our strongly stable matching algorithm is actually
O(|W |m) since the total cost of all unsuccessful searches and augmentations is
shared by women and the cost charged to a particular woman sums to at most
m over all phases. So, if |W | ≪ |X | or |X | ≪ |W | (we reverse the roles of men
and women and it is free women who propose in every phase and it is men who
pay for the augmentations), we can bound the running time of our algorithm by
O(min(|X |, |W |) · m).

3. EXTENSION TO HOSPITALS-RESIDENTS

Recall that the hospitals-residents problem is a many-to-one extension of the classi-
cal stable marriage problem. Observe that replacing each hospital h with ph women
with preference lists identical to h and running the strongly stable matching algo-
rithm for men-women does not work. This is because there might be a strongly
stable matching in the hospitals-residents problem but no strongly stable matching
in the reduced men-women instance. Figure 3 contains such an instance.

We present an O(m
∑

h∈H ph) algorithm for computing a strongly stable match-
ing for the hospitals-residents problem. Our algorithm is based on the algorithm
in [IMS03] which is an O(m2) algorithm. We obtain the improved running time by
restricting again all augmentations to result in level-maximal matchings.
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3.1 The Algorithm of Irving et al.

We first review a variant of the algorithm in [IMS03] and then present our modified
algorithm. The algorithm in [IMS03] generalizes the ideas used for computing
strongly stable matchings in [Irv94; Man99] to the hospitals-residents problem. A
summary of the algorithm along with our modifications is presented in Algorithm 2.

As in the case of the stable marriage problem, the algorithm proceeds in phases.
In any phase, every free resident proposes to all hospitals currently at the top of
her/his list and residents become provisionally assigned to hospitals. Each hospital
h can accommodate up to ph residents, and it needs to keep only the best ph

proposals made to it but if there is a tie in the last place of its list (called the tail),
then h can be provisionally assigned to > ph residents. We introduce a few terms:

—A hospital is said to be over-subscribed, under-subscribed or fully subscribed if it
is provisionally assigned a number of residents greater than, less than, or equal
to its quota, respectively.

—A resident r who is provisionally assigned to a hospital h is said to be bound to
h if h is not over-subscribed or r is not in h’s tail (or both).

—A resident r is dominated in a hospital h’s list if h prefers to r at least ph residents
who are provisionally assigned to it.

The algorithm maintains two graphs G′ and Gc which are subgraphs of G. Gc

is called the provisional assignment graph with edge set Ec and G′ is the graph
of edges E′ not considered yet. During the execution of the algorithm, residents
become provisionally assigned to hospitals which means that edges are moved from
G′ to Gc. The algorithm proceeds in the same way as the algorithm in Section 2.1,
by deleting edges e = (r, h) which cannot belong to any strongly stable matching.

Reduced Assignment Graph. We maintain a graph Gr ⊆ Gc, called the reduced

assignment graph. The residents who appear in Gr are those that are not bound
to any hospital (we call such residents unbound). So, for any hospital h, the edges
incident to h in Gr are to the unbound residents, and hence are at the tail of h’s list.
Each hospital h has a reduced quota p′h in the reduced assignment graph, which is
the difference between the original quota ph and the number of residents bound to
h. So, the vertices of Gr are the set of unbound residents and the set of hospitals
which are the neighbors of the unbound residents. The reduced assignment graph

of phase i is denoted as G
(i)
r .

Now the algorithm is very similar to the algorithm for strongly stable marriage,
except that we compute maximum matchings in the reduced assignment graph.

Initially, G′ = G; Ec = ∅; all the residents are free and G
(0)
r is the empty graph.

At the beginning of phase i, we have a maximum matching M in G
(i−1)
r . If a

resident is free with respect to M , then he is isolated in G
(i−1)
r . Then we move the

edges corresponding to the topmost choices of every free resident from E′ to Ec.
This denotes free residents being provisionally assigned to hospitals. Whenever a
hospital h becomes fully or over-subscribed, then we delete all edges (r, h), where

r is dominated on h’s list, from G′ and Gc. The reduced assignment graph G
(i)
r is

computed from G
(i−1)
r . Observe that an edge (r, h) can change state from bound (r

is bound to h) to unbound (r is not bound to h) but not vice versa. If a new edge
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that gets added to Gc corresponding to one of the top choices of a free resident in

G
(i−1)
r is a bound edge, then it could cause some bound edges to become unbound

or it could cause some edges to get deleted. Any edge of G
(i−1)
r that is not deleted

from Gc continues to remain in G
(i)
r . The change of state of an edge (r, h) from

bound to unbound need not make the resident r unbound unless (r, h) was the only
bound edge incident to r and now (r, h) has changed state to unbound. Then r,

which was not present in G
(i−1)
r , starts appearing in G

(i)
r . (We discuss the cost of

computing G
(i)
r from G

(i−1)
r in Section 3.3.) Then we extend M in G

(i)
r to match

all the unmatched residents.

Augmenting path. In the hospitals-residents setting, a hospital h is considered
free in Gr if it is not matched up to its reduced quota p′h. An alternating path from
a free resident to a free hospital is considered an augmenting path.

We iterate over the free residents in an arbitrary order. Let r be any free resident.
If there is an augmenting path starting at r, we use it to increase the cardinality
of the matching. Otherwise, let Z be the set of residents reachable from r by
alternating paths and let N(Z) be the set of hospitals adjacent to Z in Ec. For
each hospital h ∈ N(Z) we delete all lowest ranked edges in Ec ∪ E′ incident to it.

At the end of the phase, we have a maximum matching M in G
(i)
r . Also, every free

resident is isolated in Gc since the edges incident to her/him were removed when
we searched for an augmenting path starting from it. When all free residents have
run out of proposals, we need to find a feasible matching M ′ in Gc which contains
the maximum matching M in Gr and matches every bound resident r to a hospital
that r is bound to. M ′ is a strongly stable matching if a hospital that was fully
or over-subscribed at some point in the execution of the algorithm is fully matched
in M ′ or a hospital that was always under-subscribed has a number of assignees in
M ′ equal to its degree in Gc. The correctness of this algorithm follows from similar
proofs of correctness as in Section 2.1 and we refer the reader to [IMS03] for the
exact proofs.

3.2 Our Modifications

Let us extend our definitions in order to capture the somewhat different structure
of the hospitals-residents problem.

Definition 3.1. Define the level of an edge e, l(e), to be the phase that e is added
to the reduced assignment graph Gr.

4

Definition 3.2. Define the level of a vertex v, l(v), to be the minimum level of
the edges incident to v. If v does not belong to Gr, then its level is undefined.

Definition 3.3. Define the level of a matching M , l(M), to be the sum over all
hospitals of the level of a hospital multiplied by the number of edges that this
hospital is matched with.

Definition 3.4. A matching M is level-maximal if l(M) ≥ l(M ′) for any matching
M ′ which matches the same residents.

4Note that an edge appears in Gr at some phase which might not necessarily be the phase that
this edge appeared in Gc.
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Fig. 4. The two cases corresponding to whether u is a resident or a hospital.

The following lemmas show how to maintain a level maximal matching.

Lemma 3.5. A matching M is level-maximal iff there is no alternating path

starting with an unmatched edge from a free hospital to a hospital of lower level.

Proof. If such a path exists, then observe that the endpoint of the path is a
hospital matched with a resident. Augmentation increases the level of the matching
and does not change the set of matched residents.

For the converse, assume that M is not level-maximal. Let M ′ be a level-maximal
matching that matches the same residents. We can decompose M ⊕M ′ into a set of
alternating paths and cycles, all of them edge-disjoint. Augmenting a cycle does not
change the level sum. Thus there must be at least one path whose augmentation to
M increases the level sum. Since the degree of every resident in M ⊕ M ′ is either
zero or two, the path must connect two hospitals, one free in M and one free in
M ′.

The following lemma and its proof are very similar to Lemma 2.10.

Lemma 3.6. If M is level-maximal, r is a free resident with respect to M , h is

a hospital of maximal level reachable from r by an augmenting path and p is an

augmenting path from r to h, then N = M ⊕ p is level-maximal.

Proof. Let us look at an alternating path p′ starting with an unmatched edge
from a free hospital h′ to a hospital h′′ (all with respect to N). We will show that
l(h′) ≤ l(h′′) and therefore (by Lemma 3.5) N is level-maximal.

If p′ does not contain any edge from p, then p′ was an alternating path starting
with an unmatched edge from a free hospital h′ to a hospital h′′ in M . Since M is
level-maximal, by Lemma 3.5, l(h′) ≤ l(h′′).

Let us then assume that p′ contains some edge(s) from p.
Let u denote the first vertex on the path p′ that belongs to p, which we meet

while traversing p′ from h′. We cannot argue here like in the proof of Lemma 2.10
that u has to be a resident. However, it does not matter. If u is a resident (possibly
r = u), it means that the edges e′ and e′′ (Figure 4) are unmatched in N and
if u is a hospital, it means that both e′ and e′′ are matched in N . Let us look
at that part of p that has u at its one end and the resident r at its other end,
that was free in M . Since M ⊕ p = N , the matched edges of path p were exactly
the other way around before the augmentation, that is, those edges that are now
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present in the matching N were not present in the matching M previously and vice
versa. Independent of whether u is a resident or a hospital, it follows that h′ was
reachable by an alternating path from r in M . Since h is a hospital of maximal
level reachable from r by an augmenting path, it follows that l(h′) ≤ l(h).

Analogously, let u′ denote the first vertex on the path p′ that belongs to p which
we meet when we traverse p′ beginning with a matched edge from the hospital h′′.
It is not difficult to see that u′ must be a hospital (possibly u′ = h). Let us look
at that part of p which has u′ at one end and the hospital h at its other end. This
path added to the portion of p′ between u′ and h′′ produces an alternating path in
M starting with a free edge from the free hospital h to the hospital h′′. Hence, by
Lemma 3.5, l(h) ≤ l(h′′).

Combining the observations, we get that l(h′) ≤ l(h′′).

Lemma 3.7. M is a level-maximal matching at all times of the execution.

Proof. We use induction on the steps of the algorithm. Initially, M is empty and
therefore level-maximal. For the induction step assume that M is level-maximal at
the beginning of phase i. Free residents propose, and this can introduce two types
of edges in Gr: (a) edges from G′, (b) residents who were bound might become

unbound and so they appear now in G
(i)
r . Hence, edges which were already in Gc

may appear in G
(i)
r . Both types of edges appear in this phase with level i. Assume

edge e = (r, h) appears in Gr. If h ∈ G
(i−1)
r , then its level cannot change. This

is because h was over-subscribed and therefore all proposals worse than its current

ones (in phase i−1) have been dominated. On the other hand, if h /∈ G
(i−1)
r then h

gets a level equal to i. We claim that M is still level-maximal. Otherwise, it follows
from Lemma 3.5 that there must be an alternating path from a free hospital to
a hospital of lower level. This path must use new edges, but the new edges are
incident to free residents, a contradiction.

By the new proposals residents might become dominated, and therefore edges

might be deleted from Gc and Gr. The matching M ∈ G
(i−1)
r may be reduced

in size. Let M ′ be this resulting matching in G
(i)
r . Assume that M ′ is not level-

maximal, then there is an alternating path p from a free hospital to a hospital of
lower level. It cannot use any of the new edges, since they are incident to free
residents. Thus p must use only old edges. Also p cannot start at a hospital of level
i since only new edges are incident to such a hospital. Thus, p starts at hospital
of level less than i and hence that hospital is free in M . Since M ′ ⊆ M , p is an
alternating path with respect to M , a contradiction to the level maximality of M .

Next, we consider the free residents in Gr in turn and search for augmenting
paths. Let r a free resident. If no augmenting path starting from r exists, let Z
be the set of residents reachable by alternating paths in Gr from r and N(Z) be
their neighbors. Then |Z| >

∑
h∈N(Z) p′h. We delete the edges in the tail of the

hospitals in N(Z). This may decrease the size of the matching, but the matching
stays clearly level-maximal. If an augmenting path exists, let p be an augmenting
path to a hospital of maximal level. We use p to increase the cardinality of the
matching. By Lemma 3.6, the resulting matching is level-maximal.

ACM Journal Name, Vol. V, No. N, December 2005.



TBD · Kavitha Telikepalli et al.

Set phase number i = 1, E′ = E, Ec = ∅, M = ∅ and each resident to be free
repeat

while ∃ a free resident r who has a non-empty list do
move all top choice edges e = (r, h) of r in E′ to Ec

if h is fully-subscribed or over-subscribed then
delete all edges (r′, h) ∈ E′ ∪Ec such that r′ is dominated in h’s list

end

[update Gr]
end

Let Ei be the edges moved to Ec

Let G
(i)
r be the reduced assignment graph at this phase

forall free residents r ∈ G
(i)
r w.r.t M do

if an alternating path from r to a free hospital exists in G
(i)
r then

let h be the free hospital [of maximal level ] reachable from r by an
alternating path and let p be an alternating path from r to h
M = M ⊕ p

else
let Z be the set of residents reachable from r by alternating paths

in G
(i)
r and let N(Z) be the hospitals adjacent to them in Er

forall hospitals h ∈ N(Z) do
delete all lowest ranked edges in Ec ∪ E′ incident to h
[update Gr]

end

end

end

i = i + 1
until all free residents have run out of proposals

Let Gc by the final provisional assignment graph
Let M ′ be a feasible matching in Gc

if a hospital that was fully or over-subscribed at some point in the execution of

the algorithm is not full in M ′ or a hospital that was always under-subscribed

has fewer assignees in M ′ than its degree in Gc then
no strongly stable matching exists

else
output the strongly stable matching M ′

end

Algorithm 2: Two algorithms for strongly stable Hospitals/Residents match-
ing. The algorithms differ by the phrase [of maximal level ]. Without the
phrase, the algorithm may augment the current matching along any augment-
ing path and the running time is O(m2). With the phrase, an augmenting path
to a hospital of maximal level must be used. The running time improves to
O(m

∑
h∈H ph). The phrase [update Gr] bounds the maintenance cost of Gr to

O(m).
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3.3 The Running Time

The search for augmenting paths in the reduced assignment graph is implemented
as in the classical strongly stable marriage problem. The time spent on the searches
is calculated similarly. Thus, let r be a free resident of level l(r), for whom we want
to determine a free hospital h of maximal level reachable from r via an augmenting
path. The search is organized, exactly as before, in rounds and using buckets. Let
j(r) be the minimal bucket index from which we remove a hospital. The time for
the search is proportional to the number k of edges explored plus l(r) − j(r) + 1.
The cost is charged as previously, in the case of success: everything to the found
free hospital h and in the case of failure: one unit each to each edge deleted (this
accounts for k) and l(r)− j(r) + 1 to the minimum level hospital reachable from r.

Reasoning as earlier, we get that the cost of unsuccessful searches is O(|H |m).
As for the successes, let us observe that all edges explored during the search have
level at least l(h) and at most i (= the phase number) and that the level of h jumps
to at least i+1, if it becomes free again. This means that the set of edges explored
during a successful search ending on h while it has some level l1(h) is disjoint from
the set of edges explored during a successful search ending on h when h has some
different level l2(h). The maximum number of times a successful augmenting path
search ends at h, while the level of h is fixed at l1(h), is at most ph. So the cost
of all successful searches ending at h is O(phm), hence the cost of all successful
searches is O((

∑
h∈H ph)m).

3.3.1 Implementation details about the graphs. In order to maintain and update
the provisional assignment graph and reduced assignment graph efficiently, we keep
the useful information about these graphs in the following manner.

The adjacency list of every vertex is sorted according to the preferences of that
vertex. The edges of a resident r that are currently in the provisional assignment
graph are kept in two lists called bound or unbound. An edge (r, h) is in the bound
list if r is bound to h, otherwise it is in the unbound list.

Every hospital h keeps the information about its quota ph, the number of residents
bound to it bh, and the number of residents incident to it that are not bound to it
uh. The reduced quota of h is p′h, which is equal to ph − bh. Observe that there are
three types of residents incident to h: residents bound to h, resident not bound to
h but bound to some other hospital h′ and residents not bound to any hospital (the
unbound residents). We assume that h maintains these three types of residents in
three separate lists.

The residents that belong to the reduced assignment graph are those whose bound
list is empty and unbound list nonempty. The hospitals that belong to the reduced
assignment graph are those whose reduced quota is greater than zero. The edges
that belong there are the unbound ones. We assume that every edge keeps the
information about whether it is in a bound list or unbound list and pointers to all
the lists it belongs to.

When the edge (r, h) is moved from E′ to Ec, we check whether it is bound or
unbound and update the following information: first we update bh or uh. If the
added edge is in the tail of h’s list and is unbound and if there are any bound edges
in the tail, they change state to unbound. (Such a situation can arise when before
adding this edge, there were exactly ph bound edges incident on h and no unbound
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ones incident on it.) Because of the addition of the new edge (r, h) if there are
residents that are now dominated in h’s list, then those edges should be deleted.

Whenever an edge (r, h) gets added to the provisional assignment graph, gets
deleted or changes state from bound to unbound we are able to update the infor-
mation about r and h in constant time (including moving it into or away from the

reduced assignment graph). Also, if an edge e appears in G
(i)
r , then it remains in

G
(j)
r , j > i until it gets deleted or the algorithm terminates. Since every edge can

be added and deleted only once, as well as it can change its state only from being
bound to being unbound, the total cost of updating and maintaining Gc and Gr is
O(m).

Theorem 3.8. Strongly stable matchings for the hospitals-residents problem can

be computed in time O(m
∑

h∈H ph).

We conclude that in the worst case
∑

h∈H ph can be as large as m, in which case
we get a running time of O(m2), but in any practical application, we expect that∑

h∈H ph = O(|R|), in which case we get a total running time of O(|R|m).

4. CONCLUSIONS AND OPEN PROBLEMS

We have presented an O(nm) algorithm for computing a strongly stable matching or
reporting that none exists, given an instance of the stable matching problem. Fur-
thermore, we extended this to an O(m

∑
h∈H ph) algorithm for the corresponding

problem in the hospitals-residents context. The algorithms are variants of previous
known algorithms with running time O(m2). We close with two open problems.

First, it is conceivable that Irving’s algorithm runs in time O(nm) but the analysis
is not tight enough to show this. Can the analysis be improved or is there a
family of instances which, under a particular sequence of augmenting paths, force
the algorithm to spend time Ω(m2)? A similar question applies in the hospitals-
residents context.

Second, can our O(m
∑

h∈H ph) algorithm for computing a strongly stable match-
ing in the hospitals-residents (R ∪̇ H, E) setting be improved to an O(nm) algo-
rithm?

However, there is a lower bound presented in [IMS03] that if f is any function
on n, where f = Ω(n2), then the existence of an O(f(n)) algorithm for deciding
whether a strongly stable matching exists in an instance (X ∪̇W, E) with n vertices
implies an O(f(n)) algorithm for deciding whether a given bipartite graph admits
a perfect matching. This reduction may be adapted easily to the many-one case to
show that the existence of an O(f(n)) algorithm for deciding whether a strongly
stable matching exists, given an instance of the hospitals-residents problem, implies
an O(f(n)) algorithm for deciding whether (R ∪̇H, E) (where |R| = |H |) admits a
degree-constrained subgraph G′ that satisfies all degree bounds exactly (i.e., each
resident has exactly one edge incident to it in G′ and each hospital h has exactly ph

edges incident to it). To the best of our knowledge, the current fastest algorithm
for this problem has running time O(m

√∑
h∈H p(h)) [Gab83], where m = |E|.
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