
Minimum Cycle Basis

Algorithms & Applications

Dimitrios Michail

Thesis

for obtaining the degree of a

Doctor of the Engineering Sciences (Dr.-Ing.)

of the natural-technical faculties of

Saarland University

Saarbrücken

July, 2006

Tag des Kolloquiums: 16 November, 2006

Dekan: Prof. Dr.-Ing. Thorsten Herfet

Prüfungsausschuss: Prof. Dr.-Ing. Gerhard Weikum (Vorsitzender)

Prof. Dr. Markus Bläser (Berichterstatter)

Prof. Dr. Kurt Mehlhorn (Berichterstatter)

Prof. Dr. Martin Skutella (Berichterstatter)

Dr. René Beier

στην Κανέλα

Abstract

We consider the problem of computing a minimum cycle basis of an undi-

rected edge-weighted graph G with m edges and n vertices. In this problem,

a {0, 1} incidence vector is associated with each cycle and the vector space

over F2 generated by these vectors is the cycle space of G. A set of cy-

cles is called a cycle basis of G if it forms a basis of its cycle space. A

cycle basis where the sum of the weights of its cycles is minimum is called

a minimum cycle basis of G. Minimum cycle bases are useful in a number

of contexts, e.g., the analysis of electrical networks, structural engineering,

and chemistry.

We present an O(m2n + mn2 log n) algorithm to compute a minimum

cycle basis. The previously best known running time to compute a minimum

cycle basis was O(mωn), where ω is the exponent of matrix multiplication.

It is presently known that ω < 2.376. When the edge weights are integers,

we give an O(m2n) algorithm. For unweighted graphs which are reasonably

dense, our algorithm runs in O(mω) time.

Additionally, we design approximation algorithms for the minimum cycle

basis problem. For any ε > 0 we design a fast (1 + ε)-approximation algo-

rithm by using approximate shortest cycles computations. Moreover, for

any integer k ≥ 1 we present two constant factor approximate algorithms

with approximation factor 2k − 1. One of them has an expected running

time of O(kmn1+2/k + mn(1+1/k)(ω−1)) while the other has a deterministic

O(n3+2/k) running time. For sufficiently dense graphs these running times

are o(mω). For special cases of graphs like geometric or planar graphs we

present even faster approximation algorithms. Our techniques extend to the

directed minimum cycle basis problem.

We also study the minimum cycle basis problem from a practical perspec-

tive. We describe how to efficiently implement de Pina’s O(m3 +mn2 log n)

algorithm. We develop several heuristics which decrease the running time

vi Abstract

considerably. We also present an O(m2n2) algorithm which is obtained by

combining the two fundamentally different approaches which have been used

so far to compute a minimum cycle basis. Furthermore, an experimental

comparison between several algorithms is presented.

Finally, we study the minimum cycle basis of a nearest neighbor graph

which is defined on a point sample of a surface in R3. We show that, under

certain sampling conditions, the minimum cycle basis encodes topological

information about the surface and yields bases for the trivial and non-trivial

loops of the surface. We validate our results by experiments.

Kurzzusammenfassung

Wir betrachten das Problem, eine minimale Kreisbasis eines ungerichteten,

Kanten-gewichteten Graphen G mit m Kanten und n Knoten zu berechnen.

Wir präsentieren einen Algorithmus mit Laufzeit O(m2n + mn2 log n) um

eine solche minimale Kreisbasis zu berechnen. Weiterhin entwickeln wir Ap-

proximationsalgorithmen für das Minimale Kreisbasen Problem. Für jedes

ε > 0 entwickeln wir einen schnellen (1 + ε)-Approximations Algorithmus.

Außerdem, präsentieren wir für jede ganze Zahl k ≥ 1 zwei Approximation-

salgorithmen, die beide einen Approximationsfaktor von 2k − 1 haben. Der

eine hat erwartete Laufzeit O(kmn1+2/k + mn(1+1/k)(ω−1)) und der andere

Laufzeit O(n3+2/k). Unsere Methoden sind auch auf gerichtete Graphen an-

wendbar.

Wir untersuchen das Minimale Kreisbasis Problem ebenfalls aus einer

praktischen Perspektive. Wir entwickeln verschiedene Heuristiken, die die

Laufzeit beträchtlich verbessern. Weiterhin vergleichen wir verschiedene Al-

gorithmen anhand von Experimenten.

Schließlich untersuchen wir die minimale Kreisbasis eines
”
nearest neigh-

bor“ Graphen, der auf eine Stichprobenmenge einer Oberfläche im R3 definiert

wird.

Acknowledgements

First of all I would like to thank my supervisor, Kurt Mehlhorn, for his

help and support during the completion of this thesis. It is my belief that

doing research is something I learned from him. I would also like to thank

Markus Bläser and Martin Skutella for agreeing to co-referee this thesis and

Craig Gotsman, Kanela Kaligosi, Telikepalli Kavitha, Katarzyna Paluch,

and Evangelia Pyrga for collaborating with me in various results of this

thesis.

Special thanks go to my parents, my brother and sister and to all my

friends.

Contents

List of Figures xiv

List of Tables xv

List of Algorithms xvi

1 Introduction 1

2 Preliminaries 7

2.1 Graph Theory . 7

2.2 Graphs and Linear Algebra 9

2.3 Topology . 12

2.3.1 Simplicial Complexes 12

2.3.2 Manifolds and Simplicial Homology 13

3 Exact Minimum Cycle Basis 15

3.1 Introduction . 15

3.1.1 Algorithmic History 17

3.2 An Algebraic Framework . 17

3.3 Computing the Cycles . 20

3.4 Computing the Witnesses . 23

3.5 A New Algorithm . 24

3.5.1 Running Time . 29

3.6 Computing a Certificate of Optimality 30

3.7 Concluding Remarks . 32

4 Approximate Minimum Cycle Basis 33

4.1 Introduction . 33

4.2 An α-approximate Algorithm 34

xii Contents

4.2.1 Running Time . 36

4.3 Most of the Cycles . 38

4.4 The Remaining Cycles . 40

4.4.1 1st Approach . 40

4.4.2 2nd Approach . 44

4.4.3 More Approximation 46

4.5 Planar and Euclidean Graphs 47

4.6 Directed Graphs . 49

4.7 Concluding Remarks . 50

5 Minimum Cycle Basis Algorithms in Practice 51

5.1 Introduction . 51

5.1.1 Experimental Setup 52

5.2 Heuristics . 53

5.2.1 Compressed and/or Sparse Representation 53

5.2.2 Upper Bounding the Shortest Path 54

5.2.3 Reducing the Shortest Path Computations 54

5.2.4 Basis Reordering . 55

5.3 Updating the Witnesses, Si’s 55

5.4 Number of Shortest Path Computations 56

5.5 Combining the Two Approaches 59

5.5.1 Horton’s Algorithm 60

5.5.2 A Hybrid Algorithm 61

5.6 Running Times Comparison 63

5.6.1 Dense Unweighted Graphs 66

5.7 Approximation Algorithms 66

5.8 Concluding Remarks . 69

6 Sampled Manifolds 71

6.1 Introduction . 71

6.1.1 Other Approaches and Remarks 72

6.2 Structure of Cycles . 73

6.2.1 The Basic Idea . 73

6.2.2 Sampling and Restricted Delaunay Triangulations . . 75

6.2.3 Short Cycles . 76

6.2.4 Long Cycles . 82

6.2.5 Putting It All Together 84

6.3 Experimental Validation . 85

6.3.1 Genus Determination 85

6.4 Application to Surface Reconstruction 89

Contents xiii

6.5 Concluding Remarks . 92

7 Conclusions 93

Bibliography 95

Notation 103

Index 107

List of Figures

3.1 A graph and its cycle bases 16

3.2 Example of the signed graph, Gi 21

5.1 Candidate cycle for the MCB 61

5.2 Comparison for random unweighted graphs 64

5.3 Comparison for random weighted graphs 65

5.4 Statistics about the Horton set 67

5.5 2k − 1 approximate algorithm’s performance 68

6.1 Induced path from a to b with edges of the triangulation . . . 77

6.2 Bounding ||p(t)− q(t)|| in terms of ||a− b|| 81

6.3 Proving Theorem 6.16 . 83

6.4 The “double” and “bumpy” torus models 86

6.5 The “homer” torus model . 88

6.6 A non-smooth model . 89

6.7 Several difficult situations . 90

List of Tables

5.1 Updating the witnesses versus calculating the cycles 56

5.2 Statistics about sets S sizes on random graphs 57

5.3 Effect of the H3 heuristic . 58

5.4 Statistics about sets Si sizes on random graphs 59

6.1 Conditions for cycle separation of the MCB 84

List of Algorithms

3.1 De Pina’s combinatorial algorithm for computing an MCB . . 18

3.2 An algebraic framework for computing an MCB 19

3.3 A faster MCB algorithm . 25

3.4 An algorithm which computes an MCB certificate 31

4.1 An α-approximation MCB algorithm 34

4.2 The first 2k − 1 approximation algorithm 40

4.3 The second 2k − 1 approximation algorithm 44

4.4 A (2k − 1)(2q − 1) approximation algorithm 46

5.1 Hybrid MCB algorithm . 62

Chapter 1
Introduction

It is well known that Euler [31], with his solution of the Königsberg bridge

problem, laid the foundation for the theory of graphs. However, the first

fundamental application of graph theory to a problem in physical science

did not arise till 1847, when Kirchhoff [60] developed the theory of trees

for its application in the study of electrical networks. In the study of such

networks, Kirchhoff’s laws play a fundamental role. These laws specify the

relationships among the voltage variables as well as those among the current

variables of a network. For a given electrical network, these relationships

do not depend on the nature of the elements used; rather, they depend

only on the way the various elements are connected or, in other words, on

the graph of the network. In fact, the cycles and cutsets of the graph of a

network completely specify the equations describing Kirchhoff’s voltage and

current laws. The question then arises whether every cycle and every cutset

of a network are necessary to specify these equations. Answering this and

other related questions require a thorough study of the properties of cycles,

cutsets, and trees of a graph. This explains the role of graph theory as an

important analytical tool in the study of electrical networks [74].

It does not take long to discover that a connection can be built between

graph theory and algebra. Viewing graphs in an algebraic fashion, we can

define several vector spaces on a graph. Since edges carry most of the

structure of a graph, we are mostly concerned with the edge space, the

vector space formed by the edge sets of a graph. One of the most important

subspaces of the edge space is the cycle space, our main concern in this

thesis. The cycle space is the vector space generated by all cycles of a

graph. For undirected graphs this vector space is defined over the 2-element

field F2 = {0, 1}.

2 Chapter 1. Introduction

The cycle space reveals useful structural information about a graph.

Thus, understanding the structure and the properties of the cycle space is

essential in order to understand the properties of the underlying graph. A

basis of the cycle space is a maximal set of linearly independent cycles which

can generate any other cycle of the graph. It is rather common in computer

science to associate combinatorial objects with weight functions. Given a

graph G = (V,E), call w : E 7→ R≥0 a non-negative weight function on the

edges of G. If such a weight function is not explicitly mentioned it can be

safely assumed that it is the uniform weight function. Such a weight function

provides an ordering on several combinatorial structures of a graph. Given

a cycle basis, its weight is defined as the sum of the weights of its cycles.

The weight of a cycle is the sum of the weights of its edges. Thus, an edge

weight function defines an ordering on the cycle bases of a graph.

Constructing a cycle basis of a graph is a rather easy combinatorial

problem. Given any spanning tree T of a graph G = (V,E) consider the

following set of cycles. For each edge e = (u, v) ∈ E \ T the cycle formed

by e and the unique path from u to v in T . All these cycles form a cycle

basis, called a fundamental cycle basis. Thus, constructing a cycle basis is

a linear time process assuming that we encode it appropriately and do not

explicitly output the cycles1. Imposing extra conditions, however, on the

particular cycle basis makes the problem considerably harder. Consider the

question of finding the spanning tree T of a graph such that the induced

fundamental cycle basis has minimum weight. This problem is called the

fundamental minimum cycle basis problem. Deo et al. [21] proved that it is

NP-complete.

Fortunately, if we do not restrict ourselves to fundamental cycle bases

the problem becomes easier and polynomial time algorithms can be derived.

The problem of finding a cycle basis with minimum weight is denoted as the

minimum cycle basis problem. Since any fundamental cycle basis is a cycle

basis but not vice-versa, a minimum cycle basis can have less weight than a

minimum fundamental cycle basis.

The problem of finding low-cost cycle bases, or in other words sparse

cycle bases, has been considered in the literature multiple times, see for

example [73, 82, 54, 61]. Horton [52] was the first to present a polyno-

mial time algorithm for finding a minimum cycle basis in a non-negative

edge weighted graph. Later, Hartvigsen and Mardon [47] studied the struc-

ture of minimum cycle bases and characterized graphs whose short cycles2

form a minimum cycle basis. They essentially characterized those graphs

1The size of a cycle basis can be superlinear on the size of a graph.
2A cycle C is considered a short cycle if it is the shortest cycle through one of its edges.

3

for which an algorithm of Stepanec [73] always produces a minimum cy-

cle basis. Hartvigsen [46] also introduced another vector space associated

with the paths and the cycles of a graph, the U -space. Hartvigsen extended

Horton’s approach to compute a minimum weight basis for this space as

well. Hartvigsen and Mardon [48] also studied the minimum cycle basis

problem when restricted to planar graphs and designed an O(n2 log n) time

algorithm.

The first improvement over Horton’s algorithm was obtained by de Pina

in his PhD thesis [20], where an O(m3 +mn2 log n) algorithm is presented.

The approach used by de Pina was fundamentally different by the one of

Horton. Recently, Golynski and Horton [40] observed that the original ap-

proach from Horton could be improved by using fast matrix multiplication,

obtaining an O(mωn) algorithm. It is presently known [17] that ω < 2.376.

Finally, Berger et al. [8] presented another O(m3 + mn2 log n) algorithm

using similar techniques as de Pina.

The applicability and importance of minimum cycle bases is not re-

stricted to solving or understanding problems in electrical networks. The

problem has many more applications in many diverse areas of science. One

such application is for example structural engineering [14], while chemistry

and biochemistry [39] is another. Recently, Tewari et al. [75] used a cycle

basis to do surface reconstruction from a point cloud sampled from a genus

one smooth manifold. In many of the above algorithms, the amount of work

is dependent on the cycle basis chosen. A basis with shorter cycles may

speed up the algorithm.

The minimum cycle basis problem can also be considered in the case of

directed graphs. A cycle in a directed graph is a cycle in the underlying

undirected graph with edges traversed in both directions. A {−1, 0, 1} edge

incidence vector is associated with each cycle: edges traversed by the cycle

in the right direction get 1 and edges traversed in the opposite direction get

−1. The main difference here is that the cycle space is generated over Q
by the cycle vectors. In the case of directed graphs polynomial algorithms

were also developed. The first polynomial time algorithm had running time

Õ(m4n) [56]. Liebchen and Rizzi [64] gave an Õ(mω+1n) deterministic algo-

rithm. This has already been improved to O(m3n+m2n2 log n) [45]. How-

ever, faster randomized algorithms are known like the O(m2n log n) Monte

Carlo algorithm in [55]. The fastest algorithms for finding a minimum cycle

basis in directed graphs are based on the techniques used in de Pina’s the-

sis [20] and the ones presented in this thesis. However, several extra ideas

are required in order to compensate for the extra cost of arithmetic that

arises when changing the base field from F2 to Q. See for example [56, 45].

4 Chapter 1. Introduction

For a more extensive treatment of different classes of cycle bases which

can be defined on graphs we refer the interested reader to Liebchen and

Rizzi [63].

Organization and Contributions

Chapter 2 contains some very basic definitions and notation about the math-

ematical machinery used in this thesis. This includes some graph theory,

the connection of algebra and graphs, and some basic topology theory. A

reader familiar with these subjects can safely skip this chapter.

Chapter 3 describes how to compute a minimum cycle basis of a weighted

undirected graph in O(m2n + mn2 log n) time. We achieve such a running

time by considering an older approach and casting it into an algebraic frame-

work. This algebraic framework has two main parts, (a) maintaining linear

independence, and (b) computing short cycles (paths). Given the algebraic

framework, we design a recursive algorithm which uses fast matrix multipli-

cation to speedup the linear independence step. The idea here is to relax an

invariant of de Pina’s algorithm [20], while at the same time maintain cor-

rectness. The relaxation allows us to group several steps into one bulk step

which can then be performed by using some fast matrix multiplication algo-

rithm. The dominating factor of the running time is now the shortest cycles

computation. For special cases like unweighted graphs or integer weights we

present faster algorithms, by using better shortest paths algorithms.

Chapter 4 goes one step further and presents approximation algorithms

for the minimum cycle basis problem. Our first result is an α-approximation

algorithm, for any α > 1, obtained by using approximate shortest paths com-

putations. We also present constant factor approximation algorithms which

for sufficiently dense graphs have an o(mω) running time. In order to obtain

such a running time we divide the cycles computation in two parts based

on a (2k − 1)-spanner computation, for any integer k ≥ 1. In the first part

we compute, very fast, a large number of cycles of a (2k − 1)-approximate

minimum cycle basis. The second part is a slower computation of the re-

maining cycles. The improvement in the running time is due to the fact

that the remaining cycles are O(n1+1/k). Our techniques are also applicable

to the directed minimum cycle basis problem. Finally, one of our (2k − 1)-

approximation algorithms is very efficient even when implemented without

fast matrix multiplication. We elaborate on this further in Chapter 5.

Our interest in the minimum cycle basis problem is not purely theoret-

ical. Chapter 5 studies the minimum cycle basis problem from a practical

viewpoint. Our first concern is to examine the applicability of the fast

5

matrix multiplication techniques. To this end we implemented de Pina’s

O(m3 + mn2 log n) algorithm, and developed several heuristics which im-

prove the best case while maintaining its asymptotic behavior. One of these

heuristics, by reducing the number of shortest paths computations, improves

the running time dramatically. Experiments with our implementation on

random graphs suggest that the dominating factor of the running time is

the shortest paths computation. Note that for sparse graphs (m ∈ O(n))

the algorithm presented in Chapter 3 is also an O(n3 log n) algorithm. Thus,

our theoretical improvement for the exact minimum cycle basis computa-

tion is not useful in practice for random graphs. On the other hand, there

are instances of the problem where the dominating part is the linear in-

dependence. In such cases our improvement should also have a practical

importance. One such instance is studied in more detail in Chapter 6.

The observation that for certain graphs the dominating part of the run-

ning time is the shortest paths computations, naturally leads to the question

of whether we can compute a minimum cycle basis with fewer shortest paths

computations. All known minimum cycle basis algorithms can be divided

into two main categories. The ones that follow Horton’s approach and the

ones that follow de Pina’s approach. While Horton’s approach, even when

used with fast matrix multiplication, is slower than the approach in Chap-

ter 3, there is one important property which seems rather helpful. Horton’s

approach performs fewer shortest path computations and spends more time

ensuring linear independence. In Chapter 5 we combine the two approaches

to reach a “hybrid” algorithm which performs the shortest paths compu-

tations of Horton’s algorithm and ensures linear independence by using de

Pina’s approach. The resulting algorithm has running time O(m2n2). Ex-

periments suggest that the hybrid algorithm is very efficient when applied

on random dense unweighted graphs. Finally, Chapter 5 contains a compar-

ison between several existing minimum cycle basis implementations and an

experimental view of our constant factor approximation algorithms.

Chapter 6 treats the minimum cycle basis of a particular instance of

graphs. Consider a compact manifold S in R3 and a finite set of points

P in S. A common approach into treating such point samples is to first

construct some neighboring graph. One such popular graph is the k-nearest

neighbor graph; an undirected graph with vertex set P and an edge between

two sample points a and b if b is one of the k points closest to a and a is

one of the k points closest to b. Chapter 6 studies the minimum cycle basis

of the k-nearest neighbor graph when S is a compact smooth manifold and

P is a sufficiently dense sample.

We show that for suitably nice samples of smooth manifolds of genus g

6 Chapter 1. Introduction

and sufficiently large k, the k-nearest neighbor graph Gk has a cycle basis

consisting only of short (= length at most 2(k + 3)) and long (= length at

least 4(k + 3)) cycles. Moreover, the minimum cycle basis is such a basis

and contains exactly m− (n− 1)− 2g short cycles and 2g long cycles. The

short cycles span the subspace of trivial loops and the long cycles form a

homology basis; see Chapter 2 for a definition. Thus, the MCB of Gk reveals

the genus of S and also provides a basis for the set of trivial cycles and a

set of generators for the non-trivial cycles of S. We also validate our results

with experiments.

We offer conclusions and some open problems in Chapter 7.

LEDA Extension Package

As a result of this thesis we have developed a LEDA [67] extension package

for computing exact and approximate minimum cycle bases [65].

Publication Notes and Collaboration

The results presented in Chapter 3 are joint work with Telikepalli Kavitha,

Kurt Mehlhorn, and Katarzyna Paluch. This work was published in the

Conference Proceedings of the 31st International Colloquium on Automata,

Languages and Programming (ICALP 2004) [58]. Chapter 4 is joint work

with Telikepalli Kavitha and Kurt Mehlhorn. It has been accepted in the

Conference Proceedings of the 24th International Symposium on Theoretical

Aspects of Computer Science (STACS 2007) [57]. Chapter 5 is joint work

with Kurt Mehlhorn. A preliminary version was published in the Confer-

ence Proceedings of the 4th International Workshop on Experimental and

Efficient Algorithms (WEA 2005) [66]. A full version has been accepted

for publication in the ACM Journal of Experimental Algorithmics: Selected

papers from WEA’05. Finally, the results of Chapter 6 are joint work with

Craig Gotsman, Kanela Kaligosi, Kurt Mehlhorn, and Evangelia Pyrga [42]

and have been accepted for publication in the Computer Aided Geometric

Design journal.

Chapter 2
Preliminaries

In this chapter we review several basic facts concerning the problems studied

in this thesis. Reading this chapter is not necessary, in order to understand

the remaining part of the thesis, as long as the reader has a basic familiarity

with graph theory, the various vector spaces that can be associated with

graphs, and basic topology. Throughout this thesis we assume familiarity

with basic algebra. An excellent reference to the subject is [49].

2.1 Graph Theory

We use standard terminology from graph theory. In this thesis we consider

finite graphs which in most of the cases are undirected. Thus, we only

provide definitions for undirected graphs. For directed graphs see [18].

An undirected graph G is a pair (V,E), where V is a finite set, and E

is a family of unordered pairs of elements of V . The elements of V are

called vertices, and the elements of E are called edges of G. Sometimes the

notation V (G) and E(G) is used, to emphasize the graph that these two

sets belong to. Given an edge between two vertices v, u ∈ V , v 6= u we

denote this edge by (v, u) or (u, v). For an edge e = (u, v) ∈ E, u and v are

called its end-vertices or endpoints. We also say that edge e is incident to

vertices u and v. Similarly we say that vertex v is adjacent to vertex u. Since

we assume an undirected graph, the adjacency relation is symmetric. The

degree of a vertex in an undirected graph is the number of edges incident to

it. We use the notation deg(v) to denote the degree of a vertex v.

A path p of length k from a vertex u to a vertex u′ in a graph G(V,E)

is a sequence 〈v0, v1, . . . , vk〉 of vertices such that u = v0, u
′ = vk and

(vi−1, vi) ∈ E for i = 1, 2, . . . , k. The length of the path is the number of

8 Chapter 2. Preliminaries

edges in the path. If there is a path p from u to u′, we say that u′ is reachable

from u via p. A path is simple if all its vertices are distinct. In an undirected

graph, a path 〈v0, v1, . . . , vk〉 forms a cycle if v0 = vk and v1, v2, . . . , vk are

distinct. A graph with no cycles is acyclic.

An undirected graph is connected if every pair of vertices is connected by

a path. The connected components of a graph are the equivalence classes of

vertices under the “is reachable from” relation. Thus, an undirected graph

is connected if it has exactly one connected component. We will denote the

number of connected components of graph G as κ(G).

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and

E′ ⊆ E. Given a set V ′ ⊆ V , the subgraph of G induced by V ′ is the graph

G′ = (V ′, E′) where E′ = {(u, v) ∈ E : u, v ∈ V ′}.

The Shortest Path Problem

Let a graph G = (V,E) and a weight function w : E 7→ R mapping edges to

real-valued weights. Such a graph is called a weighted graph. The weight1

of a path p = 〈v0, v1, . . . , vk〉 is the sum of the weights of its edges, w(p) =∑k
i=1w(vi−1, vi). Define the shortest path weight from u to v as

δ(u, v) =


min{w(p) : p is a path from u to v} if there is a path

from u to v,

∞ otherwise.

A shortest path from u to v is defined as any path p such that w(p) = δ(u, v).

Problem 2.1 (single source shortest paths). Given a graph G = (V,E)

together with an edge weight function w : E 7→ R find a shortest path from

a given source vertex s ∈ V to every vertex v ∈ V .

In the single source shortest paths problem some edges may have negative

weights. If G contains no negative-weight cycles reachable from the source s,

then for all v ∈ V the shortest path weight δ(s, v) is well defined. Otherwise,

if there is a negative-weight cycle on some path from s to v, define δ(s, v) =

−∞.

If we are interested in knowing the shortest paths distances between all

pair of vertices we have the all pairs shortest paths problem.

Problem 2.2 (all pairs shortest paths). Given a graph G = (V,E) and an

edge weight function w : E 7→ R find a shortest path between each pair of

vertices v, u ∈ V .

1The term length is also used to denote the weight of a path.

2.2. Graphs and Linear Algebra 9

Dijkstra’s Algorithm

One of the most famous algorithms in computer science is Dijkstra’s algo-

rithm [26] for solving the single source shortest paths problem on a weighted

graph G = (V,E) for the case in which all weights are non-negative, that is

w(e) ≥ 0 for each edge e = (u, v) ∈ E.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest

path weights from source s ∈ V have already been determined. The algo-

rithm repeatedly selects the vertex u ∈ V \ S with the minimum shortest

path estimate from S. Vertex u is added into S and the shortest path esti-

mate of all vertices in V \S which are adjacent to u is updated to incorporate

that u now belongs in S.

Let n = |V | and m = |E| be the cardinalities of the vertex and the edge

set of G. The fastest implementation [34] of Dijkstra’s algorithm requires

O(m+ n log n) time and linear space.

2.2 Graphs and Linear Algebra

Let G = (V,E) be a graph with n vertices and m edges, say V = {v1, . . . , vn}
and E = {e1, . . . , em}. The vertex space V(G) of G is the vector space over

the 2 element field F2 of all functions V 7→ F2. Every element of V(G)

corresponds naturally to a subset of V , the set of those vertices to which

it assigns a 1, and every subset of V is uniquely determined in V(G) by its

indicator function. The sum U + U ′ of two vertex sets U,U ′ ⊆ V is their

symmetric difference, and U = −U for all U ⊆ V . The zero in V(G) is the

empty (vertex) set. Since {{v1}, . . . , {vn}} is a basis of V(G), its standard

basis, the dimension of V(G) is dimV(G) = n.

In the same way as above, the functions E 7→ F2 form the edge space

E(G) of G: its elements are the subsets of E, vector addition amounts to

symmetric difference, ∅ ⊆ E is the zero, and F = −F for all F ⊆ E. As

before, {{e1}, . . . , {em}} is the standard basis of E(G), and dim E(G) = m.

The edges of a graph carry most of its structure and thus we will be

concerned only with its edge space. Given two edge sets F, F ′ ∈ E(G) and

their coefficients λ1, . . . , λm and λ′1, . . . , λ
′
m with respect to the standard

basis, we have their inner product as

〈F, F ′〉 := λ1λ
′
1 + . . .+ λmλ

′
m ∈ F2 .

Note that 〈F, F ′〉 = 0 may hold even when F = F ′ 6= 0, more precisely

〈F, F ′〉 = 0 if and only if F and F ′ have an even number of edges in common.

10 Chapter 2. Preliminaries

When 〈a, b〉 = 0 we say that a and b are orthogonal.

Given a subspace F of E(G), we write

F⊥ := {D ∈ E(G) | 〈F,D〉 = 0 for all F ∈ F} .

This is again a subspace and we call it the orthogonal subspace. The dimen-

sions of these two subspaces are related by

dimF + dimF⊥ = m .

The cycle space C(G) is the subspace of E(G) spanned by all the cycles

in G, more precisely, by their edge sets2. The dimension of C(G) is the cy-

clomatic number. The elements of C(G) are easily recognized by the degrees

of the subgraphs they form.

Proposition 2.1. The following are equivalent for an edge set F ⊆ E:

(i) F ∈ C(G),

(ii) F is an edge disjoint union of cycles of G,

(iii) All vertex degrees of the graph G(V, F) are even.

Proof. Cycles have even degrees and symmetric difference preserves this.

Thus, (i)→(iii) follows by induction on the number of cycles used to generate

F . The implication (iii)→(ii) follows by induction on |F |: if F 6= ∅ then

(V, F) contains a cycle C, whose edges we delete for the induction step. The

implication (ii) →(i) follows from the definition of C(G).

Consider a connected graph G = (V,E) and let T be a spanning tree of

G. Let c1, c2, . . . , cm−n+1 denote all the edges in E \ T . We call these edges

the chords of T . For each such chord ci there is a unique cycle Ci which is

formed by ci and the unique path on T between the endpoints of ci. Such

cycles are the fundamental cycles of G with respect to T .

By definition each fundamental cycle Ci contains exactly one chord,

namely ci, which is not contained in any other fundamental cycle. Thus,

no fundamental cycle can be expressed as a linear combination of other

fundamental cycles. Hence, the fundamental cycles C1, C2, . . . , Cm−n+1 are

linearly independent. We will also show that every subgraph in the cycle

2For simplicity we do not normally distinguish between cycles and edge sets w.r.t the
cycle space. Similarly, we view edge sets also as vectors. Since we are working over F2,
where addition of vectors representing edge sets is the same as the symmetric difference
of the edge sets, we use either + or ⊕ to denote the addition operator.

2.2. Graphs and Linear Algebra 11

space of G can be expressed as a linear combination of the fundamental cy-

cles. This immediately implies that the set {C1, C2, . . . , Cm−n+1} is a basis

of the cycle space of G.

Consider any subgraph C in the cycle space of G. Let C contain the

chords ci1 , ci2 , . . . , cir . Let also C ′ be equal to Ci1 ⊕ Ci2 ⊕ . . . ⊕ Cir . C ′ by

definition contains the chords ci1 , ci2 , . . . , cir and no other chords of T . Since

C also contains these chords and no others, C ⊕ C ′ contains no chords.

We now claim that C ⊕ C ′ is empty. If not, then by the preceding

discussion C ⊕ C ′ contains only edges of T and thus contains no cycles.

This contradicts that C ⊕ C ′ is in the cycle space. Hence, C = C ′ =

Ci1 ⊕ Ci2 ⊕ . . . ⊕ Cir . In other words, every subgraph in the cycle space

of G can be expressed as a linear combination of Ci’s. Thus, we have the

following theorem.

Theorem 2.1. Let a connected graph G = (V,E) with n vertices and m

edges. The fundamental cycles w.r.t a spanning tree of G constitute a basis

for the cycle space of G. Thus, the dimension of the cycle space of G is

equal to m− n+ 1.

It is rather easy to see that in the case of a graph G which is not con-

nected, the set of all fundamental cycles with respect to the chords of a

spanning forest of G is a basis of the cycle space of G.

Corollary 2.2. The dimension of the cycle space of a graph G = (V,E)

with n vertices, m edges, and κ connected components is equal to m−n+κ.

The next theorem will prove to be particularly useful, especially com-

bined with the fact that the minimum cycle basis problem can be solved by

the greedy algorithm.

Theorem 2.3. Assume B is a cycle basis of a graph G, C is a cycle in B,

and C = C1⊕C2. Then, either B \ {C} ∪ {C1} or B \ {C} ∪ {C2} is a cycle

basis.

Proof. Assume otherwise. Then, both C1 and C2 can be expressed as a

linear combination of B \ {C}. But C = C1 ⊕ C2, and thus C can also be

expressed as a linear combination of B \ {C}. A contradiction to the fact

that B is a basis.

For a more detailed treatment of such topics we refer the reader to [11,

74, 25].

12 Chapter 2. Preliminaries

2.3 Topology

This section contains some basic definitions from topology; for a more thor-

ough introduction we refer the interested reader to [68]. An introduction to

homology theory can be found in [37].

2.3.1 Simplicial Complexes

Definition 2.1 (affinely independent). Let v0, . . . , vn be n + 1 vectors in

Rd, n ≥ 1. They are called affinely independent (a-independent) if v1 −
v0, . . . , vn − v0 are linearly independent. By convention if n = 0 then the

vector v0 is always a-independent.

The definition of a-independence does not in reality depend on the or-

dering of the vi’s. As an example consider three vectors v0,v1, and v2. They

are a-independent if and only if they are not collinear.

Definition 2.1 can be reformulated in the following useful form.

Definition 2.2 (affinely dependent). Let v0, . . . , vn be vectors in Rd. A

vector v is said to be affinely dependent (a-dependent) on them if there exist

real numbers λ0, . . . , λn such that λ0+· · ·+λn = 1 and v = λ0v0+· · ·+λnvn.

Proposition 2.2. Let v0, . . . , vn be a-independent and let v be a-dependent

on them. Then, there exist unique real numbers λ0, . . . , λn s.t.
∑n

i=0 λi = 1

and v =
∑n

i=0 λivi.

The λ’s are called the barycentric coordinates of v w.r.t v0, . . . , vn. We

next define what a simplex is.

Definition 2.3 (simplex). Let v0, . . . , vn be a-independent. The (closed)

simplex with vertices v0, . . . , vn is the set of points a-dependent on v0, . . . , vn
and with every barycentric coordinate ≥ 0.

Let sn = (v0 . . . vn) be a simplex. A face of sn is a simplex whose vertices

form a (nonempty) subset of {v0, . . . , vn}. If the subset is proper we say that

the face is a proper face. If sp is a face of sn we write sp < sn or sn > sp.

The boundary of sn is the union of the proper faces of sn.

Definition 2.4 (simplicial complex). A simplicial complex is a finite set K

of simplexes in Rd with the following two properties: (a) if s ∈ K and t < s

then t ∈ K, (b) if s ∈ K and t ∈ K then s ∩ t is either empty or else a face

both of s and of t.

Depending on our needs we can define oriented and unoriented simplexes

and simplicial complexes. See for example [37].

2.3. Topology 13

2.3.2 Manifolds and Simplicial Homology

A 2-manifold is a topological space in which every point has a neighborhood

homeomorphic to R2. In this thesis only connected, compact, orientable 2-

manifolds without boundary will be considered. The genus of a 2-manifold

is the number of disjoint cycles that can be removed without disconnect-

ing the manifold. Two connected, compact, orientable 2-manifolds without

boundary are homeomorphic if and only if they have the same genus.

Let R be an arbitrary ring and M be a 2-manifold as described above.

A k-chain is a formal linear combination of oriented k-simplices3 with coeffi-

cients in the ring R. The set of k-chains forms a chain group Ck(M ;R) under

addition. The boundary operator ∂k : Ck 7→ Ck−1 is a linear map taking any

oriented simplex to the chain consisting of its oriented boundary facets. A

k-chain is called a k-cycle if its boundary is empty and a k-boundary if it

is the boundary of a (k + 1)-cycle. Every k-boundary is a k-cycle. Let Zk
and Bk denote the subgroups of k-cycles and k-boundaries in Ck. The k-th

homology group Hk(M ;R) is the quotient group Zk/Bk. If M is an oriented

2-manifold of genus g, then H1(M ;R) ∼= R2g.

More intuitively, a homology cycle is a formal linear combination of ori-

ented cycles with coefficients in R. The identity element of the homology

group is the equivalence class of separating cycles, that is, cycles whose

removal disconnects the surface. Two homology cycles are in the same ho-

mology class if one can be continuously deformed into the other via a defor-

mation that may include splitting cycles at self-intersection points, merging

intersecting pairs of cycles, or adding or deleting separating cycles. We de-

fine a homology basis for M to be any set of 2g cycles whose homology classes

generate H1(M ;R).

When we are dealing with unoriented simplicial complexes, we can re-

place the ring R by the field F2.

3 In simplicial homology, we assume that M is a simplicial complex and build chains
from its component simplices. In singular homology, continuous maps from the canonical
k-simplex to M play the role of ’k-simplices’. These two definitions yield isomorphic
homology groups for manifolds.

Chapter 3
Exact Minimum Cycle Basis

Summary

In this chapter we consider the problem of computing a minimum cycle basis in
an undirected graph G with m edges and n vertices. The input is an undirected
graph whose edges have non-negative weights. Graph cycles are associated with
a {0, 1} incidence vector and the vector space over F2 generated by these vectors
is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a
basis for its cycle space. A cycle basis where the sum of the weights of its cycles
is minimum is called a minimum cycle basis of G.

We present an algebraic framework and an O(m2n + mn2 logn) algorithm
for solving the minimum cycle basis problem. Using specialized shortest paths
we also present improved time bounds for special cases like integer weights or
unweighted graphs.

3.1 Introduction

Let G = (V,E) be an undirected graph with m edges and n vertices. A cycle†

of G is any subgraph of G where each vertex has even degree. Associated

with each cycle C is an incidence vector x, indexed on E, where for any

e ∈ E

xe =

{
1 if e is an edge of C,

0 otherwise.

The vector space over F2 generated by the incidence vectors of cycles is

called the cycle space of G. It is well known (see Corollary 2.2) that this

vector space has dimension m− n+ κ(G), where m is the number of edges

of G, n is the number of vertices, and κ(G) is the number of connected

† From now on we use the term cycle to denote either a cycle or a disjoint union of
cycles (see Proposition 2.1) in the graph. The exact meaning should be clear from the
context.

16 Chapter 3. Exact Minimum Cycle Basis

Figure 3.1: A graph with 4 vertices and 5 edges and its three possible
cycle bases. Assuming uniform edge weights, two of the cycle bases
have cost 7 and the minimum cycle basis has cost 6.

components of G. A maximal set of linearly independent cycles is called a

cycle basis.

The edges ofG have non-negative weights assigned to them. A cycle basis

where the sum of the weights of the cycles is minimum is called a minimum

cycle basis of G. We consider the problem of computing a minimum cycle

basis of G. We also use the abbreviation MCB to refer to a minimum cycle

basis. We will assume that G is connected since the minimum cycle basis of a

graph is the union of the minimum cycle bases of its connected components.

Thus, we will denote the dimension of the cycle space as N = m− n+ 1.

See Figure 3.1 for an example of a graph with 4 vertices and 5 edges and

the possible cycle bases. The graph has 3 cycle bases. Assuming uniform

weights on the edges, two of them have cost 7 and one, the minimum cycle

basis, has cost 6.

The problem of computing a minimum cycle basis has been extensively

studied, both in its general setting and in special classes of graphs. Its

importance lies in understanding the cyclic structure of graphs and its use

as a preprocessing step in several algorithms. That is, a cycle basis is used

as input for some algorithms, and using a minimum cycle basis instead of

any arbitrary cycle basis usually reduces the amount of work that has to

be done. Such algorithms include algorithms from diverse applications like

electrical engineering [15], structural engineering [14], chemistry [39], and

surface reconstruction [75]. Chapter 6 is originally motivated by such an

application.

3.2. An Algebraic Framework 17

3.1.1 Algorithmic History

The first polynomial time algorithm for the minimum cycle basis problem

was given by Horton [52] and had running time O(m3n). Horton’s approach

was to create a set M of O(mn) cycles which he proved was a superset

of an MCB and then extract the MCB as the shortest m − n + 1 linearly

independent cycles from M using Gaussian elimination. De Pina [20] gave

an O(m3+mn2 log n) algorithm to compute an MCB. The approach in [20] is

different from that of Horton; de Pina’s algorithm is similar to the algorithm

of Padberg and Rao [69] to solve the minimum weighted T -odd cut problem.

Later on Golynski and Horton [40] observed that the shortest m−n+ 1

linearly independent cycles could be obtained from M in O(mωn) time using

fast matrix multiplication algorithms, where ω is the exponent for matrix

multiplication. It is presently known [17] that ω < 2.376. The O(mωn)

algorithm was the fastest known algorithm for the MCB problem.

For planar graphs, Hartvigsen and Mardon [48] showed that an MCB

can be computed in O(n2 log n) time. In [47] Hartvigsen and Mardon study

the structure of minimum cycle bases and characterize graphs whose short

cycles1 form an MCB.

Closely related to the problem of computing an MCB is the problem

of finding a minimum fundamental cycle basis. In this problem, given a

connected graph G, we are required to find a spanning tree T of G such that

the fundamental cycle basis (where each cycle is of the form: one edge from

E \T and a path in T) is as small as possible. This problem has been shown

to be NP-complete [21].

Applications and history of the problem are surveyed in Deo et al. [21],

Horton [52], and de Pina [20].

3.2 An Algebraic Framework

Let T be any spanning tree in G(V,E) and let e1, . . . , eN be the edges of

E \T in some arbitrary but fixed order. De Pina [20] gave the combinatorial

algorithm in Algorithm 3.1 to compute a minimum cycle basis in G. Before

we show the correctness of de Pina’s algorithm, we will cast the algorithm

into an algebraic framework. The intuition behind the Algorithm 3.1 and

the idea as to why it works is not clear from its combinatorial version.

A cycle in G can be viewed in terms of its incidence vector, meaning

that each cycle is a vector (with 0’s and 1’s in its coordinates) in the space

1A cycle C is considered a short cycle if it is the shortest cycle through one of its edges.

18 Chapter 3. Exact Minimum Cycle Basis

Algorithm 3.1: De Pina’s combinatorial algorithm.

Initialize S1,i = {ei} for i = 1, . . . , N .
for k = 1, . . . , N do

Find a minimum weight cycle Ck with an odd number of edges in
Sk,k.
for i = k + 1, . . . , N do

if Ck has an even number of edges in Sk,i then
define Sk+1,i = Sk,i

else
define Sk+1,i = Sk,i ⊕ Sk,k

end

end

end
Return {C1, . . . , CN}.

spanned by all the edges. Here we will look such vectors restricted2 to the

coordinates indexed by {e1, . . . , eN}. That is, each cycle can be represented

as a vector in {0, 1}N .

Algorithm 3.2 computes the cycles of a minimum cycle basis and their

witnesses. A witness S of a cycle C is a subset of {e1, . . . , eN} which will

prove that C belongs to the minimum cycle basis. We will view these wit-

nesses or subsets in terms of their incidence vectors over {e1, . . . , eN}. Hence,

both cycles and their witnesses are vectors in the space {0, 1}N .

〈C, S〉 stands for the standard inner product of the vectors C and S. We

say that a vector S is orthogonal to C if 〈C, S〉 = 0. Since we are in the

field F2, observe that 〈C, S〉 = 1 if and only if C contains an odd number of

edges of S.

The Algorithm 3.2 performs N main steps. In each step i, 1 ≤ i ≤ N

a new cycle Ci is computed. In order for this new cycle Ci to be linearly

independent of the set of cycles {C1, . . . , Ci−1} previously computed, the

algorithm first computes a non-zero vector Si which is orthogonal to the

cycles C1, . . . , Ci−1. Given such an Si, the algorithm then computes a cycle

Ci which is the shortest cycle in G such that 〈Ci, Si〉 = 1.

We first prove some simple properties of Algorithm 3.2.

2 For a cycle C, use C to denote its incidence vector in {0, 1}N and C∗ to denote its
incidence vector in {0, 1}m. Consider a set of cycles C1, . . . , Ck. Clearly, if the vectors
C∗1 , . . . , C

∗
k are dependent, then so are the vectors C1, . . . , Ck. Conversely, assume that∑

i λiCi = 0 for some λi ∈ {0, 1}. Then, C =
∑
i λiC

∗
i contains only edges in T . Moreover,

since C is a sum of cycles, each vertex has even degree with respect to C. Thus, C = 0
and hence linear dependence of the restricted incidence vectors implies linear dependence
of the full incidence vectors. For this reason, we may restrict attention to the restricted
incidence vectors when discussing questions of linear independence.

3.2. An Algebraic Framework 19

Algorithm 3.2: An algebraic framework for computing an MCB.

for i = 1, . . . , N do
Let Si denote an arbitrary non-zero vector in the subspace orthog-
onal to {C1, C2, . . . , Ci−1}.
That is, Si 6= ~0 satisfies: 〈Ck, Si〉 = 0 for 1 ≤ k ≤ i− 1.
[Initially, S1 is any arbitrary non-zero vector in the space {0, 1}N .]

Compute a minimum weight cycle Ci such that 〈Ci, Si〉 = 1.
end

Lemma 3.1. For each i, 1 ≤ i ≤ N there is at least one cycle C that

satisfies 〈C, Si〉 = 1.

Proof. Observe that each Si is non-zero and thus it has to contain at least

one edge e = (u, v) ∈ E \ T . The cycle Ce formed by the unique path on

T from u to v and edge e has intersection of size exactly 1 with Si. Thus,

there is always at least one cycle that satisfies 〈Ce, Si〉 = 1.

Lemma 3.2 shows that the set {C1, . . . , CN} returned by Algorithm 3.2

is a basis.

Lemma 3.2. For each i, 1 ≤ i ≤ N cycle Ci is linearly independent of

cycles C1, . . . , Ci−1.

Proof. Any vector v in the span of {C1, . . . , Ci−1} satisfies 〈v, Si〉 = 0 since

〈Cj , Si〉 = 0 for all 1 ≤ j ≤ i − 1. But Ci satisfies 〈Ci, Si〉 = 1. Thus, Ci
cannot lie in the span of {C1, . . . , Ci−1} or we get a contradiction.

We next show that it is also a minimum cycle basis.

Theorem 3.3 (de Pina [20]). The set of cycles {C1, . . . , CN} computed by

Algorithm 3.2 is a minimum cycle basis.

Proof. Suppose not. Then, there exists some 0 ≤ i < N such that there is a

minimum cycle basis B that contains {C1, . . . , Ci} but there is no minimum

cycle basis that contains {C1, . . . , Ci, Ci+1}. Since the cycles in B form a

spanning set, there exist cycles B1, . . . , Bk in B such that

Ci+1 = B1 +B2 + · · ·+Bk . (3.1)

Since 〈Ci+1, Si+1〉 = 1, there exists some Bj in the above sum such that

〈Bj , Si+1〉 = 1. But Ci+1 is a minimum weight cycle such that 〈Ci+1, Si+1〉 =

1. So the weight of Ci+1 ≤ the weight of Bj .

20 Chapter 3. Exact Minimum Cycle Basis

Let B′ = B ∪ {Ci+1} \ {Bj}. Since Bj is equal to the sum of Ci+1 and

{B1, . . . , Bk} \ {Bj} (refer Equation (3.1)), B′ is also a basis. Moreover, B′

has weight at most the weight of B which is a minimum cycle basis. So B′

is also a minimum cycle basis.

We have {C1, C2, . . . , Ci+1} ⊆ B′ because by assumption {C1, . . . , Ci} ⊆
B and the cycle Bj that was omitted from B cannot be equal to any one of

C1, . . . , Ci since 〈Bj , Si+1〉 = 1 whereas 〈Cl, Si+1〉 = 0 for all l ≤ i. The exis-

tence of the minimum cycle basis B′ that contains the cycles {C1, . . . , Ci+1}
contradicts our assumption that there is no minimum cycle basis containing

{C1, . . . , Ci, Ci+1}. Hence, the cycles {C1, C2, . . . , CN} are indeed a mini-

mum cycle basis.

There are two main subroutines in Algorithm 3.2:

(a) computing a non-zero vector Si in the subspace orthogonal to the cycles

{C1, . . . , Ci−1},

(b) computing a minimum weight cycle Ci such that 〈Ci, Si〉 = 1.

Depending on how we implement these two steps we can obtain algorithms

with different running time complexities. Especially for the computation of

Si, depending on the amount of information that we are reusing from phases

1, . . . , i− 1, we can obtain better and better running times.

3.3 Computing the Cycles

Given Si we can compute a minimum weight cycle Ci such that 〈Ci, Si〉 = 1

by reducing it to n shortest paths computations in an appropriate graph

Gi. The following construction is well known [6, 43]. The signed graph Gi
is defined from G = (V,E) and Si ⊆ E in the following manner.

Gi has two copies of each vertex v ∈ V . Call them v+ and v−.

for every edge e = (v, u) ∈ E do

if e /∈ Si then

Add edges (v+, u+) and (v−, u−) to the edge set of Gi.

{Assign their weights to be the same as e.}
else

Add edges (v+, u−) and (v−, u+) to the edge set of Gi.

{Assign their weights to be the same as e.}
end if

end for

3.3. Computing the Cycles 21

1

4

3

2

4+

3+

3−

1+

1−

2+

2−

4−

Figure 3.2: An example of the graph Gi, where Si = {(1, 2)}. Since the
edge (1, 2) belongs to Si we have the edges (1−, 2+) and (1+, 2−) going
across the − and + levels. The edges not in Si, i.e., (1, 4), (2, 4), and
(3, 4) have copies inside the + level and the − level.

Gi can be visualized as 2 levels of G, the + level and the − level. Within

each level we have edges of E \ Si. Between the levels we have the edges of

Si. See Figure 3.2 for an example of Gi.

Given any v+ to v− path in Gi, we can correspond to it a cycle in G by

identifying the vertices and edges in Gi with their corresponding vertices and

edges in G. Because we identify both v+ and v− with v, any v+ to v− path

p in Gi corresponds to a cycle C in G. More formally, take the incidence

vector of the path p (over the edges of Gi) and obtain an incidence vector

over the edges of G by identifying (v∗, u†) with (v, u) where ∗ and † are +

or −. Suppose the path p contains more than one copy of the same edge

(it could for example contain both (v+, u−) and (v−, u+) for some (v, u)).

Then, add the number of occurrences of that edge modulo 2 to obtain an

incidence vector over the edges of G. As an example, consider Figure 3.2.

The path 〈4+, 1+, 2−, 4−〉 corresponds to the cycle 〈4, 1, 2, 4〉 in G.

Lemma 3.4. The path p = min
v∈V

shortest (v+, v−) path in Gi corresponds to

a minimum weight cycle C in G that has odd intersection with Si.

Proof. Since the endpoints of the path p are v+ and v−, p has to contain

an odd number of edges of Si. This is because only edges of Si provide a

change of sign and p goes from a + vertex to a − vertex. We might have

deleted some edges of Si while forming C since those edges occurred with

a multiplicity of 2. But this means that we always delete an even number

of edges from Si. Hence, C has an odd number of edges of Si present in

22 Chapter 3. Exact Minimum Cycle Basis

it. Also, the weight of C ≤ the weight (or length) of p since edges have

non-negative weights.

We should now prove that C is a minimum weight cycle among such

cycles. Let C ′ be any other cycle in G with an odd number of edges of Si
in it. If C ′ is not a simple cycle, then C ′ is a union of simple cycles (with

disjoint edges) and at least one of those simple cycles C0 should have an odd

number of edges of Si present in it. Note also that the weight of C0 ≤ the

weight of C ′.

Let u be a vertex in C0. We will identify C0 with a path in Gi by

traversing C0 starting at the vertex u and identifying it with u+. If we

traverse an edge e of Si, then we identify the vertices incident on e with

opposite signs. If we traverse an edge outside Si, then we identify the vertices

incident on e with the same sign. Since C0 is a cycle, we come back to the

vertex u. Also, C0 has an odd number of edges of Si present in it. So the

sign of the final vertex is of the opposite sign to the sign of the starting

vertex. Hence, C0 translates to a u+ to u− path p′ in Gi and the weight of

p′ = the weight of C0.

But p was the minimum weight path among all shortest (v+, v−) paths

in Gi for all v ∈ V . Hence, the weight of p ≤ the weight of p′. So we finally

get that the weight of C ≤ the weight of p ≤ the weight of p′ ≤ the weight of

C ′. This proves that C is a minimum weight cycle that has odd intersection

with Si.

The computation of the path p can be performed:

(a) by computing n shortest (v+, v−) paths, one for each vertex v ∈ V , each

by Dijkstra’s algorithm in Gi and taking their minimum, or

(b) by one invocation of an all pairs shortest paths algorithm in Gi.

This computation takes O(n(m + n log n)). Note that depending on the

relation between m and n, the algorithm can choose which shortest paths

algorithm to use. For example, in the case when the edge weights are integers

or the unweighted case it is better to use faster all pairs shortest paths

algorithms than run Dijkstra’s algorithm n times.

In the general case of weighted undirected graphs, since we have to com-

pute in total N such cycles C1, C2, . . . , CN , we spend O(mn(m + n log n))

time, since N = m− n+ 1.

3.4. Computing the Witnesses 23

3.4 Computing the Witnesses

We now consider the problem of computing the subsets Si, for 1 ≤ i ≤
N . We want Si to be a non-zero vector in the subspace orthogonal to

{C1, . . . , Ci−1}. The trivial way would be to solve one linear system in each

of the N iterations. This would cost O(mω) in each iteration and thus a

total of O(mω+1).

One way to improve upon the trivial way is to maintain a whole basis of

the subspace. Any vector in that basis will then be a non-zero vector in the

subspace. The intuition behind such an approach is that in each iteration

we have only one new cycle, and thus computing a basis of the orthogonal

subspace should be relatively easy since we know the basis from the previous

iteration. This is the approach chosen by de Pina [20] in Algorithm 3.1. We

now cast this approach to our algebraic framework and prove its correctness.

Initially, Sj = {ej} for all j, 1 ≤ j ≤ N . This corresponds to the

standard basis of the space {0, 1}N . At the beginning of phase i, we have

{Si, Si+1, . . . , SN} which is a basis of the space C⊥ orthogonal to the space

C spanned by {C1, . . . , Ci−1}. We use Si to compute Ci and update vec-

tors {Si+1, . . . , SN} to a basis {S′i+1, . . . , S
′
N} of the subspace of C⊥ that is

orthogonal to Ci. The update step of phase i is as follows:

For i+ 1 ≤ j ≤ N , let

S′j =

{
Sj if 〈Ci, Sj〉 = 0 ,

Sj + Si if 〈Ci, Sj〉 = 1 .

The following lemma proves that this step does indeed what we claim.

Lemma 3.5. The set {S′i+1, . . . , S
′
N} forms a basis of the subspace orthog-

onal to {C1, . . . , Ci}.

Proof. We will first show that S′i+1, . . . , S
′
N belong to the subspace orthogo-

nal to C1, . . . , Ci. We know that Si, Si+1, . . . , SN form a basis of the subspace

orthogonal to C1, . . . , Ci−1. Since each S′j , i+ 1 ≤ j ≤ N is a linear combi-

nation of Sj and Si, it follows that S′j is orthogonal to C1, . . . , Ci−1. If an Sj
is already orthogonal to Ci, then we leave it as it is, i.e., S′j = Sj . Otherwise

〈Ci, Sj〉 = 1 and we update Sj as S′j = Sj + Si. Since both 〈Ci, Sj〉 and

〈Ci, Si〉 are equal to 1, it follows that each S′j is now orthogonal to Ci also.

Hence, S′i+1, . . . , S
′
N belong to the subspace orthogonal to C1, . . . , Ci.

Now we will show that S′i+1, . . . , S
′
N are linearly independent. Suppose

there is a linear dependence among them. Substitute S′j ’s in terms of Sj ’s

and Si in the linear dependence relation. Si is the only vector that might

24 Chapter 3. Exact Minimum Cycle Basis

occur more than once in this relation. So either Si occurs an even num-

ber of times and gets cancelled and we get a linear dependence among

Si+1, . . . , SN or Si occurs an odd number of times, in which case we get

a linear dependence among Si, Si+1, . . . , SN . Either case contradicts the

linear independence of Si, Si+1, . . . , SN . We conclude that S′i+1, . . . , S
′
N are

linearly independent.

This completes the description of the algebraic framework (see Algo-

rithm 3.2) and one of its possible implementations (see Algorithm 3.1). Let

us now bound the running time of Algorithm 3.1. During the update step of

the i-th iteration, the cost of updating each Sj , j > i is O(N) and hence it

is O(N(N − i)) for updating Si+1, . . . , SN . There are N iterations in total,

thus, the total cost of maintaining this basis is O(N3) which is O(m3).

The total running time of the Algorithm 3.1 is O(m3 + mn2 log n) by

summing up the costs of computing the cycles and witnesses. For dense

graphs the bottleneck of Algorithm 3.1 is the O(m3) term, meaning that

the choice of the shortest paths method is not crucial for the worst case

running time.

3.5 A New Algorithm

In this section we are going to realize Algorithm 3.2 in such a manner such

that the cost of updating the witnesses is O(mω). This also implies that

different shortest paths routines will give us different running time bounds.

Recall our approach to compute the vectors Si. We maintained a basis

of C⊥ in each iteration and that required O(m2) in each iteration. Note

that we need just one vector from the subspace orthogonal to C1, . . . , Ci.

But the algorithm maintains N − i such vectors: Si+1, . . . , SN . This is the

limiting factor in the running time of the algorithm. In order to improve

the running time of Algorithm 3.2, we relax the invariant that Si+1, . . . , SN
form a basis of the subspace orthogonal to C1, . . . , Ci. Since we need just one

vector in this subspace, we can afford to relax this invariant and maintain

the correctness of the algorithm.

In Algorithm 3.2, as realized in Section 3.4, in the i-th iteration we up-

date Si+1, . . . , SN . The idea now is to update only those Sj ’s where j is

close to i and postpone the update of the later Sj ’s. During the postponed

update, many Sj ’s can be updated simultaneously. This simultaneous up-

date is implemented as a matrix multiplication step and the use of a fast

algorithm for matrix multiplication causes the speedup.

3.5. A New Algorithm 25

Algorithm 3.3: A faster MCB algorithm.

Initialize the cycle basis with the empty set and initialize Sj = {ej}
for 1 ≤ j ≤ N .

Call the procedure extend cb({}, {S1, . . . , SN}, N).

A call to extend cb({C1, . . . , Ci}, {Si+1, . . . , Si+k}, k) extends the
cycle basis by k cycles. Let C denote the current partial cycle basis
which is {C1, . . . , Ci}.

Procedure extend cb(C, {Si+1, . . . , Si+k}, k):
if k = 1 then

compute a minimum weight cycle Ci+1 such that 〈Ci+1, Si+1〉 = 1.
else

call extend cb(C, {Si+1, . . . , Si+bk/2c}, bk/2c) to extend the current
cycle basis by bk/2c elements. That is, we compute the cycles
Ci+1, . . . , Ci+bk/2c in a recursive manner.

During the above recursive call, Si+1, . . . , Si+bk/2c get up-
dated. Denote their final versions (at the end of this step) as
S′i+1, . . . , S

′
i+bk/2c.

call update({S′i+1, . . . , S
′
i+bk/2c}, {Si+bk/2c+1, . . . , Si+k}) to update

Si+bk/2c+1, . . . , Si+k. Let Ti+bk/2c+1, . . . , Ti+k be the output re-
turned by update.

call extend cb(C ∪ {Ci+1, . . . , Ci+bk/2c}, {Ti+bk/2c+1, . . . , Ti+k},
dk/2e) to extend the current cycle basis by dk/2e cycles. That is,
the cycles Ci+bk/2c+1, . . . , Ci+k will be computed recursively.

end

Our main procedure is called extend cb and works in a recursive manner.

Algorithm 3.3 contains a succinct description.

Procedure extend cb({C1, . . . , Ci}, {Si+1, . . . , Si+k}, k) computes k new

cycles Ci+1, . . . , Ci+k of the MCB using the subsets Si+1, . . . , Si+k. We main-

tain the invariant that these subsets are all orthogonal to C1, . . . , Ci. It

first computes Ci+1, . . . , Ci+bk/2c using Si+1, . . . , Si+bk/2c. At this point, the

remaining subsets Si+bk/2c+1, . . . , Si+k need not be orthogonal to the new

cycles Ci+1, . . . , Ci+bk/2c. Our algorithm then updates Si+bk/2c+1, . . . , Si+k
so that they are orthogonal to cycles Ci+1, . . . , Ci+bk/2c and they continue

to be orthogonal to C1, . . . , Ci. Then, it computes the remaining cycles

Ci+bk/2c+1, . . . , Ci+k.

26 Chapter 3. Exact Minimum Cycle Basis

Let us see a small example as to how this works. Suppose N = 4.

We initialize the subsets Si, i = 1, . . . , 4 and call extend cb, which then

calls itself with only S1 and S2 and then only with S1 and so computes

C1. Then, it updates S2 so that 〈C1, S2〉 = 0 and computes C2. Then, it

simultaneously updates S3 and S4 which were still at their initial values so

that the updated S3 and S4 (which we call T3 and T4) are both orthogonal to

C1 and C2. Next it computes C3 using T3 and updates T4 to be orthogonal to

C3. T4 was already orthogonal to C1 and C2 and the update step maintains

this. Finally, it computes C4.

Observe that whenever we compute Ci+1 using Si+1, we have the prop-

erty that Si+1 is orthogonal to C1, . . . , Ci. The difference is the function

update which allows us to update many Sj ’s simultaneously to be orthogo-

nal to many Ci’s. As mentioned earlier, this simultaneous update enables

us to use the fast matrix multiplication algorithm which is crucial to the

speedup. We next describe the update step in detail.

The function update

When we call function update({S′i+1, . . . , S
′
i+bk/2c}, {Si+bk/2c+1, . . . , Si+k}),

the sets Si+bk/2c+1, . . . , Si+k need not all be orthogonal to the space spanned

by C ∪ {Ci+1, . . . , Ci+bk/2c}. We already know that Si+bk/2c+1, . . . , Si+k
are all orthogonal to C and now we need to ensure that the updated sets

Si+bk/2c+1, . . . , Si+k (call them Ti+bk/2c+1, . . . , Ti+k) are all orthogonal to C∪
{Ci+1, . . . , Ci+bk/2c}. We now want to update the sets Si+bk/2c+1, . . . , Si+k,

i.e., we want to determine Ti+bk/2c+1, . . . , Ti+k such that for each j in the

range for i+ bk/2c+ 1 ≤ j ≤ i+ k we have

(i) Tj is orthogonal to Ci+1, . . . , Ci+bk/2c, and

(ii) Tj remains orthogonal to C1, . . . , Ci.

So, we define Tj (for each i+ bk/2c+ 1 ≤ j ≤ i+ k) as follows:

Tj = Sj + a linear combination of S′i+1, . . . , S
′
i+bk/2c . (3.2)

This makes sure that Tj is orthogonal to the cycles C1, . . . , Ci because Sj
and all of S′i+1, . . . , S

′
i+bk/2c are orthogonal to C1, . . . , Ci. Hence, Tj which

is a linear combination of them will also be orthogonal to C1, . . . , Ci. The

coefficients of the linear combination will be chosen such that Tj will be

orthogonal to Ci+1, . . . , Ci+bk/2c. Rewriting Equation (3.2) we get

Tj = Sj + aj1S
′
i+1 + aj2S

′
i+2 + · · ·+ ajbk/2cS

′
i+bk/2c .

3.5. A New Algorithm 27

We will determine the coefficients aj1, . . . , ajbk/2c for all i+ bk/2c+ 1 ≤ j ≤
i+ k simultaneously. Writing all these equations in matrix form, we have


Ti+bk/2c+1

...

...

Ti+k

 = (A I) ·



S′i+1
...

S′i+bk/2c
Si+bk/2c+1

...

Si+k


(3.3)

where A is the dk/2e × bk/2c matrix whose `-th row has the unknowns

aj1, . . . , ajbk/2c, where j = i+ bk/2c+ `. Here Tj represents a row with the

coefficients of Tj as its row elements.

Let

(
X

Y

)
=



S′i+1
...

S′i+bk/2c
Si+bk/2c+1

...

Si+k


·
(
CTi+1 . . . C

T
i+bk/2c

)
(3.4)

where

X =

 S′i+1
...

S′i+bk/2c

 · (CTi+1 . . . C
T
i+bk/2c

)
(3.5)

and

Y =

 Si+bk/2c+1
...

Si+k

 · (CTi+1 . . . C
T
i+bk/2c

)
. (3.6)

Let us multiply both sides of Equation (3.3) with an N × bk/2c matrix

whose columns are the cycles Ci+1, . . . , Ci+bk/2c. Using Equation (3.4) we

get 
Ti+bk/2c+1

...

...

Ti+k

 ·
(
CTi+1 . . . C

T
i+bk/2c

)
= (A I) ·

(
X

Y

)
. (3.7)

28 Chapter 3. Exact Minimum Cycle Basis

The left hand side of Equation (3.7) is the 0 matrix since each of the vectors

Ti+bk/2c+1, . . . , Ti+k has to be orthogonal to each of Ci+1, . . . , Ci+bk/2c.

The following lemma shows that X is invertible, or in other words that

the coefficients we are looking for do indeed exist.

Lemma 3.6. The matrix X in Equation (3.5) is invertible.

Proof. The matrix

X =


〈Ci+1, S

′
i+1〉 . . . 〈Ci+bk/2c, S′i+1〉

〈Ci+1, S
′
i+2〉 . . . 〈Ci+bk/2c, S′i+2〉

...
...

...

〈Ci+1, S
′
i+bk/2c〉 . . . 〈Ci+bk/2c, S′i+bk/2c〉



=


1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1 . . . ∗
...

...
...

...
...

0 0 0 . . . 1


is an upper triangular matrix with 1’s on the diagonal, since each S′j is the

final version of the subset Sj using which Cj is computed, which means that

〈Cj , S′j〉 = 1 and 〈C`, S′j〉 = 0 for all ` < j. Hence, X is invertible.

We are thus given an invertible bk/2c × bk/2c matrix X and a dk/2e ×
bk/2c matrix Y and we want to find a dk/2e × bk/2c matrix A such that:

(A I) ·
(
X

Y

)
= 0 .

Here 0 stands for the dk/2e×bk/2c zero-matrix and I stands for the dk/2e×
dk/2e identity matrix.

We need AX + Y = 0 or A = −Y X−1 = Y X−1 since we are in the field

F2. We can determine A in time O(kω) using fast matrix multiplication and

inverse algorithms since the matrix X is invertible (Lemma 3.6). Hence, we

can compute all the coefficients aj1, . . . , ajbk/2c for all i+bk/2c+1 ≤ j ≤ i+k
simultaneously using matrix multiplication and matrix inversion algorithms.

By the implementation of the function update, Lemma 3.7 follows.

Lemma 3.7. In the case k = 1, i.e., whenever procedure extend cb is called

like extend cb({C1, . . . , Ci}, Si+1, 1), the vector Si+1 is orthogonal to the cy-

cles {C1, . . . , Ci}. Moreover, Si+1 always contains the edge ei+1.

3.5. A New Algorithm 29

Corollary 3.8. At the end of Algorithm 3.3 the N ×N matrix whose i-th

row is Si for 1 ≤ i ≤ N is lower triangular with 1 in its diagonal.

Proof. By the implementation of update we know that the final version of

the vector Si contains edge ei. Moreover, the final version of the vector Si is

a linear combination of Si and Sj for j < i. It is easy to show by induction

that the final version of Si does not contain any of the edges ei+1, . . . , eN .

Hence, just before we compute Ci+1 we always have a non-zero vector

Si+1 orthogonal to {C1, . . . , Ci}. Moreover, Ci+1 is a minimum weight cycle

such that 〈Ci+1, Si+1〉 = 1. The correctness of Algorithm 3.3 follows from

Theorem 3.3.

Theorem 3.9. The set of cycles {C1, . . . , CN} computed by Algorithm 3.3

is a minimum cycle basis.

3.5.1 Running Time

Let us analyze the running time of Algorithm 3.3. The recurrence of the

algorithm is as follows:

T (k) =


cost of computing a minimum weight cycle Ci
such that 〈Ci, Si〉 = 1

if k = 1,

2T (k/2) + cost of update if k > 1.

The computation of matrices X and Y takes time O(mkω−1) using the

fast matrix multiplication algorithm. To compute X (respectively Y) we are

multiplying bk/2c×N by N ×bk/2c (respectively dk/2e×N by N ×bk/2c)
matrices. We split the matrices into 2N/k square blocks and use fast ma-

trix multiplication to multiply the blocks. Thus, multiplication takes time

O((2N/k)(k/2)ω) = O(mkω−1). We can also invert X in O(kω) time and

we also multiply Y and X−1 using fast matrix multiplication in order to

get the matrix A. Finally, we use the fast matrix multiplication algo-

rithm again, to multiply the matrix (A I) with the matrix whose rows are

S′i+1, . . . , S
′
i+bk/2c, Si+bk/2c+1, . . . , Si+k. This way we get the updated subsets

Ti+bk/2c+1, . . . , Ti+k (refer to Equation (3.3)). As before this multiplication

can be performed in time O(mkω−1).

Using the algorithm described in Section 3.3 to compute a shortest cycle

Ci that has odd intersection with Si, the recurrence turns into

30 Chapter 3. Exact Minimum Cycle Basis

T (k) =

{
O(mn+ n2 log n) if k = 1,

2T (k/2) +O(kω−1m) if k > 1.

This solves to T (k) = O(k(mn+n2 log n)+kω−1m). Thus, T (m) = O(mω+

m2n + mn2 log n). Since mω < m2n, this reduces to T (m) = O(m2n +

mn2 log n).

For m > n log n, this is T (m) = O(m2n). For m ≤ n log n, this is

T (m) = O(mn2 log n). We have shown the following theorem.

Theorem 3.10. A minimum cycle basis in an undirected weighted graph

can be computed in time O(m2n+mn2 log n).

Our algorithm has a running time of O(mω +m · n(m+ n log n)), where

the n(m+ n log n) term is the cost to compute all pairs shortest paths. We

can also formulate a more general theorem.

Theorem 3.11. A minimum cycle basis in an undirected weighted graph

with m edges and n vertices can be computed in time O(mω+m·APSP(m,n))

where APSP(m,n) denotes the time to compute all pairs shortest paths.

When the edges of G have integer weights, we can compute all pairs

shortest paths in time O(mn) [76, 77], that is, we can bound T (1) by O(mn).

When the graph is unweighted or the edge weights are small integers, we can

compute all pairs shortest paths in time Õ(nω) [72, 36]. When such graphs

are reasonably dense, say m ≥ n1+1/(ω−1) poly (log n), then the O(mω) term

dominates the running time of our algorithm. We conclude with the follow-

ing corollary.

Corollary 3.12. A minimum cycle basis in an undirected graph with integer

edge weights can be computed in time O(m2n). For unweighted graphs which

satisfy m ≥ n1+1/(ω−1) poly (log n), for some fixed polynomial, we have an

O(mω) algorithm to compute a minimum cycle basis.

3.6 Computing a Certificate of Optimality

In this section we address the problem of constructing a certificate to verify

a claim that a given set of cycles C = {C1, . . . , CN} forms an MCB. A

certificate is an “easy to verify” witness of the optimality of our answer.

The sets Si for 1 ≤ i ≤ N in our algorithm, from which we calculate

the cycles C = {C1, . . . , CN} of the minimum cycle basis, are a certificate

of the optimality of C. The verification algorithm would consist of verifying

3.6. Computing a Certificate of Optimality 31

that the cycles in C are linearly independent and that each Ci is a minimum

weight cycle such that 〈Ci, Si〉 = 1.

Asymptotically the verification algorithm and Algorithm 3.3 have the

same running time. However, the verification algorithm is conceptually

much simpler and the constants involved much smaller. Thus, given a set of

cycles {C1, . . . , CN} we would like to compute its certificate. Algorithm 3.4

computes witnesses S1, . . . , SN given C1, . . . , CN .

Algorithm 3.4: Given a set of cycles, compute its certificate.

Compute a spanning tree T . Let {e1, . . . , eN} be the edges of E \ T .
Form the 0-1 N ×N matrix C =

(
CT1 . . . C

T
N

)
, where the i-th column

of C is the incidence vector of Ci over {e1, . . . , eN}.
Compute C−1.
if the matrix inversion algorithm returns an error then
C is singular. Thus, C1, . . . , CN are linearly dependent. Return an
error since they cannot form a cycle basis.

else
Return the rows of C−1 as our witnesses or certificate.

end

The rows of C−1 form our witnesses S1, S2, . . . , SN . The property that

we want from S1, . . . , SN is that for each 1 ≤ i ≤ N , 〈Ci, Si〉 = 1. Since

C−1C is the identity matrix, this property is obeyed by the rows of C−1.
Suppose each Ci is a minimum weight cycle such that 〈Ci, Si〉 = 1.

Then, by Lemma 4.1 we have that
∑N

i=1 |Ci| ≤ weight of an MCB. Since

{C1, . . . , CN} are linearly independent (by the existence of C−1), it means

that {C1, . . . , CN} forms a minimum cycle basis.

On the other hand, if for some i, Ci is not a minimum weight cycle such

that 〈Ci, Si〉 = 1, then by replacing Ci with a minimum weight cycle that

has odd intersection with Si (as in the proof of Theorem 3.3) we get a cycle

basis with smaller weight.

Hence, the cycles {C1, . . . , CN} form an MCB if and only if each Ci is a

minimum weight cycle such that 〈Ci, Si〉 = 1. Since the inverse of an N ×N
matrix can be computed in O(Nω) time, we have the following theorem.

Theorem 3.13. Given a set of cycles C = {C1, . . . , CN} we can construct

a certificate {S1, . . . , SN} in O(mω) time.

32 Chapter 3. Exact Minimum Cycle Basis

3.7 Concluding Remarks

In this chapter we have presented an algorithm to solve the minimum cycle

basis problem in undirected weighted graphs in O(m2n + mn2 log n) time.

The algorithm is a result of presenting an algebraic framework based on the

work of de Pina [20] and then implementing the linear independence step

faster using fast matrix multiplication. Using specialized shortest paths for

the shortest path step of the algebraic framework, we also provide algorithms

with improved running times for special cases like integer edge weights or

when the graph is unweighted.

The main remaining open problem is whether the running time of algo-

rithms based on this algebraic framework can be improved and reach the

O(mω) upper bound even for sparse graphs.

Chapter 4
Approximate Minimum Cycle Basis

Summary

Most algorithms that use cycle bases build and solve some linear system based on
such a basis. The use of a minimum cycle basis is not required but provides the
sparsest such linear system and thus results in faster running times. However, the
best running time required to compute a minimum cycle basis is still not really
practical.

In this chapter we compute approximate minimum cycle bases. Such bases are
still considered sparse and moreover can be computed much faster. We present an
α-approximate algorithm for any α > 1. Although faster than the exact approach
this algorithm does not drop below the Θ(mω) bound. On the other hand, for any
integer k ≥ 1 we present two constant factor 2k−1 approximate algorithms which
for sufficiently dense graphs are o(mω). The first algorithm which is faster for
sparser graphs has an expected running time of O(kmn1+2/k + mn(1+1/k)(ω−1))
while the second has deterministic running time O(n3+2/k).

Our techniques are based on spanner constructions. For graphs which admit
better spanners we provide even faster algorithms. These techniques extend also
to the directed minimum cycle basis problem. We give very fast approximate
algorithms for this version as well.

4.1 Introduction

The most obvious application of the minimum cycle basis problem is to con-

struct sparse systems when solving problems in electrical networks [74, 20].

The recent work of Berger et al. [8] is directly motivated by this applica-

tion. Furthermore, the problem has many applications in many diverse areas

of science. One such application is for example structural engineering [14],

while chemistry and biochemistry [39] is another. Recently, Tewari et al. [75]

used a minimum cycle basis to do surface reconstruction from a point cloud

sampled from a genus one smooth manifold.

In most cases the use of minimum cycle bases is done as a preprocessing

34 Chapter 4. Approximate Minimum Cycle Basis

step. The use of an MCB ensures sparseness and therefore results into

faster running times since the amount of work is dependent on the cycle

basis chosen. Because MCB algorithms are mostly used as preprocessing,

their running time should not dominate the whole algorithm’s running time.

Unfortunately this is not always the case. Algorithm 3.3 has a running time

of O(m2n+mn2 log n). In some special cases of graphs this becomes Θ(mω)

but not lower.

This chapter presents several approximation algorithms for computing

approximate minimum cycle bases in undirected graphs. The running times

are significant improvements over the exact approach. In the case of constant

factor approximation we present algorithms which are o(mω) for sufficiently

dense graphs.

4.2 An α-approximate† Algorithm

The bottleneck in the running time of our exact minimum cycle basis algo-

rithm is the computation of a minimum weight cycle Ci such that 〈Ci, Si〉 =

1. Suppose we relax our constraint that our cycle basis should have mini-

mum weight and ask for a cycle basis whose weight is at most α times the

weight of an MCB.

Algorithm 4.1: An α-approximation MCB algorithm.

for i = 1 to N do
Let Si be any arbitrary non-zero vector in the subspace orthogonal
to {D1, D2, . . . , Di−1}, i.e., Si satisfies: 〈Dk, Si〉 = 0 for 1 ≤ k ≤
i− 1.

Compute a cycle Di such that 〈Di, Si〉 = 1 and the weight of Di ≤
α · the weight of a minimum weight cycle that has odd intersection
with Si.

end

For any parameter α > 1, we present an approximation algorithm which

computes a cycle basis whose weight is at most α times the weight of a

minimum cycle basis. To the best of our knowledge, this is the first time

that an approximation algorithm for the MCB problem is being given.

†Formally, an α-approximation algorithm for a minimization problem Π is a polynomial
time algorithm, that for any instance I of problem Π always computes a feasible solution
to I, whose value is at most a factor α of the value of the optimum solution to I. We call
α the approximation ratio, or an approximation (or performance) guarantee.

4.2. An α-approximate Algorithm 35

This algorithm is obtained by relaxing the base step (k = 1) in proce-

dure extend cb of Algorithm 3.3. In the original algorithm we computed a

minimum weight cycle Ci+1 such that 〈Ci+1, Si+1〉 = 1. Here, we relax it to

compute a cycle Di+1 such that 〈Di+1, Si+1〉 = 1 and the weight of Di+1 is

at most α times the weight of a minimum weight cycle that has odd inter-

section with Si+1 (call such a cycle, α-stretch). The method of updating the

subsets Si is identical to the way the update step is done in Algorithm 3.3.

Algorithm 4.1 describes the general framework of our approximation

algorithm in order to compute a set of cycles {D1, . . . , DN}.
The linear independence of the Di’s follows from the existence of the

Si’s. That is, 〈Di, Si〉 = 1 while 〈Dk, Si〉 = 0 for all 1 ≤ k ≤ i − 1 shows

that Di is linearly independent of D1, . . . , Di−1. Similarly, note that the

subsets S1, . . . , SN are linearly independent since each Si is independent of

Si+1, . . . , SN because 〈Di, Si〉 = 1 whereas 〈Di, Sj〉 = 0 for each j > i.

It remains to prove the correctness of Algorithm 4.1. Let |C| denote the

weight of cycle C. We need to show that
∑N

i=1 |Di| ≤ α · weight of MCB.

Let Ai be a shortest cycle that has odd intersection with Si. The set

{A1, . . . , AN} need not be linearly independent since the subsets Si’s were

not updated according to the Ai’s. The following lemma was originally

shown in [20] in order to give an equivalent characterization of the MCB

problem as a maximization problem. We present a simple proof of the

lemma here.

Lemma 4.1 (de Pina [20]). Let S1, . . . , SN be linearly independent vectors

in {0, 1}N and let Ai be the shortest cycle in G such that 〈Ai, Si〉 = 1. Then,∑N
i=1 |Ai| ≤ w(MCB).

Proof. We will look at the Ai’s in sorted order, i.e., let π be a permutation

on [N] such that |Aπ(1)| ≤ |Aπ(2)| ≤ . . . ≤ |Aπ(N)|. Let C1, . . . , CN be the

cycles of an MCB and let |C1| ≤ |C2| ≤ . . . ≤ |CN |. We will show that for

each i, |Aπ(i)| ≤ |Ci|. That will prove the lemma.

We will first show that 〈Ck, Sπ(`)〉 = 1 for some k and ` with 1 ≤
k ≤ i ≤ ` ≤ N . Otherwise, the N − i + 1 linearly independent vectors

Sπ(i), Sπ(i+1), . . . , Sπ(N) belong to the subspace orthogonal to C1, . . . , Ci;

however, this subspace has dimension only N − i.
Thus, |Aπ(`)| ≤ |Ck| since Aπ(`) is a shortest cycle s.t. 〈Aπ(`), Sπ(`)〉 = 1.

But by the sorted order, |Aπ(i)| ≤ |Aπ(`)| and |Ck| ≤ |Ci|. This implies that

|Aπ(i)| ≤ |Ci|.

Theorem 4.2. The linearly independent cycles {D1, . . . , DN} computed in

Algorithm 4.1 have weight at most α times the weight of a minimum cycle

basis.

36 Chapter 4. Approximate Minimum Cycle Basis

Proof. By construction for each 1 ≤ i ≤ N we know that |Di| ≤ α · |Ai|.
Using Lemma 4.1 we get that

N∑
i=1

|Di| ≤ α
N∑
i=1

|Ai| ≤ α · weight of MCB .

4.2.1 Running Time

Since all the steps of Algorithm 4.1 except the base step corresponding to

computing a cycle are identical to Algorithm 3.3, we have the following

recurrence for Algorithm 4.1:

T (k) =


cost of computing an α-stretch cycle Di such

that 〈Di, Si〉 = 1
if k = 1,

2T (k/2) +O(kω−1m) if k > 1.

So the running time of Algorithm 4.1 depends on which parameter α is

used in the algorithm. We will compute an α-stretch cycle Di that is odd

in Si by using the same method as in Section 3.3. But instead of a shortest

(v+, v−) path in Gi, here we compute an α-stretch (v+, v−) path. We next

show that the minimum of such paths corresponds to an α-stretch cycle in

G that has odd intersection with Si. The proof is very similar to the proof

of Lemma 3.4.

Lemma 4.3. The path p = min
v∈V

α-stretch (v+, v−) path in Gi corresponds

to an α-stretch cycle C in G that has odd intersection with Si.

Proof. Since the endpoints of the path p are v+ and v−, p has to contain

an odd number of edges of Si. This is because only edges of Si provide a

change of sign and p goes from a + vertex to a − vertex. We might have

deleted some edges of Si while forming C since those edges occurred with

a multiplicity of 2. But this means that we always delete an even number

of edges from Si. Hence, C has an odd number of edges of Si present in

it. Also, the weight of C ≤ the weight (or length) of p since edges have

non-negative weights.

We should now prove that C is an α-stretch cycle among such cycles.

Let C ′ be any other cycle in G with an odd number of edges of Si in it. If

C ′ is not a simple cycle, then C ′ is a union of simple cycles (with disjoint

edges) and at least one of those simple cycles C0 should have an odd number

of edges of Si present in it. Note also that the weight of C0 ≤ the weight of

C ′.

4.2. An α-approximate Algorithm 37

Let u be a vertex in C0. We will identify C0 with a path in Gi by

traversing C0 starting at the vertex u and identifying it with u+. If we

traverse an edge e of Si, then we identify the vertices incident on e with

opposite signs. If we traverse an edge outside Si, then we identify the vertices

incident on e with the same sign. Since C0 is a cycle, we come back to the

vertex u. Also, C0 has an odd number of edges of Si present in it. So the

sign of the final vertex is of the opposite sign to the sign of the starting

vertex. Hence, C0 translates to a u+ to u− path p′ in Gi and the weight of

p′ = the weight of C0.

But p is the minimum weight path among α-stretch (v+, v−) paths in

Gi for all v ∈ V . Hence, the weight of p ≤ α times the weight of p′. So we

finally get that the weight of C ≤ the weight of p ≤ α times the weight of

p′ ≤ α times the weight of C ′. This proves that C is an α-stretch cycle that

has odd intersection with Si.

We formulate our theorem in its general form.

Theorem 4.4. An α-approximate minimum cycle basis in an undirected

weighted graph with m edges and n vertices can be computed in time O(mω+

m ·APASP(α,m, n)) where APASP(α,m, n) denotes the time to compute all

pairs α-approximate shortest paths.

When α = 2, we use the result in [16] to compute 2-stretch paths

which would result in 2-stretch cycles. Then, Algorithm 4.1 runs in time

Õ(m3/2n3/2) + O(mω). For reasonably dense graphs (for example, m ≥
n(1.5+δ)/(ω−1.5) for a constant δ > 0), this is an O(mω) algorithm.

At this point we should make the following remark. In each phase we

need to find the minimum among n approximate paths but we need to

actually construct at most one of these paths. We would like to avoid the

complication of traversing all n paths in order to select the minimum, as

this could potentially dominate the running time. This could be the case

for example if the approximate shortest paths algorithm returns non-simple

paths. For α = 2 the result by Cohen and Zwick computes distances between

all pairs of vertices which are 2-stretch. In this case we first find the pair

(v+, v−) which achieves the minimum that we are looking for and then

simply perform an exact shortest path computation only between this pair.

This results in time Õ(m1/2n3/2) +O(m+ n log n) which is Õ(m1/2n3/2) in

each phase. Summing over all the N phases we get the following.

Corollary 4.5. A cycle basis which is a 2-approximate minimum cycle basis

in an undirected weighted graph can be computed in Õ(m3/2n3/2) + O(mω)

time.

38 Chapter 4. Approximate Minimum Cycle Basis

For (1 + ε)-approximation we use the all pairs (1 + ε)-stretch paths algo-

rithm [81]. Then, we have an Õ(mn
ω

ε log W
ε) +O(mω) algorithm to compute

a cycle basis which is at most 1 + ε times the weight of an MCB, where W

is the largest edge weight in the graph. If m ≥ n1+1/(ω−1) poly (log n) and

all edge weights are polynomial in n, then Algorithm 4.1 is an O(m
ω

ε log 1
ε)

algorithm.

As before in each phase we use the approximate shortest paths algorithm

by Zwick in order to select the (v+, v−) pair which achieves the minimum

approximate path. Then, we only construct this path by doing an exact

shortest path computation. Thus, outputting the cycle basis takes O(m +

n log n) in each phase or O(m2 +mn log n) in total.

Corollary 4.6. A (1+ε)-approximate minimum cycle basis in an undirected

weighted graph, for any ε > 0, can be computed in time Õ(mn
ω

ε log W
ε) +

O(mω) where W is the largest edge weight in the graph. The time to output

the approximate minimum cycle basis is at most O(m2 +mn log n).

The previous approximation algorithm can approximate arbitrarily close

to the optimum but its running time is not lower than Θ(mω). Next we

present algorithms which for sufficiently dense graphs are o(mω). The idea

is simple. We divide the computation in two phases. In the first phase

we compute, very fast, a large number of cycles. In the second phase we

compute the remaining cycles using the techniques that we have developed

so far.

4.3 Most of the Cycles

The lower bound in Lemma 4.1 is quite powerful. It also provides us with the

following corollary which triggers the development of faster approximation

algorithms.

Lemma 4.7. Consider a weighted undirected graph G(V,E) and let T be an

arbitrary spanning tree of G. Let Ci for 1 ≤ i ≤ N be the cycle formed by

edge ei = (ui, vi) ∈ E \ T and the shortest path in G \ {ei} between ui and

vi. Then,
∑N

i=1 |Ci| ≤ w(MCB).

Proof. Set Ri = {ei} for 1 ≤ i ≤ N in Lemma 4.1.

We call the above set of cycles the short cycles multi-set. The fact that

the minimum cycle basis is lower bounded by the short cycles multi-set

leads to the observation that a large subset of an approximate minimum

cycle basis can be computed efficiently if we are given a sparse t-spanner

4.3. Most of the Cycles 39

of G. Let SPG(u, v) denote the shortest path in G from u to v and let

w(SPG(u, v)) denote its weight. When it is clear from the context we simply

write SP(u, v).

Definition 4.1 (multiplicative spanner). A multiplicative t-spanner of a

graph G is a subgraph G′(V,E′), E′ ⊆ E s.t. for any v, u ∈ V we have

w(SPG(u, v)) ≤ w(SPG′(u, v)) ≤ t · w(SPG(u, v).

Let G′(V,E′) be such a t-spanner of G. We will fix details like its size or

the parameter t later on. For now let us present the main idea. For each edge

e = (u, v) ∈ E \ E′ we will compute the cycle formed by e and SPG′(u, v).

Since edges in E\E′ do not belong to E′ each of these cycles contains an edge

that it not contained in any other cycle. This ensures that the computed

cycles are linearly independent. For edge e = (u, v) ∈ E \ E′ this cycle has

weight at most t times the weight of the shortest cycle in G containing e.

Denote by λ the cardinality of E \E′. Thus, for E \E′ = {e1, . . . , eλ} we can

compute a set of λ ≤ N cycles {C1, . . . , Cλ} which are linearly independent

and each cycle Ci has weight at most t times the length of the shortest

cycle in G containing edge ei. By Lemma 4.7 the weight of the short cycles

multi-set is a lower bound for the MCB and thus the computed set of cycles

has weight at most t times the weight of the MCB. Note that this set might

not have the right number of elements and thus is not necessarily a basis.

The computation of these cycles can be performed by either λ single

source shortest paths computations in the spanner G′ or by one all-pairs

shortest paths computation. We will ensure that this spanner is sparse and

thus this computation is relatively cheap.

Running Time

We need to compute a sparse spanner of our input graph G. As pointed out

by Althöfer et al. [1] every weighted undirected graph on n vertices has a

(2k − 1)-spanner with O(n1+1/k) where k ≥ 1 is an integer. Such a spanner

can be constructed using an algorithm similar to Kruskal’s algorithm (see

Cormen et al. [18]) for constructing minimum spanning trees. In order to

build the spanner consider all edges of the graph in non-decreasing order

of weight, adding each edge to the spanner if its endpoints are not already

connected, in the spanner, by a path using at most 2k − 1 edges. At any

stage, the spanner is a (2k−1)-spanner of the edges already considered, and

its unweighted girth (number of edges of the smallest simple cycle) is at least

2k + 1, so it has only O(n1+1/k) edges (see [1, 10]). The above procedure

can be implemented in O(mn1+1/k).

40 Chapter 4. Approximate Minimum Cycle Basis

Algorithm 4.2: The first (2k − 1)-approximation algorithm.

input : Graph G(V,E) and integer k ≥ 1.
output: A (2k − 1)-approximate MCB.

Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . , eλ
be the edges of G \G′.
For each 1 ≤ i ≤ λ construct Ci as ei = (ui, vi) and the shortest path
in G′ from ui to vi.

Find linearly independent Sλ+1, . . . , SN in the subspace orthogonal to
cycles C1, . . . , Cλ.

Call Algorithm 3.3 as extend cb({C1, . . . , Cλ}, {Sλ+1, . . . , SN}, N − λ)
to compute (2k − 1)-approximate cycles Cλ+1, . . . , CN , i.e., the basis
of the recursion uses (2k − 1)-approximate distance oracles.

Return {C1, . . . , Cλ} ∪ {Cλ+1, . . . , CN}.

In the above spanner we are going to perform λ shortest paths compu-

tations, one for each edge of G that is not in the spanner. Using Dijkstra’s

algorithm we need O(λ ·(n1+1/k+n log n)) and since λ ≤ m we can compute

both the spanner and the λ linearly independent cycles in time O(mn1+1/k).

At this point we should mention that there are faster algorithms to construct

similar spanners, see for example [78, 71]. Nevertheless, at this phase the

above solution is satisfactory since it is not the dominating factor of the

running time.

4.4 The Remaining Cycles

In Section 4.3 we computed most of the cycles of an approximate minimum

cycle basis. We are left with computing the remaining cycles. Note that

the number of the remaining cycles is exactly the dimension of the cycle

space of the spanner G′. By ensuring that the spanner G′ is sparse the

remaining cycles will be close to linear. We present three algorithms which

are based on two different approaches. Each of them is faster for different

graph densities. The main difference between the two approaches is whether

we are going to use the edges e1, . . . , eλ in the remaining cycles.

4.4.1 1st Approach

Our first approach computes the remaining cycles by performing approxi-

mate cycles computations in G.

4.4. The Remaining Cycles 41

We are going to use Algorithm 3.3 in order to compute the remain-

ing cycles. As a base case we will use approximate cycles computations.

Let µ denote the remaining cycles to compute. First of all we know that

λ + µ = N . Consider now the first λ cycles C1, . . . , Cλ that we have al-

ready computed in Section 4.3. We need to find sets Sλ+1, . . . , SN which

are a basis of the orthogonal subspace of C1, . . . , Cλ. Assume for now

that we have such a basis. We can execute Algorithm 3.3. The algo-

rithm will first recursively compute cycles Cλ+1, . . . , Cλ+b(N−λ)/2c by us-

ing and modifying Sλ+1, . . . , Sλ+b(N−λ)/2c. Then, in one bulk step will up-

date Sλ+b(N−λ)/2c+1, . . . , SN to be orthogonal to Cλ+1, . . . , Cλ+b(N−λ)/2c.

Note that Sλ+b(N−λ)/2c+1, . . . , SN were already orthogonal to C1, . . . , Cλ
and the update step maintains this. Finally by using and modifying sets

Sλ+b(N−λ)/2c+1, . . . , SN the algorithm will recursively compute the last cy-

cles Cλ+b(N−λ)/2c+1, . . . , CN .

This will cost T (µ) = µ · T (1) + O(mµω−1). The fact that µ is o(n2)

results in the improvement of the running time. The basis of the recursion is

to compute a t-approximate shortest cycle Ci which has an odd intersection

with the corresponding set Si for λ+ 1 ≤ i ≤ N .

Null Space Basis

In order to continue our computation of the remaining cycles we look for

a basis Sλ+1, . . . , SN of the orthogonal subspace of the cycles C1, . . . , Cλ.

Consider the cycles C1, . . . , Cλ which we view (as always) as vectors in the

space {0, 1}N . Let us write them in an array, one row per cycle, C1

...

Cλ

 =
(
Iλ B

)

where Iλ here is the λ × λ identity matrix and B is a λ × µ matrix. The

matrix has this form since each of the edges ei for 1 ≤ i ≤ λ belongs only

to the cycle Ci. The rows of the above matrix are linearly independent.

We would like to find a basis of the null space of this matrix. We set

(
Sλ+1 . . . SN

)
=

(
B

Iµ

)
,

where Iµ stands for the µ × µ identity matrix. The product of the two

matrices is B + B = 0 where 0 stands for the λ × µ zero-matrix , i.e., the

S’s are orthogonal to the C’s. Moreover, the S’s are linearly independent.

42 Chapter 4. Approximate Minimum Cycle Basis

By this definition, the Sλ+1, . . . , SN have the following property: they

contain some edges from {e1, . . . , eλ} and eλ+i ∈ Sλ+i for 1 ≤ i ≤ µ. This

property is important for the existence of the cycles with odd intersection

with the witnesses while running Algorithm 3.3.

The running time required to compute this null space basis is the time

required to output the already known matrix B. By using some sparse

representation of the vectors we need at most O(λ · µ). In the general case

λ ≤ m and µ = N−λ ∈ O(n1+1/k). Thus, this step needs O(mn1+1/k) time.

Remaining Cycles

The final step is to execute Algorithm 3.3 in order to compute the re-

maining cycles. The input to this algorithm is cycles C1, . . . , Cλ and sets

Sλ+1, . . . , SN . As mentioned earlier this requires time T (µ) = µ · T (1) +

O(mµω−1). Here T (1) is the time to perform t-approximate single source

shortest paths between at most n pairs of vertices in the signed graph Gi.

The shortest paths computation is going to be performed µ = N − λ
times. Therefore, we require a faster algorithm than constructing a spanner.

We are going to use an approximate distance oracle. Thorup and Zwick [78]

constructed a structure which answers (2k−1)-approximate shortest paths in

time O(k). This structure requires space O(kn1+1/k) and can be constructed

in expected time O(kmn1/k). In the case of unweighted graphs Baswana and

Sen [7] showed that a (2k−1)-approximate distance oracle can be computed

in expected O(min(n2, kmn1/k)) time. In the unweighted case the same can

also be done deterministically [70].

We use such a construction. The cost of computing cycles Cλ+1, . . . , CN
in the last part is µ · T (1) + O(mµω−1). We bound T (1) by the cost of

computing an approximate distance oracle of Gi (the graph introduced in

Section 3.3) which is O(kmn1/k) expected time and the cost of performing

n queries in the approximate distance oracle. Each query costs O(k) and

thus a total of O(nk).

Note that although we perform n queries to this oracle we only need

to build one path. Given a query (u, v) the approximate distance oracle

of Thorup and Zwick finds a tree, constructed during preprocessing, which

contains both u and v and the path in this tree between u and v is a 2k− 1

stretch path. Thus, the returned path is simple and it has at most O(n)

edges. We can construct it explicitly in amortized constant time per edge or

by some preprocessing in constant time per edge. Thus, forming the actual

cycle can be done in O(n) time.

Therefore, the total cost is O(µ(kn + kmn1/k) + mµω−1). Since µ ∈

4.4. The Remaining Cycles 43

O(n1+1/k) we get a bound of O(kn2+1/k+kmn1+2/k+mn(1+1/k)(ω−1)) which

is O(kmn1+2/k +mn(1+1/k)(ω−1)) assuming that m ≥ n.

Approximation Guarantee

Let us now prove that the computed set of cycles is a t-approximation of

the MCB. Let Sλ+1, . . . , SN be the witnesses at the end of the algorithm.

At this point we should emphasize that the sets Sλ+1, . . . , SN change during

the execution of Algorithm 3.3. Each computed cycle Cλ+1, . . . , CN is a

t-approximation of the shortest cycle in G with an odd intersection with the

corresponding witness. Moreover, when the algorithm computes a cycle Ci
for λ + 1 ≤ i ≤ N the set Si has acquired its final value and is orthogonal

with all cycles C1, . . . , Ci−1. Let also Si = {ei} for 1 ≤ i ≤ λ. Then, each

Ci for 1 ≤ i ≤ λ is also a t-approximation of the shortest cycle in G with an

odd intersection with Si.

Lemma 4.8. The sets S1, . . . , SN are linearly independent.

Proof. Consider Si. We know that 〈Ci, Si〉 = 1 for all 1 ≤ i ≤ N . We claim

that 〈Ci, Sj〉 = 0 for all i+ 1 ≤ j ≤ N . In this case each Si is independent

of the Si+1, . . . , SN and the lemma follows.

Assume a partition of the set {Si+1, . . . , SN} into two sets {Si+1, . . . , Sλ}
and {Sλ+1, . . . , SN}. The claim follows for the first set from the definition

of the sets Si+1, . . . , Sλ. For 1 ≤ i ≤ λ the cycle Ci contains edge ei and

a path in the spanner. The spanner has edges ej only for j > λ and sets

Si+1, . . . , Sλ by definition contain only edges from {ei+1, . . . , eλ}. For the

second set the claim follows by the invariants of Algorithm 3.3 since we

initialize Sλ+1, . . . , SN to be orthogonal to Ci and the update step maintains

this.

It is now straightforward to show that the computed set of cycles is a t-

approximation of a minimum cycle basis. Combine Lemma 4.8, Lemma 4.1

and the fact that for each 1 ≤ i ≤ N we compute a cycle Ci which t-

approximates the shortest cycle with an odd intersection with Si. We set

t = 2k − 1 and obtain the following theorem.

Theorem 4.9. A (2k−1)-approximate minimum cycle basis, for any integer

k ≥ 1, in an undirected weighted graph can be computed in expected time

O(kmn1+2/k +mn(1+1/k)(ω−1)).

We also obtain the following corollary.

Corollary 4.10. An O(log n)-approximate minimum cycle basis in an undi-

rected weighted graph can be computed in expected time O(mnω−1+mn log n).

44 Chapter 4. Approximate Minimum Cycle Basis

Algorithm 4.3: The second (2k − 1)-approximation algorithm.

input : Graph G(V,E) and integer k ≥ 1.
output: A (2k − 1)-approximate MCB.

Construct a (2k − 1)-spanner G′ with O(n1+1/k) edges. Let e1, . . . , eλ
be the edges of G \G′.
For each 1 ≤ i ≤ λ construct Ci as ei = (ui, vi) and the shortest path
in G′ from ui to vi.

Call Algorithm 3.3 with exact shortest paths to find an MCB
Cλ+1, . . . , CN of G′.

Return {C1, . . . , Cλ} ∪ {Cλ+1, . . . , CN}.

4.4.2 2nd Approach

Our second algorithm just computes a minimum cycle basis of the t-spanner

G′. The dimension of the cycle space of G′ is µ = N−λ and thus we have the

right number of cycles. Let C1, . . . , Cλ be the cycles computed in Section 4.3

and Cλ+1, . . . , CN be the MCB of G′. Cycles {C1, . . . , Cλ}∪{Cλ+1, . . . , CN}
are by definition linearly independent and we are also going to prove that

they form a t-approximation of the MCB of G.

For 1 ≤ i ≤ λ, let pi denote the shortest path in G′ between ui and vi
where ei = (ui, vi). Recall that for 1 ≤ i ≤ λ we have Ci = ei + pi. We

assume that the edges in E are indexed s.t. e1, . . . , eλ are the edges in E\E′,
edges eλ+1, . . . , eN belong to E′ and edges eN+1, . . . , em are the edges of a

fixed but arbitrary spanning tree T of G′ and thus also of G.

In order to show that cycles C1, . . . , CN are a t-approximation of the

MCB we again define appropriate linearly independent vectors S1, . . . , SN ∈
{0, 1}N and use Lemma 4.1. Consider Algorithm 3.3 executing with input

the t-spanner G′. Except from cycles Cλ+1, . . . , CN it returns also vectors

(edge sets in G′) Rλ+1, . . . , RN ∈ {0, 1}N−λ s.t. for each λ + 1 ≤ i ≤ N

and i < j ≤ N we have 〈Ci, Rj〉 = 0 and moreover Ci is the shortest cycle

in G′ s.t. 〈Ci, Ri〉 = 1 for λ + 1 ≤ i ≤ N . Also, the N − λ × N − λ

matrix whose j-th row is Rj is lower triangular with 1 in its diagonal (see

Corollary 3.8). This implies that the Rj ’s are linearly independent. Given

any vector S ∈ {0, 1}N let S† be the projection of S onto its last N − λ
coordinates. In other words if S is an edge set of G let S† be the edge set

restricted only to the edges of G′.

We define vectors Sj ∈ {0, 1}N for 1 ≤ j ≤ N as follows. For 1 ≤ j ≤ λ

let Sj be the vector with 0 everywhere except the j coordinate which is 1.

4.4. The Remaining Cycles 45

For λ+ 1 ≤ j ≤ N let

Sj = (−〈C†1, Rj〉, . . . ,−〈C†λ, Rj〉, Rj1, Rj2, . . . , Rj(N−λ)) .

Note that the above defined sets Sj for 1 ≤ j ≤ N are linearly independent.

This follows by construction since the N × N matrix whose j-th row is Sj
is lower triangular with 1’s in its diagonal. The above definition of Sj ’s is

motivated by the property that for each 1 ≤ i ≤ λ, we have 〈Ci, Sj〉 =

−〈C†i , Rj〉+ 〈C†i , Rj〉 = 0, since the cycle Ci has 0 in all first λ coordinates

except the i-th coordinate which is 1.

We are now in the position to show the following which together with

Lemma 4.1 implies the correctness of our approach.

Lemma 4.11. Consider the above defined sets Sj for 1 ≤ j ≤ N and let

Dj be the shortest cycle in G s.t. 〈Dj , Sj〉 = 1. Cycle Cj returned by

Algorithm 4.3 has weight at most t times the weight of Dj.

Proof. This is trivial for 1 ≤ j ≤ λ since Dj is the shortest cycle in G which

uses edge ej and Cj = ej + pj . Consider now Dj for λ + 1 ≤ j ≤ N . If Dj

uses any edge ei for 1 ≤ i ≤ λ we replace it with the corresponding shortest

path in the spanner. This is as saying consider the cycle Dj +Ci instead of

Dj . Let

D′j = Dj +
∑

1≤i≤λ
(ei ∈ Dj)Ci

where (ei ∈ Dj) is 1 if ei ∈ Dj and 0 if ei /∈ Dj . Then,

〈D′j , Sj〉 = 〈Dj , Sj〉+
∑

1≤i≤λ
(ei ∈ Dj)〈Ci, Sj〉 .

But for 1 ≤ i ≤ λ the cycle Ci has 0 in all first λ coordinates except

the i-th one which is 1. Thus, by the definition of Sj we have 〈Ci, Sj〉 =

−〈C†i , Rj〉 + 〈C†i , Rj〉 = 0. We conclude that 〈D′j , Sj〉 = 〈Dj , Sj〉 = 1. But

D′j by definition has 0 in the first λ coordinates and S†j = Rj , which in turn

implies that 〈D′†j , Rj〉 = 1.

Cj is the shortest cycle in G′ s.t. 〈Cj , Rj〉 = 1. Thus, Cj has weight at

most the weight of D′†j (which is the same cycle as D′j) and by construction

D′j has weight at most t times the weight of Dj .

Altogether, we have shown that the cost of our approximate basis is at

most t times the cost of an optimal basis. As a t-spanner we again use a

(2k − 1)-spanner. The best time bound in order to compute an MCB is

46 Chapter 4. Approximate Minimum Cycle Basis

Algorithm 4.4: A (2k − 1)(2q − 1)-approximation algorithm.

input : Graph G(V,E) and integers k, q ≥ 1.
output: A (2q − 1)(2k − 1)-approximate MCB.

Construct a (2k−1)-spanner G′ with Õ(kn1+1/k) edges. Let e1, . . . , eλ
be the edges of G \G′.
For each 1 ≤ i ≤ λ construct Ci as ei = (ui, vi) and a (2k − 1)-stretch
path from ui to vi obtained by the spanner G′.

Call Algorithm 4.2 to compute a (2q − 1)-approximate MCB of G′.
Denote these cycles as Cλ+1, . . . , CN

Return {C1, . . . , Cλ} ∪ {Cλ+1, . . . , CN}.

O(m2n + mn2 log n) and since a (2k − 1)-spanner has at most O(n1+1/k)

edges the total running time becomes O(n3+2/k).

Theorem 4.12. A (2k−1)-approximate minimum cycle basis, for any inte-

ger k ≥ 1, in a weighted undirected graph can be computed in time O(n3+2/k).

Since any graph has an O(log n)-spanner of linear size we also obtain the

following corollary.

Corollary 4.13. An O(log n)-approximate MCB in a weighted undirected

graph can be computed in time O(n3 log n).

Algorithm 4.2 is faster for sparser graphs and Algorithm 4.3 for denser

graphs. More precisely, Algorithm 4.3 is faster if m > n4−ω+
3−ω
k which

with the current upper bound on ω is m > n1.624+
0.624
k . Both algorithms

are faster than O(mω), Algorithm 4.3 for m > n(3+2/k)/ω = n1.26+
0.84
k and

Algorithm 4.2 for m > max(n1+1/k,
ω−1
√
kn1+2/k).

4.4.3 More Approximation

Consider now Algorithm 4.3. After computing the first λ cycles we use an

exact MCB algorithm to compute the MCB of the t-spanner G′. We can

instead use our approximate Algorithm 4.2 which is fast for sparse graphs.

We begin by computing a (2k−1)-spanner G′ of G and the first λ cycles.

Then, we call Algorithm 4.2 to compute a (2q−1)-approximate MCB of G′.

The result will be a (2k − 1)(2q − 1)-approximate MCB of G. This follows

by the fact that our first λ cycles combined with the MCB of G′ form a

(2k − 1)-approximate MCB.

Note that in this case it is not sufficient to use the O(mn1+1/k) approach

of Althöfer et al. [1] in order to compute the initial (2k − 1)-spanner G′.

4.5. Planar and Euclidean Graphs 47

Thorup and Zwick [78] have shown how to construct a (2k − 1)-spanner

G′ with size Õ(kn1+1/k) in expected time Õ(kmn1/k). Such a spanner is

a collection of shortest path trees T (w) for w ∈ V and given two vertices

u, v ∈ V there is a tree in this collection that contains a path between u and

v that is of stretch at most 2k− 1. Furthermore, the corresponding tree can

be obtained in O(k) time. We can also preprocess these trees in order to be

able to output the path in amortized or worst case constant time per edge.

Consider running Algorithm 4.2 in the subgraph G′. The algorithm

will first compute a (2q − 1)-spanner G′′ of the (2k − 1)-spanner G′ and

some of the cycles. Then, it will compute the remaining cycles by do-

ing (2q − 1)-approximate shortest cycles computations in G′. We there-

fore get an algorithm with expected running time Õ(qk · n1+1/kn1+2/q +

kn1+1/kn(1+1/q)(ω−1)). Note that this upper bound does not include the

time to output the initial cycles using the (2k − 1)-spanner.

Theorem 4.14. A (2k − 1)(2q − 1)-approximate MCB of an undirected

graph with non-negative edge weights, for any two integers k, q ≥ 1, can be

computed in expected time Õ(qk ·n2+1/k+1/q · (n1/q +n(1+1/q)(ω−2))) plus the

time to output the MCB.

Corollary 4.15. An O(log2 n) approximate MCB of an undirected weighted

graph can be computed in expected time Õ(nω) plus the time to output the

MCB.

4.5 Planar and Euclidean Graphs

Some types of graphs are much easier to handle than others w.r.t the mini-

mum cycle basis. Consider a planar graph G. In linear time we can find an

embedding of G in the plane. Then, the approximate cycle basis algorithm

just returns the set of bounded faces of G. It is easy to see that all these

cycles are linearly independent and due to Euler’s formula they are also the

right number, N = m− n+ 1 = f − 1, where f is the number of faces of G.

For the approximation factor let E∗ ⊆ E be the set of edges of G which

belong to at least one cycle. Since each edge is incident with at most two

faces, this cycle basis has weight at most

2 ·
∑
e∈E∗

w(e) ≤ 2 · w(MCB) ,

since a minimum cycle basis has to use each edge that belongs to at least

one cycle.

48 Chapter 4. Approximate Minimum Cycle Basis

The embedding can be found in linear time [50]. The bounded faces can

also be enumerated in linear time and the size of the output is also linear.

Theorem 4.16. A 2-approximate minimum cycle basis of a planar graph

can be computed in linear time using linear space.

Let P be a set of points in the Euclidean plane. The Euclidean graph

G(P) on P has vertices corresponding to points in P . The graph is complete

and the weight of an edge is the Euclidean distance between the points

corresponding to the vertices. In order to find an approximate MCB of

G(P) we use the result that the Delaunay triangulation of the points P is

a ≈ 2.42 [59] spanner of G(P). Let DT denote the Delaunay triangulation

of P . DT is a planar graph. The approximate MCB algorithm returns the

following set of cycles: (a) For each edge e = (u, v) ∈ G(P) \ DT the cycle

Ce formed by edge e and the shortest path in DT from u to v, and (b) a

minimum cycle basis of DT.

Theorem 4.17. A 2.42 approximation of the MCB in a complete Euclidean

graph in the plane can be constructed in O(n3) time.

Proof. The proof of the approximation ratio follows exactly the proof in

Section 4.4.2. For the running time we note that computing the Delaunay

triangulation requires O(n log n) time. The shortest paths computations on

the planar spanner require O(λn) which is O(n3). Computing an MCB of

a planar graph can be done in O(n2 log n) by the algorithm of Hartvigsen

and Mardon [48].

In the case we want to handle higher (but fixed) dimensions we can

use the fact that the well-separated pair decomposition [13] (s-WSPD) for

separation factor s = 4(t+ 1)/(t− 1) is a t-spanner of G(P) for t > 1. The

algorithm begins by computing an s-WSPD decomposition. The time to

compute an s-WSPD is O(n log n+sdn) where d is the dimension. Since the

size of the WSPD is O(sdn) we know that λ ≤ m and µ = N − λ ∈ O(sdn).

Thus, the time to compute the first λ cycles is O(m(sdn+ n log n)).

For the remaining cycles we use the approach in Algorithm 4.3. Comput-

ing exactly the MCB of the spanner we get a running time of O(sdn3 log n).

Theorem 4.18. A t-approximate MCB for t > 1 of a complete Euclidean

graph can be computed in time O(sdn3 log n) where s = 4(t+ 1)/(t− 1) and

d the fixed dimension.

4.6. Directed Graphs 49

4.6 Directed Graphs

Our techniques can also be applied to the minimum cycle basis problem in

directed graphs. A cycle in a directed graph is a cycle in the underlying

undirected graph with edges traversed in both directions. A {−1, 0, 1} edge

incidence vector is associated with each cycle: edges traversed by the cycle

in the right direction get 1 and edges traversed in the opposite direction get

−1. The main difference here is that the cycle space is generated over Q by

the cycle vectors. Note that the weight of a cycle is simply the sum of the

weight of its edges independent of the orientation of these edges.

The algorithms for finding an MCB in directed graphs are based on the

techniques used in [20] and the ones developed in this thesis. Several extra

ideas are required in order to compensate for the extra cost of arithmetic

that arises when changing the base field from F2 to Q. Lemma 4.1 can

be generalized, see for example [56]. Algorithm 4.3 can also be directly

generalized. For the spanner computation we view our directed graph G

as undirected and we compute a (2k − 1)-spanner G′. We then give to the

edges of G′ the orientation that they have in G.

As in Section 4.4.2 we return two sets of cycles. The first set is con-

structed as follows. For each edge ei ∈ E \E′ for 1 ≤ i ≤ λ we compute the

cycle ei + pi where pi is the shortest path in G′ between the endpoints of

ei when G′ is viewed as an undirected graph. Then, we traverse each such

cycle in an arbitrary orientation and form our directed cycles based on the

direction of the edges in G. The second set is simply the set of cycles of a

directed MCB of G′. The proof of correctness of this approach is similar to

the one presented in Section 4.4.2 if we replace the base field with Q.

The time to compute our spanner is again O(mn1+1/k). The fastest

deterministic algorithm [45] to compute an MCB of a directed graph has

a running time of Õ(m2Nω−1 + N3) + O(N(m2n + mn2 log n)). We exe-

cute this algorithm on our spanner and G′ has at most O(n1+1/k) edges.

Thus, N ≤ m ∈ O(n1+1/k) and the running time becomes O(mn1+1/k) +

Õ(n(1+1/k)(ω+1)) +O(n4+3/k). For k ≥ 1 this is O(n4+3/k).

Theorem 4.19. A (2k−1)-approximate minimum cycle basis, for any inte-

ger k ≥ 1, in a weighted directed graph can be computed in time O(n4+3/k).

If we allow the use of randomization then we can compute approximate

directed MCB even faster. The Monte Carlo algorithm in [55] computes an

MCB of a directed graph with positive weights in time O(m2n log n) with

high probability. Using this algorithm we get the following theorem.

50 Chapter 4. Approximate Minimum Cycle Basis

Theorem 4.20. A (2k−1)-approximate minimum cycle basis, for any inte-

ger k ≥ 1, in a positively weighted directed graph can be computed with high

probability in time O(n3+2/k log n).

4.7 Concluding Remarks

In this chapter we have obtained fast algorithms which compute approximate

minimum cycle bases of graphs. We presented an α-approximate algorithm

for any α > 1 and several constant factor approximate algorithms. These al-

gorithms are considerably faster than any current approach which computes

exactly a minimum cycle basis.

The minimum cycle basis problem is used mostly as preprocessing and

usually any sparse cycle basis suffices. Thus, our constant factor algorithms

have high practical value. Moreover, one of our algorithms even when im-

plemented without fast matrix multiplication runs in time O(n3+3/k). We

elaborate on this further in Section 5.7.

For sufficiently dense graphs our algorithms are o(mω). Furthermore, we

developed fast approximation algorithms for special classes of graphs. Our

techniques extend to the directed minimum cycle basis problem.

Chapter 5
Minimum Cycle Basis Algorithms

in Practice

Summary

In this chapter we consider the practical problem of computing a minimum cycle
basis of an undirected graph G = (V,E) with n vertices and m edges. We describe
an efficient implementation of an O(m3 +mn2 logn) algorithm presented in [20].
For sparse graphs this is the currently fastest known algorithm. This algorithm’s
running time can be partitioned into two parts with time O(m3) and O(m2n +
mn2 logn) respectively. Our experimental findings imply that in random graphs
the true bottleneck of a sophisticated implementation is the O(m2n+mn2 logn)
part. A straightforward implementation would require N ·n single source shortest
paths computations, thus we develop several heuristics in order to get a practical
algorithm. Our experiments show that in random graphs our techniques result in
a significant speedup.

Based on our experimental observations we combine the two fundamentally
different approaches, which have been used so far to compute a minimum cycle
basis, to obtain a new hybrid algorithm with running time O(m2n2). The hybrid
algorithm is very efficient in practice for random dense unweighted graphs.

We also compare these two algorithms with a number of previous implemen-
tations for finding a minimum cycle basis of an undirected graph. Finally, we
discuss the performance of our approximation algorithms in practice.

5.1 Introduction

In this chapter we consider the practical problem of computing a minimum

cycle basis of an undirected graph G = (V,E) with n vertices and m edges.

We describe an efficient implementation of Algorithm 3.1, using LEDA [67].

For sparse graphs this is the currently fastest known algorithm. As dis-

cussed in Chapter 3, this algorithm’s running time can be partitioned into

two parts with time O(m3) and O(m2n + mn2 log n) respectively. Our ex-

52 Chapter 5. Minimum Cycle Basis Algorithms in Practice

perimental findings imply that in random graphs the true bottleneck of a

sophisticated implementation is the O(m2n + mn2 log n) part. A straight-

forward implementation would require N · n single source shortest paths

computations, thus we develop several heuristics in order to get a practical

algorithm. Our experiments show that in random graphs our techniques

result in a significant speedup.

Based on these experimental observations, we combine the two funda-

mentally different approaches to compute a minimum cycle basis, to obtain

a new hybrid algorithm with running time O(m2n2). This new hybrid algo-

rithm is very efficient in practice for random dense unweighted graphs.

We also compare these two algorithms with a number of previous im-

plementations [53, 19] for finding a minimum cycle basis of an undirected

graph. These implementations were developed in order to analyze complex

electrical networks, more precisely to compute a sparse cycle basis to de-

scribe the ‘voltage law’ part of a system. Both contain algorithms which

compute optimal or sub-optimal cycle bases. For our comparisons we used

only the implementations which compute optimal cycle bases.

Finally, we discuss our approximation algorithms and their applicability

in practice.

5.1.1 Experimental Setup

This chapter contains some experimental results and comparisons. All ex-

periments are done using random sparse and dense graphs.

Random Graphs

The G(n; p) model is due to Erdős and Rényi [29]. Let G(n) be the set of all

undirected graphs (without self-loops) on n vertices and define M :=
(
n
2

)
;

M is the number of edges in a complete graph on n vertices. G(n) has

precisely 2M elements. In the G(n; p) model each of the M potential edges

is present with probability p, independently of the other edges. That is, the

sample space of G(n; p) is the entire set G(n), and the probability of a graph

G ∈ G(n) with m edges is pm(1 − p)M−m. If p = 1
2 all graphs in G(n) are

equiprobable.

All graphs, which we use in our experiments, were constructed using the

G(n; p) model for p = 4/n, 0.3, and 0.5.

5.2. Heuristics 53

Platform†

Our implementation uses LEDA [67]. All experiments were performed on

a Pentium M 1.7GHz machine with 1GB of memory and 1MB L2 cache,

running GNU/Linux. We used the GNU g++ 3.3 compiler with the -O

optimization flag. All other implementations considered use the boost C++

libraries [12].

5.2 Heuristics

In this section we present several heuristics which can improve the running

time substantially. All heuristics preserve the worst-case time and space

bounds.

5.2.1 Compressed and/or Sparse Representation (H1)

All vectors (sets S and cycles C) which are handled by the algorithm are

in {0, 1}m or {0, 1}N . Moreover, any operations performed are normal set

operations. This allows us to use a compressed representation where each

entry of these vectors is represented by a bit of an integer. This allows us to

save up space and at the same time to perform 32 or 64 bitwise operations

in parallel.

Except from a compressed representation we can also use a sparse rep-

resentation. Every cycle C or set S is simply a collection of edges. Thus, we

can represent such sets by a sorted list of integers. Each integer uniquely

represents an edge. The only operation required is performing symmetric

difference and this can be done in time proportional to the sizes of the

vectors involved.

Which of the two above representations to use, seems to be relevant to

the particular instances of the problem that we need to solve. For example if

we know that the minimum cycle basis contains only cycles of small length,

then a sparse representation seems more relevant. We believe that when

solving small instances a compressed representation should be preferable

but on larger instances a sparse one would provide better performance and

less space consumption.

†The various implementations in this chapter use different graph libraries, either
LEDA [67] or boost [12]. This could be the reason, for some additional constant fac-
tor performance differences between the algorithms.

54 Chapter 5. Minimum Cycle Basis Algorithms in Practice

5.2.2 Upper Bounding the Shortest Path (H2)

During phase i we might perform up to n shortest paths computations in

order to compute the shortest cycle Ci with an odd intersection with the set

Si. We can thus use the shortest path found so far as an upper bound on

the shortest path. This is implemented as follows; a node is only added in

the priority queue of Dijkstra’s implementation if its current distance is not

more than our current upper bound.

5.2.3 Reducing the Shortest Path Computations (H3)

We come to the most important heuristic. In each of the N phases we are

performing single source shortest paths computations between at most n

pairs of vertices or one all pairs shortest paths computation. In the general

case this can be accomplished by n single source shortest paths computa-

tions. This results in total to N ·n single source shortest paths computations.

Let S = {e1, e2, . . . , ek} be a witness at some point of the execution.

We need to compute the shortest cycle C such that 〈C, S〉 = 1. We can

reduce the number of shortest paths computations based on the following

observation. Let C≥i be the shortest cycle in G such that:

(i) 〈C≥i, S〉 = 1 ,

(ii) C≥i ∩ {e1, . . . , ei−1} = ∅ , and

(iii) ei ∈ C≥i .

Then, cycle C can be expressed as

C = min
i=1,...,k

C≥i . (5.1)

Note that at least one of the C≥i for 1 ≤ i ≤ k exists, since we make sure

that there is always at least one cycle with an odd intersection with S.

We can compute C≥i in the following way. We delete edges {e1, . . . , ei}
from the graph G and the corresponding edges from the signed graph Gi.

Let ei = (v, u) ∈ G. Then, we compute a shortest path in Gi from v+ to

u+. The path computed will have an even number of edges from the set S

and together with ei an odd number. Since we deleted edges {e1, . . . , ei} the

resulting cycle does not contain any edges from {e1, . . . , ei−1}.
Using the above observation we can compute each cycle in O(k·SP(n,m))

time when |S| = k < n and in O(n · SP(n,m)) when |S| ≥ n. Thus, the

5.3. Updating the Witnesses, Si’s 55

running time for the cycles computations is equal to

SP(n,m) ·
N∑
i=1

min{n, |Si|} (5.2)

where SP(n,m) denotes the time to compute single source shortest paths in

an undirected non-negative weighted graph with n vertices and m edges.

5.2.4 Basis Reordering (H4)

The main invariant of all algorithms based on the algebraic framework (Al-

gorithm 3.2) which was presented in Section 3.2, is that for 1 ≤ i ≤ N , Si
must be a vector in the subspace orthogonal to the cycles {C1, . . . , Ci−1}.
Several vectors in this subspace suffice for the correctness of the MCB algo-

rithm.

In Algorithm 3.1 at the beginning of phase 1 ≤ i ≤ N we have a set of

vectors {Si, . . . , SN} which form a basis of the subspace orthogonal to the

cycles {C1, . . . , Ci−1}. Heuristic H3 implies that computing cycle Ci can be

performed with a different number of shortest paths computations, based

on the sparseness of the vector from the orthogonal subspace that is chosen.

The basis reordering heuristic swaps Si with Sj such that i ≤ j ≤ N and

|Sj | is minimized.

The goal of this heuristic is to make a significant progress at the begin-

ning of the algorithm. As the computation reaches its final stages, most of

the orthogonal basis vectors will be relative dense and thus the heuristic will

not have a big effect. Moreover, the dimension of the subspace orthogonal

to C1, . . . , Ci−1 decreases during the algorithm. Thus, at the final stages we

do not have a wide choice on which basis vector to choose. At early stages

however, only a few shortest paths computations will be necessary in order

to compute each MCB cycle.

This heuristic is less applicable to Algorithm 3.3 since in each phase

we have much fewer Si’s in the subspace orthogonal to the set of cycles

{C1, . . . , Ci−1} that in Algorithm 3.1.

5.3 Updating the Witnesses, Si’s

In this section we present experimental results which suggest that the dom-

inating factor of the running time of Algorithm 3.1 (at least for random

graphs) is not the time needed to update the witnesses but the time to

compute the cycles.

56 Chapter 5. Minimum Cycle Basis Algorithms in Practice

sparse (m ≈ 2n)

n S’s C’s

77 0.01 0.02
154 0.0100013 0.250001
303 0.0300028 0.770003
541 0.0500085 4.35001
795 0.230037 13.4
1060 0.519957 28.8599
1412 1.07985 59.2798
2070 2.97977 267.09
2505 4.46042 377.281
3336 9.84878 795.548

G(n; 0.3) G(n; 0.5)

n S’s C’s S’s C’s

50 0.0100001 0.33 0.100001 0.66
70 0.0900026 1.44 0.339982 2.92998
100 0.529994 5.75 1.75995 15.0799
150 3.55005 37.6801 9.66977 114.75
200 12.5297 145.8 35.8403 421.82
250 34.578 508.309 99.888 1556.64

Table 5.1: Comparison of the time (in seconds) taken to update the
sets Si, 1 ≤ i ≤ N and the time taken to calculate the cycles Ci,
1 ≤ i ≤ N in random weighted graphs, by Algorithm 3.1.

Recall that the time to update the witnesses is O(m3) and the time to

compute the cycles is O(m2n + mn2 log n). Thus, on sparse graphs Algo-

rithm 3.1 has the same running time O(n3 log n) as Algorithm 3.3. Algo-

rithm 3.3 has a running time of O(m2n+mn2 log n+mω); the mω factor is

dominated by the m2n but we present it here in order to understand what

type of operations the algorithm performs. Recall that Algorithm 3.3 im-

proves upon Algorithm 3.1 with respect to the time needed to update the

sets S by using fast matrix multiplication.

Although fast matrix multiplication can be practical for medium and

large sized matrices, our experiments show that in random graphs the time

needed to update the Si’s is a small fraction of the time needed to compute

the cycles. Table 5.1 presents a comparison of the required time to update

the Si’s and to calculate the cycles Ci’s by using the signed graph Gi for

random weighted graphs.

In order to get a better understanding of this fact, we performed several

experiments. As it turns out, in practice, the average cardinality of the Si’s

is much less than N and moreover the number of times we actually perform

set updates (if 〈Ci, Sj〉 = 1) is much less than N(N − 1)/2. Moreover,

heuristic H1 helps to further decrease the time required to perform these

updates. Table 5.2 summarizes our results.

5.4 Number of Shortest Path Computations

Heuristic H3 dramatically improves the best case of the Algorithm 3.1, while

maintaining at the same time the worst case. Instead of N · n single source

shortest paths computations, we perform much less. In Table 5.4 we study

5.4. Number of Shortest Path Computations 57

n m N N(N − 1)/2 max(|S|) davg(|S|)e # 〈S,C〉 = 1

sparse (m ≈ 2n)

10 19 10 45 4 2 8
51 102 52 1326 25 3 113
104 208 108 5778 44 4 258
206 412 212 22366 108 5 760
491 981 500 124750 226 7 2604
596 1192 609 185136 315 6 2813
963 1925 985 484620 425 7 5469
1060 2120 1084 586986 498 7 5980
1554 3107 1581 1248990 537 8 9540
2070 4139 2105 2214460 1051 13 20645
3032 6064 3092 4778686 1500 13 31356
4441 8882 4525 10235550 2218 17 58186

G(n; 0.3)

10 13 4 6 2 2 2
25 90 66 2145 27 3 137
50 367 318 50403 133 5 1136
75 832 758 286903 370 6 3707
100 1485 1386 959805 613 7 8103
150 3352 3203 5128003 1535 9 22239
200 5970 5771 16649335 2849 10 49066
300 13455 13156 86533590 6398 10 116084
500 37425 36926 681746275 18688 14 455620

G(n; 0.5)

10 22 13 78 7 2 14
25 150 126 7875 57 4 363
50 612 563 158203 298 6 2527
75 1387 1313 861328 654 6 6282
100 2475 2376 2821500 1168 8 15771
150 5587 5438 14783203 2729 9 39292
200 9950 9751 47536125 4769 11 86386
300 22425 22126 244768875 10992 13 227548
500 62375 61876 1914288750 30983 15 837864

Table 5.2: Statistics about sets S sizes on sparse random graphs with
p = 4/n and dense random graphs for p = 0.3 and 0.5. Sets are consid-
ered during the whole execution of Algorithm 3.1. Column #〈S,C〉 = 1
denotes the number of updates performed on the Si’s. An upper bound
on this is N(N − 1)/2, which we actually use when bounding the algo-
rithm’s running time. Note that the average cardinality of the Si’s is
very small compared to N although the maximum cardinality of some
Si’s is in O(N).

58 Chapter 5. Minimum Cycle Basis Algorithms in Practice

G(n; 0.3)

n H3 Heur. NO Heur.

35 0.06 0.47
50 0.32 2.39
60 0.85 6.11
80 2.41 23.2
100 6.55 68.34
120 14.82 169.41
150 41.6 604.07

G(n; 0.5)

n H3 Heur. NO Heur.

25 0.06 0.25
40 0.31 2.08
50 0.82 6.38
60 1.95 14.78
75 4.7 42.6
85 7.41 78.28
100 17.77 210.69
120 39.78 521.93
150 122.2 1954.24

sparse (m ≈ 2n)

n H3 Heur. NO Heur.

51 0.01 0.19
104 0.07 1.48
206 0.52 11.85
491 3.3 154.31
656 7.61003 392.29

Table 5.3: Running times in seconds of Algorithm 3.1 with and with-
out the H3 heuristic on random graphs. Without the heuristic the
algorithm performs Θ(nm) single source shortest paths computations.

the sizes of the sets Si (Si,i in the terminology of Algorithm 3.1) for i =

1, . . . , N used to calculate the cycles for sparse and dense graphs respectively.

The main observation here is that in both sparse and dense graphs al-

though the maximum set can have quite large cardinality (something like

O(N)) the average set size is much less than n. Moreover, in sparse graphs

every set used has cardinality less than n. On dense graphs the sets with

cardinality less than n are more than 95% percent. Thus, heuristic H3 is

almost always in effect which in turn implies a significant speedup. Ta-

ble 5.3 compares the running times of Algorithm 3.1 with and without the

H3 heuristic.

The heuristic for reducing the number of shortest paths computation has

a dramatic effect on the performance of Algorithm 3.1. Nevertheless, the

observation that for random graphs the shortest paths are the dominating

factor of the algorithm remains valid. This fact is motivating enough, in

order to try to design an algorithm which performs fewer shortest paths

computations.

5.5. Combining the Two Approaches 59

n m N max(|Si|) davg(|Si|)e |{Si : |Si| < n}|
sparse (m ≈ 2n)

10 19 10 4 2 10
51 102 52 16 5 52
104 208 108 39 5 108
206 412 212 106 10 212
491 981 498 246 13 498
596 1192 609 220 11 609
963 1925 980 414 11 980
1060 2120 1076 496 17 1076
1554 3107 1573 795 21 1573
2070 4139 2108 1036 27 2108
3032 6064 3092 1468 33 3092
4441 8882 4522 1781 33 4522

G(n; 0.3)

10 13 4 2 2 4
25 90 66 20 4 66
50 367 318 153 10 302
75 832 758 357 15 721
100 1485 1386 638 15 1343
150 3352 3203 1534 18 3133
200 5970 5771 2822 29 5635
300 13455 13156 6607 32 12968
500 37425 36926 15965 39 36580

G(n; 0.5)

10 22 13 7 3 13
25 150 126 66 5 121
50 612 563 222 12 532
75 1387 1313 456 10 1276
100 2475 2376 1094 15 2314
150 5587 5438 2454 19 5338
200 9950 9751 4828 28 9601
300 22425 22126 10803 33 21875
500 62375 61876 30877 38 61483

Table 5.4: Statistics about sets Si sizes on sparse random graphs with
p = 4/n and dense random graphs for p = 0.3 and 0.5, at the mo-
ment we calculate cycle Ci with Algorithm 3.1. Compare the average
cardinality of Si with n.

5.5 Combining the Two Approaches

In this section we develop a new algorithm for the minimum cycle basis

problem with running time O(m2n2). The algorithm is a combination of the

two main approaches that have been used to compute a minimum cycle basis.

Its main motivation is to reduce the number of shortest paths computations.

We begin by describing Horton’s algorithm [52] in more detail.

60 Chapter 5. Minimum Cycle Basis Algorithms in Practice

5.5.1 Horton’s Algorithm

Unlike the algorithms that we have seen so far, Horton’s algorithm does not

compute the cycles one by one but instead computes a superset of the MCB

and then greedily extracts the MCB by Gaussian elimination. This superset

contains O(mn) cycles which are constructed in the following way.

For each vertex w ∈ V and edge e = (u, v) ∈ E construct the candidate

cycle C = SP(w, u) + SP(w, v) + (u, v) where SP(a, b) is the shortest path

from a to b (see Figure 5.1). If these two shortest paths do not contain a

vertex other than w in common then keep the cycle otherwise discard it.

Let us call this set of cycles the Horton set and denote it with HS. We next

show that HS always contains an MCB.

For simplicity we will make the following assumption. We refer the

interested reader to [52] for the treatment of the more general case.

Assumption 5.1. All shortest paths in graph G are unique.

The proof consists of a series of simple lemmata.

Theorem 5.1 (Horton [52]). Let u and v be two vertices in G, and let B be

a cycle basis of G. Let P denote a path from u to v. Any cycle C ∈ B that

contains u and v can be exchanged for either a cycle that includes the path

P , or a cycle that excludes one of u and v.

Proof. Let P1 and P2 be the two paths in C joining u and v. Assume

P 6= P1 and P 6= P2, for otherwise C does not need to be exchanged. Define

C1 = P+P1 and C2 = P+P2. Then, C1 and C2 are cycles and C = C1+C2.

By Theorem 2.3, C can be exchanged for either C1 or C2. If the exchanged

cycle Ci is not a simple cycle, then Ci can be exchanged for one of its simple

cycles and that simple cycle cannot include both u and v.

Corollary 5.2 (Horton [52]). If B is a minimum cycle basis and P is the

unique shortest path from x to y, then every cycle in B that contains x and

y must contain the path P .

Proof. In the proof of Theorem 5.1, w(Ci) ≤ w(P) + w(Pi) < w(P1) +

w(P2) = w(C). Hence, if C does not contain P , it can be exchanged for a

shorter cycle, a contradiction to the fact that B is a minimum cycle basis.

Theorem 5.3 (Horton [52]). Let w be any vertex of any cycle C in a mini-

mum cycle basis of G. Then, there is an edge (v, u) ∈ C such that C consists

of a shortest path from w to v, a shortest path from w to u, and the edge

(v, u).

5.5. Combining the Two Approaches 61

w

u

v

e = (v, u)

SP(w, v)

SP(w, u)

Figure 5.1: Candidate cycle for the MCB.

Proof. Let C = (w0, w1, . . . , wn−1, wn), where w = w0 = wn. Define

Pi = (w,w1, w2, . . . , wi) and Qi = (w,wn−1, . . . , wi). By Corollary 5.2

and Assumption 5.1, d(w,wi) = w(Pi) or w(Qi). Let v = wi, where i is

the largest subscript such that d(w,wi) = w(Pi). Let u = wi+1. Then,

C = Pi + (wi, wi+1) +Qi+1.

However, not every MCB is contained in the Horton set. If we assume

uniqueness of the MCB then it is immediately clear that the only MCB is

contained in this set. Horton actually proved that if all edges have positive

weights then it does not matter which shortest path is chosen between each

pair of vertices.

Extracting an MCB from the Horton set is straightforward by using

Gaussian elimination and the greedy algorithm. We first sort the cycles

by length. The i-th cycle of the Horton set is in the MCB if it is linearly

independent from the cycles which we have already selected among the first

i−1 cycles of the Horton set. We continue this process until we have selected

N such cycles. Note that this greedy step is really necessary.

5.5.2 A Hybrid Algorithm

The two approaches that we have seen so far for computing an MCB can be

combined, and this is the purpose of this section. Both Algorithm 3.1 and

Algorithm 3.3 requireO(mn(m+n log n)) time for the shortest paths queries.

Our experimental observation was (recall Table 5.1) that for random graphs

this is the dominating factor. Thus, it seems only natural to try to reduce

this factor.

The main idea here is to exchange the shortest paths computations per-

formed by Algorithm 3.1 and Algorithm 3.3 by the computation of HS. The

resulting algorithm has again N phases, one for each cycle of the MCB.

During these phases we maintain the invariant that in phase i, Si is a vector

62 Chapter 5. Minimum Cycle Basis Algorithms in Practice

Algorithm 5.1: Hybrid MCB algorithm

Ensure uniqueness of the shortest path distances of G (lexicographi-
cally or by perturbation)
Construct superset (Horton set) HS of MCB
Let Si = {ei} for all i = 1, . . . , N
for i = 1 to N do

Find Ci as the shortest cycle in HS s.t 〈Ci, Si〉 = 1
for j = i+ 1 to N do

if 〈Ci, Sj〉 = 1 then
Sj = Sj + Si

end

end

end

in the subspace orthogonal to the cycles C1, . . . , Ci−1. To compute the cycle

Ci in phase i, we search for the shortest cycle C ∈ HS such that 〈C, Si〉 = 1.

The Horton set contains an MCB but not necessarily all the cycles that

belong to any MCB. We resolve this difficulty by ensuring uniqueness of the

MCB. We ensure uniqueness by ensuring uniqueness of the shortest path

distances on the graph (either by perturbation or by lexicographic ordering).

After the preprocessing step, every cycle of the MCB will be contained in the

Horton set. This proves the correctness of the new algorithm. A succinct

description can be found in Algorithm 5.1.

Running Time

Theorem 5.4. Algorithm 5.1 solves the minimum cycle basis problem in

time O(m2n2).

Proof. The time to compute the cycles is only O(n2m). To see this note

that it is enough to build one shortest path tree for each node v ∈ V . This

takes time O(n(m+n log n)). Then, we can construct the O(mn) candidate

cycles in O(n2m) since each cycle might contain at most O(n) edges.

Querying the Horton set takes time O(m2n2) since the Horton set con-

tains at most mn cycles, we need to search for at most m cycles and each

cycle contains at most n edges.

The space requirement is O(mn2), a factor of n more than O(mn) which

is the space required to represent the cycles of the MCB. The important

property of this algorithm is that the time to actually compute the cycles is

only O(n2m). This is a factor of mn better than the O(m2n) time required by

5.6. Running Times Comparison 63

Algorithm 3.1 or Algorithm 3.3. Together with the experimental observation

that in general the linear independence step is not the bottleneck, we actually

hope to have developed an efficient algorithm.

5.6 Running Times Comparison

In this section we compare various implementations for computing a mini-

mum cycle basis. We include in our comparison the following algorithms:

(i) our implementation [65] of Algorithm 3.1 denoted as DP or DP U in the

case of unweighted graphs,

(ii) our implementation of Algorithm 5.1 denoted as HYB or HYB U in the

case of unweighted graphs,

(iii) an implementation [19] of Horton’s algorithm denoted as HOR in case

of weighted and as HOR U1 in case of unweighted graphs,

(iv) another implementation [53] of Horton’s algorithm, for unweighted

graphs, denoted as HOR U2, and

(v) an implementation [19] of another O(m3 + mn2 log n) algorithm due

to Berger et al. [8], which is similar to de Pina’s algorithm, denoted as

FEAS for weighted and FEAS U for unweighted graphs.

Implementations (iii) and (iv) contain some common codes. We include

both in the comparison because there seems to be a constant factor difference

in the running times. Fast matrix multiplication can nicely improve many

parts of these implementations with respect to the worst case complexity.

We did not experiment with these versions of the algorithms.

The comparison of the running times is performed for three different

type of undirected graphs:

(a) random sparse graphs, where m ≈ 2n,

(b) random graphs from G(n; p) with different density p = 0.3, 0.5, and

(c) hypercubes.

Tests are performed for both weighted and unweighted graphs. In the case

of weighted graphs the weight of an edge is an integer chosen independently

at random from the uniform distribution in the range [0 . . . 216].

Figure 5.2 and Figure 5.3 contain the results of the comparisons for

unweighted and weighted graphs respectively. In the case of weighted graphs

64 Chapter 5. Minimum Cycle Basis Algorithms in Practice

0.001

0.01

0.1

1

10

100

50 100 150 200 250 300 350

ti
m

e
(s

ec
)

nodes

Sparse Graphs (m ≈ 2n)

0.01

0.1

1

10

100

30 40 50 60 70 80 90 100

ti
m

e
(s

ec
)

G(n; 0.3)

0.01

0.1

1

10

100

20 30 40 50 60 70 80

ti
m

e
(s

ec
)

G(n; 0.5)

0.01

0.1

1

10

5 5.5 6 6.5 7 7.5 8

ti
m

e
(s

ec
)

dimension

hypercubes

Algorithms
DP U
HYB U
FEAS U
HOR U1
HOR U2

Figure 5.2:
Comparison
of various al-
gorithms for
random un-
weighted graphs.
Algorithm 3.1
is denoted as
DP U and Al-
gorithm 5.1 as
HYB U. HOR U1

and HOR U2 are
two different
implementations
of Horton’s al-
gorithm. FEAS U

is an imple-
mentation of
another O(m3)
algorithm. See
Section 5.6 for
details.

5.6. Running Times Comparison 65

0.001

0.01

0.1

1

10

100

100 200 300 400 500 600 700

ti
m

e
(s

ec
)

nodes

Sparse Graphs (m ≈ 2n)

0.001

0.01

0.1

1

10

100

20 30 40 50 60 70 80 90 100

ti
m

e
(s

ec
)

G(n; 0.3)

0.01

0.1

1

10

100

20 30 40 50 60 70 80 90

ti
m

e
(s

ec
)

G(n; 0.5)

0.01

0.1

1

10

100

1000

5 5.5 6 6.5 7 7.5 8 8.5 9

ti
m

e
(s

ec
)

dimension

hypercubes

Algorithms
DP

HYB
FEAS
HOR

Figure 5.3:
Comparison
of various
algorithms
for random
weighted graphs.
Algorithm 3.1
is denoted as
DP and Algo-
rithm 5.1 as
HYB. HOR is Hor-
ton’s algorithm
and FEAS is
another O(m3 +
mn2 log n) al-
gorithm. See
Section 5.6 for
details.

66 Chapter 5. Minimum Cycle Basis Algorithms in Practice

Algorithm 3.1 outperforms all the other algorithms. It is also worth noting

that the hybrid algorithm (Algorithm 5.1) outperforms Horton’s algorithm

in the case of sparse graphs but it is slower in all other cases. On the

other hand in the case of unweighted graphs, except for sparse graphs and

hypercubes where Algorithm 3.1 is superior, for dense graphs Algorithm 5.1

outperforms all the remaining algorithms. As can be easily observed the

differences on the running time of the implementations are rather small for

sparse graphs. For dense graphs however, we observe a substantial difference

in performance.

5.6.1 Dense Unweighted Graphs

In the case of dense unweighted graphs, the hybrid algorithm performs better

than the other algorithms. However, even on the exact same graph, the

addition of weights changes the performance substantially. This change in

performance is not due to the difference in size of the produced Horton set

between the unweighted and the weighted case, but due to the total number

of queries that have to be performed in this set.

In the hybrid algorithm before computing the MCB, we sort the cycles

of the Horton set. Then, for each of the N phases we query the Horton

set, from the least costly cycle to the most, until we find a cycle with an

odd intersection with our current witness S. Figure 5.4 presents for dense

graphs the number of cycles in the Horton set (the size of the Horton set

is considered with duplicate cycles) and the number of queries required in

order to extract the MCB from this set. In the case of unweighted graphs,

the number of queries is substantially smaller than in the case of weighted

graphs. This is exactly the reason why the hybrid algorithm outperforms

the others in unweighted dense graphs.

5.7 Approximation Algorithms

In this section we consider the approximation algorithms, Algorithm 4.2 and

Algorithm 4.3. Both algorithms use fast matrix multiplication. However,

they are also efficient even when used without fast matrix multiplication.

This fact has high practical value since high performance fast matrix multi-

plication libraries are difficult to implement.

Concerning Algorithm 4.3, the fastest algorithm to compute exactly

an MCB without fast matrix multiplication is Algorithm 3.1 and requires

O(m3 + mn2 log n) time. Since we only execute the exact algorithm in the

spanner where m ∈ O(n1+1/k) we get the following theorem.

5.7. Approximation Algorithms 67

16

64

256

1024

4096

16384

65536

262144

10 20 30 40 50 60 70

unweighted G(n; 0.3)

64

256

1024

4096

16384

65536

262144

1.04858e+ 06

10 20 30 40 50 60 70

unweighted G(n; 0.5)

16
64

256
1024
4096

16384
65536

262144
1.04858e+ 06
4.1943e+ 06

1.67772e+ 07

10 20 30 40 50 60 70

weights [1, 256] G(n; 0.3)

64
256

1024
4096

16384
65536

262144
1.04858e+ 06
4.1943e+ 06

1.67772e+ 07
6.71089e+ 07

10 20 30 40 50 60 70

weights [1, 256] G(n; 0.5)

16
64

256
1024
4096

16384
65536

262144
1.04858e+ 06
4.1943e+ 06

1.67772e+ 07

10 20 30 40 50 60 70

nodes

weights [1, 65536] G(n; 0.3)

64
256

1024
4096

16384
65536

262144
1.04858e+ 06
4.1943e+ 06

1.67772e+ 07
6.71089e+ 07

10 20 30 40 50 60 70

nodes

weights [1, 65536] G(n; 0.5)

cycles
queries

cycles
queries

cycles
queries

cycles
queries

cycles
queries

cycles
queries

Figure 5.4: Number of cycles in the Horton set (set with duplicates)
and number of queries required in this set (set sorted by cycle weight)
in order to extract the MCB for random dense graphs with random
weights of different ranges. Each random graph is considered with three
different edge weight ranges: (a) unweighted, (b) weights in [1, 28], (c)
weights in [1, 216].

Theorem 5.5. Algorithm 4.3 computes a (2k − 1)-approximate minimum

cycle basis, for any integer k ≥ 1, in an undirected weighted graph without

fast matrix multiplication in time O(n3+3/k).

Algorithm 4.2 can also be implemented without fast matrix multipli-

cation. The last phase is the only part which depends on fast matrix

multiplication techniques. Instead of using Algorithm 3.3 we use Algo-

rithm 3.1. The running time of this approach is O(mµ2) = O(mn2+2/k)

68 Chapter 5. Minimum Cycle Basis Algorithms in Practice

0.00390625

0.015625

0.0625

0.25

1

4

16

50 100 150 200 250 300 350 400 450 500

ti
m

e
(s

ec
)

nodes

Sparse Graphs (m ≈ 2n)

0.00390625

0.015625

0.0625

0.25

1

4

16

64

256

1024

4096

16384

50 100 150 200 250 300 350 400 450 500

ti
m

e
(s

ec
)

G(n; 0.3)

Algorithms
Exact

3-approx
MST

Figure 5.5:
Performance of
the (2k − 1)-
approximation
Algorithm 4.3
without fast
matrix multi-
plication (see
Theorem 5.5) in
random weighted
graphs. Three
variants are
used k = 1
(exact computa-
tion), k = 2 (3-
approximation)
and k = ∞
(minimum
spanning tree
fundamental
basis).

plus O(µ(kn+ kmn1/k)) for the shortest paths. We have shown the follow-

ing theorem.

Theorem 5.6. Algorithm 4.2 computes a (2k − 1)-approximate minimum

cycle basis, for any integer k ≥ 1, in an undirected weighted graph without

fast matrix multiplication in expected time O(kmn1+2/k +mn2+2/k).

Both algorithms are o(mω) for sufficiently dense graphs and appropriate

values of k. Moreover, they are easy to implement efficiently.

Figure 5.5 presents the performance of Algorithm 4.3 without fast matrix

multiplication. We again use random weighted graphs (weights in [1, 216])

in our experiments and use three variants of the algorithm. The first is an

exact computation using k = 1. The second is a 3-approximation algorithm

using k = 2 and the last is using k = n (same behavior as k =∞). When k

equals the number of nodes of the graph the spanner computation returns the

minimum spanning tree and thus the cycle basis returned is the fundamental

5.8. Concluding Remarks 69

cycle basis induced by the minimum spanning tree. The algorithm in this

case needs time O(mn) but the approximation factor is O(n). We present

it in the figure for comparison.

As we expected, the running time of the 3 approximation algorithm is

always better than the running of the exact algorithm. For sparse graphs

there is a small improvement. On the other hand for dense graphs the

performance of the 3 approximation algorithm is significantly better than the

exact approach. Recall that the goal of Algorithm 4.3 is to reduce the MCB

computation of a dense graph to a computation in a sparser graph. As we

increase k the performance is getting better until it reaches the time bound

of the algorithm which constructs the fundamental minimum spanning tree

basis.

5.8 Concluding Remarks

The purpose of this chapter was to study the minimum cycle basis problem

from a practical point of view. To discover whether algorithms for the MCB

problem can be implemented efficiently and whether any heuristic can be

used to speed up these algorithms.

All algorithms for computing an MCB use some shortest paths subrou-

tine. Our main observation, about random sparse and dense graphs, is that

the shortest paths routines are the bottleneck of the algorithms. Thus, in

this case any theoretical improvement using fast matrix multiplication (like

the one presented in Chapter 3) in order to ensure linear independence is

not necessary. Of course there are other graphs where this is not necessarily

the case. One such example will be examined in more detail in Chapter 6.

The number of shortest paths computations seems to be rather impor-

tant for the running time of MCB algorithms. We were unable however to

prove some better upper bound on the number of shortest path computa-

tions necessary to compute an MCB. Currently the algorithm in Chapter 3

requires O(mn) single source shortest paths or O(m) all pairs shortest paths

computations. We leave it as an open problem whether the method in Sec-

tion 3.3 can be improved. Any improvement will immediately give a faster

algorithm for the MCB problem. Such an improvement could be obtained

with respect to the properties of the witnesses (for example the density of

the Si’s) or completely independent of them.

A first step in this direction has been obtained in Chapter 4 but in the

expense of returning an approximate solution.

Chapter 6
Sampled Manifolds

Summary

Point samples of a surface in R3 are the dominant output of a multitude of 3D
scanning devices. The usefulness of these devices rests on being able to extract
properties of the surface from the sample. We show that, under certain sampling
conditions, the minimum cycle basis of a nearest neighbor graph of the sample
encodes topological information about the surface and yields bases for the trivial
and non-trivial loops of the surface. We validate our results by experiments.

6.1 Introduction

Point samples of a surface in R3 are the dominant output of a multitude of

3D scanning devices. The usefulness of these devices rests on being able to

extract properties of the surface from the sample. A common approach into

treating point samples is to first build some kind of neighborhood graph.

The k-nearest neighbor graph is relatively easy to compute [5] and is a

popular starting point for many algorithms extracting information about a

surface.

Let S be a compact manifold in R3 and let P be a finite set of points in

S. We call P a point sample of S. For an integer k, the k-nearest neighbor

graph Gk = Gk(P) on P is an undirected graph with vertex set P . It

contains an edge between sample points a and b if b is one of the k points

closest to a and a is one of the k points closest to b. Some researchers define

Gk in an unsymmetric way by requiring that either b is k-closest to a or a is

k-closest to b. We do not know whether our results apply to the alternative

definition.

The main result of this chapter is as follows: We show that if S is a

smooth surface and P a sufficiently dense sample of S, the minimum cycle

72 Chapter 6. Sampled Manifolds

basis of the nearest neighbor graph of P gives information about the genus

of S and yields bases for the set of trivial and non-trivial loops. Our

experiments suggest that this is true also for some non-smooth surfaces.

More formally, we show that for suitably nice samples of smooth man-

ifolds of genus g and sufficiently large k, the k-nearest neighbor graph Gk
has a cycle basis consisting only of short (= length at most 2(k + 3)) and

long (= length at least 4(k+ 3)) cycles. Moreover, the MCB is such a basis

and contains exactly m− (n− 1)− 2g short cycles and 2g long cycles. The

short cycles span the subspace of trivial loops and the long cycles form a

homology basis; see next section or Section 2.3 for a definition. Thus, the

MCB of Gk reveals the genus of S and also provides a basis for the set of

trivial cycles and a set of generators for the non-trivial cycles of S.

We prove the statement for smooth manifolds, sufficiently dense samples,

and sufficiently large k. A dense sample is defined in a manner similar to

that of Amenta and Bern [2], as follows: The medial axis of a manifold S

embedded in R3 is the closure of the set of points in R3 with more than one

nearest neighbor on S. The local feature size f : S 7→ R assigns to every

point in S its least distance to the medial axis of S. The point sample P is

called an ε-sample of S, if every point x ∈ S has a point in P at distance

at most εf(x). If in addition ||p − q|| ≥ δf(p) for all distinct p, q ∈ P

the sample P is called an (ε, δ)-sample. This definition requires the sample

to be dense with respect to the local feature size, but at the same time

samples cannot be arbitrarily close. Our main result is now as follows: If

P is an (ε, δ)-sample of a smooth manifold for sufficiently small ε and k is

sufficiently large (the meaning of sufficiently large depends on ε and δ), the

claim of the preceding paragraph is true. The claim is also true if we use a

weaker sampling assumption, namely locally uniform ε-samples [35].

6.1.1 Other Approaches and Remarks

Given a point sample, undoubtedly, the ultimate application is to form a

geometric approximation of the surface based on the sample. The objective

is typically to form a piecewise linear surface (i.e. triangle mesh) whose

geometry and topology are as similar to the original as possible. For smooth

surfaces and sufficiently dense samples, good and efficient reconstruction

algorithms are available, see e.g., the papers [9, 51, 2, 3, 35, 24, 62] and the

survey by Dey [22]. For non-smooth surfaces or sparse samples the problem

is open.

The best asymptotic running time in order to do smooth surface recon-

struction is O(n log n) [35] and efficient implementations are available [24,

6.2. Structure of Cycles 73

23]. Certainly, once this is done, it is relatively easy to extract less detailed

information such as the genus of the surface or a homology basis. For ex-

ample, a homology basis of a manifold 3D mesh may be computed in O(n)

time by an algorithm of Vegter and Yap [80], and a shortest homology basis

may be computed in O(n2 log n + n2g + ng3) by an algorithm of Erickson

and Whittlesey [30].

Thus, in the case of smooth manifolds computing an MCB in order to

compute less detailed information is an overkill. The purpose of this chapter

is not to compete algorithmically with the previously mentioned approaches,

but instead to study the properties and the combinatorial structure that

the minimum (and some sparse) cycle bases of certain neighborhood graphs

possess.

6.2 Structure of Cycles

6.2.1 The Basic Idea

Let S be a compact 2-manifold of genus g with no boundary embedded in

R3. For the sequel we will need to define a number of topological concepts.

Rather than give a complete formal exposition, which may be found in most

algebraic topology textbooks (e.g. [68]), we provide a more intuitive informal

set of definitions. See also Chapter 2.

A closed simple curve on S is called a loop. The elements of the first

homology group of S are equivalence classes of loops. The identity element

of this homology group is the equivalence class of separating loops, namely,

loops whose removal disconnects the surface. Two homology loops are in the

same homology class if one can be continuously deformed into the other via

a deformation that may include splitting loops at self-intersection points,

merging intersecting pairs of loops, or adding and deleting separating loops.

A loop is trivial if it is a separating loop and is non-trivial otherwise. A

homology basis of S is any set of 2g loops whose homology classes span all

non-trivial loops.

Let P be a sample of S andGk its k-nearest neighbor graph. For any edge

(a, b) of Gk we define a curve in S connecting a and b. Let us parameterize

the segment ab by length. Let p(t) = a+t(b−a) be the point with parameter

value t, 0 ≤ t ≤ 1 and let q(t) be a point on S nearest to p(t). We assume

that q(t) is unique. Then, q(t) traces a continuous curve on S connecting

a and b, which we denote by γab. In this way, we obtain a drawing of Gk
on S and cycles in Gk induce loops in S. In particular, cycles can induce

trivial or non-trivial loops, in which case we call them trivial or non-trivial

74 Chapter 6. Sampled Manifolds

cycles, respectively. The assumption that q(t) is unique is not very stringent.

Observe that if q(t) is not unique, p(t) is a point on the medial axis and hence

max(f(a), f(b)) ≤ ||a− b||/2.

We next give general conditions under which every minimum cycle basis

of Gk contains exactly 2g long cycles, the long cycles induce a homology

basis of S over the reals, and all short (= non-long) cycles are trivial.

1. L(γab) ≤ c1||a− b|| where c1 is a constant, i.e., the length of the curve

γab is not much larger than the length of the segment ab.

2. There is a subgraph M of Gk (all vertices and a subset of the edges)

such that

• the drawing restricted to M is an embedding,

• M is a mesh of genus g for S,

• the faces of M have bounded size, say at most c2 edges, and

• for every edge e ∈ Gk \M the shortest path in M connecting a

and b has bounded length, say bounded by c3.

3. The minimal length of a non-trivial loop of S is Lmin and for every

edge (a, b) of the graph Gk the distance between its endpoints is at

most Lmin/(2 max(c2, c3 + 1)).

Theorem 6.1. If the conditions above hold, every MCB of Gk contains

exactly m− (n− 1)− 2g short (length less than max(c2, c3 + 1)) and exactly

2g long (length at least 2 max(c2, c3 + 1)) cycles. Moreover, the long cycles

induce a basis of the first homology group of S over the reals.

Proof. The embedding of M has mM edges and f faces where f−mM +n =

2 − 2g. Consider the following set B of cycles: all face cycles of M but

one and for each edge e = (a, b) ∈ Gk \M the cycle consisting of e plus

the shortest path in M connecting a and b. Any cycle in B has length

at most max(c2, c3 + 1) and the cycles in B are independent. There are

f − 1 + m −mM = mM − n + 2 − 2g − 1 + m −mM = m − (n − 1) − 2g

cycles in B.

Any cycle basis of Gk must contain at least 2g non-trivial cycles and

these cycles induce loops which span the homology group of S. Consider

any non-trivial cycle. It has length at least Lmin. For any edge (a, b) of

Gk the length of γab is at most Lmin/(2 max(c2, c3 + 1)) and hence any

non-trivial cycle must contain at least 2 max(c2, c3 + 1) edges.

We have now shown that there are m− (n− 1)− 2g independent cycles

of length at most max(c2, c3 + 1) and that every non-trivial cycle consists

6.2. Structure of Cycles 75

of at least 2 max(c2, c3 + 1) edges. Consider now any MCB B∗ of Gk. It

must contain at least 2g long cycles. Assume that it contains less than

m− (n− 1)− 2g short cycles. Then, at least one cycle in B, call it C, is not

spanned by the short cycles in B∗, i.e., the representation of C as a sum of

cycles in B∗ contains a cycle D which is not short. Thus, we can improve

the total length of B∗ by replacing D by C.

In Sections 6.2.3 and 6.2.4 we substantiate the theorem for smooth sur-

faces. We will actually prove a stronger result. Note that in the previous

theorem we did not use the first condition. This condition will be useful later

on when we will also replace the global condition of maximal edge length

(see the third condition) by a local condition depending on the local feature

size.

6.2.2 Sampling and Restricted Delaunay Triangulations

The local feature size is 1-Lipschitz continuous, i.e.,

Lemma 6.2 (Amenta and Bern [2]). For any two points p and q on S,

|f(p)− f(q)| ≤ ||p− q||.

Let DP and VP denote the Delaunay and the Voronoi diagram of P .

The Voronoi cell Vp ⊂ VP for a point p ∈ P is defined as the set of points

x ∈ R3 such that ||x−p|| ≤ ||q−x|| for any q ∈ P and q 6= p. The Delaunay

triangulation of P is the dual of VP . It has an edge pq if and only if Vp, Vq
share a face, has a triangle pqr if and only if Vp, Vq, Vr share an edge, and

a tetrahedron pqrs if and only if Vp, Vq, Vr, and Vs share a Voronoi vertex.

We assume that the input sample P ∈ R3 is in general position and that no

vertex of VP lies on S.

Consider the restriction of the Voronoi diagram VP to the surface S.

This defines the restricted Voronoi diagram VP |S , with restricted Voronoi

cells Vp|S = Vp ∩ S. It is said to satisfy the ball property if each Vp|S is

a topological 2-ball, each nonempty pairwise intersection Vp|S ∩ Vq|S is a

topological 1-ball, and each nonempty triple intersection Vp|S ∩ Vq|S ∩ Vr|S
is a single point.

The dual of the restricted Voronoi diagram defines the restricted De-

launay triangulation DP |S . In more detail, an edge pq is in DP |S if and

only if Vp|S ∩ Vq|S is nonempty and a triangle pqr is in DP |S if and only

if Vp|S ∩ Vq|S ∩ Vr|S is nonempty. Our general position assumption guaran-

tees that there is no tetrahedron in DP |S . It is known that the restricted

Delaunay edges for an ε-sample are short.

76 Chapter 6. Sampled Manifolds

Lemma 6.3 (Amenta and Bern [2], see also Giesen and Wagner [38]). Let

P be an ε-sample of S with ε < 1. If pq is an edge of the restricted Delaunay

triangulation, then ||p− q|| ≤ 2ε
1−εmin{f(p), f(q)}.

For ε ≤ 0.08, the restricted Voronoi diagram is known to have the ball

property [2]. In this case the restricted Delaunay triangulation is a simplicial

surface homeomorphic to S [28]. The k-neighborhood graph Gk contains the

restricted Delaunay triangulation if P is a sufficiently nice sample of S.

Lemma 6.4 (Andersson et al.[4]). Let P be an (ε, δ)-sample of S, let w =
2ε
1−ε and k ≥ (δ(1+w)+w)2

δ2(1−w)2−w4 . Then, the restricted Delaunay triangulation DP |S
is a subgraph of Gk.

Funke and Ramos [35] have shown how to turn any ε-sample into a locally

uniform ε-sample by using decimation. Locally uniform samples are related

to (ε, δ)-samples, but technically more involved. Both types of sample have

the property that each sample point has only a constant number of restricted

Delaunay neighbors. This is the only property that we require and thus, our

results are valid for both cases. We have chosen to state our results in terms

of (ε, δ)-samples, for ease of exposition.

We also state one more useful fact which we need later on. At each point

p ∈ S, there are two tangent medial balls centered at points of the medial

axis. The vectors from p to the centers of its medial balls are normal to S,

and S does not intersect the interiors of the medial balls. Since f(p) is at

most the radius of the smaller medial ball, S is also confined between the

two tangent balls of radius f(p).

6.2.3 Short Cycles

In this section we show that for an appropriate sampling density there exists

a linearly independent set of m− (n− 1)− 2g short cycles.

Warm-Up: The Planar Case

Consider a finite set P of points in the plane, its nearest neighbor graph Gk,

its Delaunay triangulation DP , and assume that DP is contained in Gk. We

describe a cycle basis consisting only of short cycles. In the next section, we

will generalize the approach of this section to manifolds in R3.

Consider the following set B of cycles. It contains (a) the face cycles

of all bounded faces of the Delaunay triangulation and (b) for each edge

e = (a, b) ∈ Gk \DP the cycle formed by e and the shortest path from a to

b in DP .

6.2. Structure of Cycles 77

a

b

Figure 6.1: An induced path from a to b formed with edges of the
triangulation.

Lemma 6.5. B is a cycle basis and any cycle in B has length at most k+1.

Proof. First we show that we have the right number of cycles. Let mp be

the number of edges of DP and let mk be the number of remaining edges.

The dimension of the cycle space is N = m− n+ 1 = mp +mk − n+ 1. DP

is a planar graph and therefore mp − n+ 1 = f − 1 where f is the number

of faces. Thus, N = f − 1 +mk = |B|.
The bounded faces of DP are clearly linearly independent. The remain-

ing cycles are also linearly independent since each of them contains an edge

which is not contained in any other cycle in B. This proves the first part of

our lemma.

We come to the second part. Bounded faces of DP have length 3. Con-

sider next an edge e = (a, b) ∈ Gk \DP . The straight line segment ab from

a to b crosses some cells of the Voronoi diagram of P and induces a path

a = b0, b1, . . . , bl−1, bl = b in DP , namely the path through the sites owning

these cells, see Figure 6.1. This path is entirely contained in the circle with

ab as its diameter [27].

It remains to show that this cycle is short. Since e = (a, b) is an edge

of Gk, there can be at most k − 1 other points in this circle and hence any

cycle in B has length at most k + 1.

We emphasize that this cycle basis is not necessarily the minimum cycle

basis of the graph.

78 Chapter 6. Sampled Manifolds

The 3-dimensional Case

We consider essentially the same set of cycles as in the preceding section:

(a) all but one faces of the restricted Delaunay triangulation, and (b) for

each remaining edge e = (a, b) ∈ Gk \DP |S the cycle consisting of e plus the

shortest path from a to b in the restricted Delaunay triangulation. As in

the planar case, these cycles are linearly independent. It remains to prove

that they are short. In this section we will prove the following theorem.

Theorem 6.6. Let P be an ε-sample of S, let k < log 1+ε
1−ε

3
2 , and assume

that DP |S ⊆ Gk. Let (a, b) ∈ Gk \DP |S. Then, there is a path from a to b

in DP |S of length at most 2k + 5.

Consider the edge e = (a, b) ∈ Gk \ DP |S , then the curve γab crosses

some cells of the restricted Voronoi diagram and induces a path pab = (a =

b0, b1, . . . , bl−1, bl = b) in the restricted Delaunay triangulation, namely the

path through the sites owning these cells. Since Gk contains the restricted

Delaunay triangulation, pab exists in Gk.

Lemma 6.7. Let e = (a, b) ∈ Gk \DP |S and let B be the ball with ab as its

diameter. If the induced path pab is contained in B, then the cycle consisting

of e plus pab has length at most k + 1.

Proof. Since e ∈ Gk, the ball B contains at most k − 1 other points apart

from a and b.

The above lemma generalizes the planar case. Unfortunately, we are

unable to prove that pab runs within B. We therefore argue somewhat

differently. We first show that either there is a very short path in DP |S from

a to b or both a and b are far away from the medial axis. In the latter case

we show that pab is contained in a slightly bigger ball but still sufficiently

small for our purposes. We begin with the following auxiliary lemma.

Lemma 6.8. Let a and b be two points in P and assume that there is a

path of length l in DP |S from a to b. Let α = (1 + ε)/(1 − ε). Then,

α− 1 = 2ε/(1− ε) and

||a− b|| ≤ (αl − 1) min(f(a), f(b)) .

Proof. We use induction on the length of the path. Let the path from a to

b in DP |S be a = q0, q1, . . . , ql = b. Then, ||a− b|| = ||a− ql||.

6.2. Structure of Cycles 79

For the base case l = 1 we have that ||a−q1|| ≤ (α−1)f(a) by Lemma 6.3.

Assume that the statement holds for paths of length l − 1, then

||a− b|| = ||a− ql||
≤ ||a− ql−1||+ ||ql−1 − ql||
≤ ||a− ql−1||+ (α− 1)f(ql−1) by Lemma 6.3

≤ ||a− ql−1||+ (α− 1)(f(a) + ||a− ql−1||) by Lemma 6.2

= (α− 1)f(a) + α||a− ql−1||
≤ (α− 1)f(a) + α(αl−1 − 1)f(a) by induction

= (αl − 1)f(a) .

The same argument applies to b instead of a.

Lemma 6.9. Let (a, b) ∈ Gk, λ ≥ 1 and assume that

k < log 1+ε
1−ε

1 + λ

λ
. (6.1)

Then, either there is a path of length at most k from a to b in the restricted

Delaunay triangulation or

f(a), f(b) > λ||a− b|| . (6.2)

Proof. Recall that α = 1+ε
1−ε . Thus, inequality (6.1) implies αk − 1 < 1/λ.

Consider the shortest path in the restricted Delaunay triangulation a =

q0, q1, . . . , ql−1, ql = b from a to b. Furthermore, assume l > k and f(a) ≤
λ||a− b||. Lemma 6.8 implies that

||a− qi|| ≤ (αi − 1)f(a) ≤ (αk − 1)f(a) < f(a)/λ ≤ ||a− b|| for 1 ≤ i ≤ k,

and hence there are k points closer to a than b is, a contradiction. The

argument works symmetrically for b.

The above lemma states that it is enough to prove Theorem 6.6 when

f(a), f(b) > λ||a − b||. From now on, we proceed under this assumption

for some λ ≥ 1. Let us parameterize the segment ab by length. Let p(t) =

a+t(b−a) be the point with parameter value t, 0 ≤ t ≤ 1 and let q(t) be the

point on S nearest to p(t). Note that q(t) is unique, because otherwise p(t)

would be a point of the medial axis contradicting the fact that f(a) > ||a−b||.
Finally, let c denote the mid-point of the segment ab and s(t) denote the

site of the Voronoi cell containing q(t).

80 Chapter 6. Sampled Manifolds

Our goal is to prove that s(t) belongs to a ball of radius
√
3
2 ||a − b||

centered at c (Lemma 6.13) and that this ball contains at most 2(k + 3)

sample points. We begin with the latter.

Lemma 6.10. For (a, b) ∈ Gk and c as defined above, the ball B′ of radius√
3
2 ||a− b|| centered at c contains at most 2(k + 3) sample points.

Proof. Consider the ball Ba with center a and radius ||a− b||. Every sample

point in the interior of this ball is closer to a than b is. Thus, Ba has at most

k points in its interior. Also Ba has at most four points in its boundary by

our non-degeneracy assumption. Similarly, the ball Bb with center b and

radius ||a− b|| also contains at most k + 4 points.

The ball B′ is completely contained in the union of Ba and Bb and thus

it contains at most 2(k + 4) − 2 points. The −2 accounts for the fact that

a and b are contained in both balls.

Next we estimate the distance from c to s(t).

Lemma 6.11. ||c− s(t)|| ≤ ||a− b||/2 + 2||p(t)− q(t)||

Proof. Assume w.l.o.g that ||a − p(t)|| ≤ ||b − p(t)||, otherwise we do the

computation with b. By the triangle inequality, ||c − s(t)|| ≤ ||c − p(t)|| +
||p(t)−q(t)||+||q(t)−s(t)||. Since q(t) is closer to s(t) than any other sample

point, ||q(t) − s(t)|| ≤ ||q(t) − a||. Moreover, ||q(t) − a|| ≤ ||q(t) − p(t)|| +
||p(t)− a||. Finally, ||a− p(t)||+ ||p(t)− c|| = ||a− b||/2.

It remains to bound ||p(t) − q(t)|| as a function of ||a − b||. We first

estimate the distance of q(t) from the medial axis.

Lemma 6.12. f(q(t)) > (λ− 1)||a− b||

Proof. Assume w.l.o.g that ||a − p(t)|| ≤ ||b − p(t)||, otherwise we do the

computation with b. Since q(t) is the point in S closest to p(t), we have

||a − q(t)|| ≤ ||a − p(t)|| + ||p(t) − q(t)|| ≤ 2||a − p(t)|| ≤ ||a − b||. By

Lemma 6.2 f(q(t)) ≥ f(a)−||a−q(t)|| and hence f(q(t)) ≥ f(a)−||a−b|| >
(λ− 1)||a− b||.

Lemma 6.13. For λ ≥ 2, ||p(t) − q(t)|| ≤
√
3−1
4 ||a − b|| and ||c − s(t)|| ≤

√
3
2 ||a− b|| .

Proof. Consider the point q(t). By Lemma 6.12 there are two medial balls

with radius at least (λ−1)||a−b|| tangent to q(t). The surface passes between

these balls and does not intersect their interior, in particular, a and b do not

lie in the interior of these balls. Thus, the worst case (when the distance

6.2. Structure of Cycles 81

m

Bm

q(t)

a

b

p(t)c

v

Figure 6.2: Bounding ||p(t)− q(t)|| in terms of ||a− b||.

||p(t) − q(t)|| compared to ||a − b|| is maximized) occurs, when both lie on

the boundary of one of these balls (see Figure 6.2). Let m be the center of

this ball and use Bm to denote the ball. Consider the perpendicular bisector

of segment ab passing through m. It intersects segment ab at c and ball Bm
at v. Also, p(t) is on the segment q(t)m.

Distance ||p(t)− q(t)|| is upper bounded by ||c− v|| and thus we are left

with bounding ||c−v||. Referring to Figure 6.2 we see that the triangle acm

is right. Thus, ||c−m||2 = ||a−m||2 − ||a− c||2. Moreover,

||a−m|| = ||v −m|| = ζ||a− b|| for some ζ ≥ λ− 1 ,

and ||a− c|| = ||a− b||/2. Combining all these,

||c−m|| =
√
ζ2 − 1

4
· ||a− b|| .

Finally, ||c− v|| = ζ||a− b|| − ||c−m|| and hence

||p(t)− q(t)|| ≤ ||c− v|| =
(
ζ −

√
ζ2 − 1

4

)
||a− b||

≤ (1−
√

3

4
)||a− b||

<

√
3− 1

4
||a− b|| .

This proves the first part of the lemma. The second part follows now from

82 Chapter 6. Sampled Manifolds

Lemma 6.11 since,

||c− s(t)|| ≤ 1

2
||a− b||+ 2||p(t)− q(t)|| ≤

√
3

2
||a− b|| .

It is now easy to complete the proof of Theorem 6.6. Set λ = 2. Then,

pab is contained in the ball B′ and B′ contains at most 2(k + 3) sample

points. Thus, pab has length at most 2k + 5. Together with the edge e we

get a cycle of length at most 2(k + 3).

Recall that our goal is to satisfy the assumptions of Section 6.2.1. If we

combine Theorem 6.6 and Lemma 6.8 we get that the edges of Gk are small

in length.

Corollary 6.14. Let α = (1 + ε)/(1− ε). For any edge e = (a, b) ∈ Gk,

||a− b|| ≤ (α2k+5 − 1) min(f(a), f(b)) . (6.3)

Moreover, we will need the following lemma which can be easily derived

from [38, Lemma 10 and Theorem 4].

Lemma 6.15 (Giesen and Wagner [38]). Let a and b be two points of S such

that ||a − b|| ≤ η · min(f(a), f(b)) with η ≤ 1/4. Then, L(γab) ≤ 4||a − b||
where L(γab) denotes the length of γab.

Using Lemma 6.15 we set c1 to 4 in Section 6.2.1.

6.2.4 Long Cycles

In this section we make precise how non-trivial cycles are long. The idea is

simple; non-trivial cycles have a certain minimum length and edges of Gk are

short. We will actually prove a stronger result. The length of a non-trivial

loop is bounded from below by the maximum feature size of any point on

the loop. Combined with Lemma 6.15, we will obtain the desired result.

Assume that η = α2k+5 − 1 ≤ 1
4 . Let C be any non-trivial cycle of Gk.

Substituting each edge (a, b) ∈ C by the curve γab gives us a non-trivial loop

γ on S. By Lemma 6.15 and Corollary 6.14 we get

L(γ) ≤ 4
∑

(a,b)∈C

||a− b|| ≤ 4
∑

(a,b)∈C

ηmin(f(a), f(b)) ,

and if |C| denotes the number of edges of C,

L(γ) ≤ 4η|C| max
a∈C

f(a) . (6.4)

6.2. Structure of Cycles 83

p

v

v′

β

Bγ

Bp

Bm

Bm

γ

1
2L(γ)

1
3L(γ)

Figure 6.3: Proving Theorem 6.16.

In order to get a lower bound on |C| we need to relate γ to its distance to

the medial axis. More precisely, we are going to show the following theorem

which might be of independent interest.

Theorem 6.16. Let γ be any non-trivial loop on S, then L(γ) ≥ max
p∈γ

f(p).

Proof. Let p be a point on γ with maximum distance from the medial axis

and assume L(γ) < f(p) for the sake of contradiction. Let β be a non-

trivial loop of different homology class going through p (see Figure 6.3). At

each point x ∈ β there are two tangent balls with radius f(x) which do not

contain any point of S in their interior. One of these tangent balls when

moving it along β (and adjusting its size accordingly) produces an object

T , topologically equivalent to a torus, around which γ loops non-trivially.

Let Bp be the ball with center p and radius 5L(γ)/6. For all x ∈ Bp ∩β,

the local feature size is large, namely, f(x) ≥ f(p) − ||p − x|| > L(γ) −
5L(γ)/6 = L(γ)/6 and hence for x ∈ Bp ∩ β the ball defining T has radius

at least L(γ)/6.

The loop γ stays inside a ball of radius L(γ)/2 centered at p and hence

well inside Bp. Since γ loops around T its length it least 2πL(γ)/6 > L(γ),

a contradiction.

We can now establish that non-trivial cycles in Gk are long.

Theorem 6.17. For appropriate values of ε, δ, and k any non-trivial cycle

C ∈ Gk has length |C| ≥ 1
4η where η = α2k+5 − 1 ≤ 1

4 .

84 Chapter 6. Sampled Manifolds

ε valid k chosen k η short-cycles long-cycles
upper bound lower bound

10−2 [15, 20] 15 1.014 36 -
5× 10−3 [14, 40] 14 0.391 34 -

10−3 [14, 202] 14 0.068 34 4
5× 10−4 [14, 405] 14 0.033 34 8

10−4 [14, 2027] 14 0.0066 34 38
5× 10−5 [14, 4054] 14 0.0033 34 76

Table 6.1: Evaluation of the various conditions for the separation of
the MCB for different values of the sampling density ε.

Proof. Using inequality (6.4) and Theorem 6.16 we obtain

L(γ) ≤ 4η|C| max
a∈C

f(a) ≤ 4η|C|L(γ) ,

and the theorem follows.

Corollary 6.18. If η = α2k+5 − 1 < 1
16(k+3) then all non-trivial cycles in

Gk have length larger than 4(k + 3).

Proof. We fix k and ε to some constants according (a) to our assumptions

in Section 6.2.3 and (b) such that η < 1
16(k+3) . Then, by Theorem 6.17

|C| ≥ 1
4η > 4(k + 3).

Putting everything together establishes Theorem 6.1.

Corollary 6.19. If the conditions in Section 6.2.1 hold, the sampling den-

sity is high enough and k is large enough: every MCB of Gk contains exactly

m− (n−1)−2g short (length less than 2(k+3)) and exactly 2g long (length

at least 4(k + 3)) cycles.

Proof. Use DP |S as M in the assumptions of Section 6.2.1. By Lemma 6.15

we can set c1 = 4. Theorem 6.6, Corollary 6.14 and Theorem 6.17 prove the

remaining assumptions. The corollary follows by the proof of Theorem 6.1

for c2 = 3 and c3 = 2k + 5.

6.2.5 Putting It All Together

Our assumptions so far suggest that given an (ε, δ)-sample and w = α−1 =
2ε
1−ε , we should choose k such that:

(δ(1 + w) + w)2

δ2(1− w)2 − w4
≤ k < log 1+ε

1−ε

3

2
. (6.5)

6.3. Experimental Validation 85

There are values of ε such that inequality (6.5) cannot be satisfied. However,

as ε decreases the right hand side increases while the left hand side decreases.

Thus, both conditions can always be simultaneously satisfied for some dense

enough sample. The above conditions are what is required for the trivial

cycles of the MCB to have length at most 2(k + 3).

For the lower bound on the length of the non-trivial cycles of the MCB,

we also require that η = α2k+5 − 1 ≤ 1
4 , and in order for the length of the

non-trivial cycles to reach the desired number |C| ≥ 1
4η > 4(k+3) we require

that η = α2k+5 − 1 < 1
16(k+3) .

We fix δ to 3w/8 ≈ 3ε/4 and evaluate, in Table 6.1, the bounds for

different values of ε.

Remark The lower and upper bounds presented in Table 6.1 are not tight.

Somewhat large constants appear due to the proof technique used. Perhaps,

by using some other proximity graph instead of the k-neighborhood or by

performing a different analysis the bounds can be improved. This is espe-

cially true for the value of ε required by the theory in order for the non-trivial

cycles to be longer than the trivial ones. In practice this is true for smaller

values of k and sampling densities. The next section presents experimental

data which confirm this.

6.3 Experimental Validation

6.3.1 Genus Determination

This section presents experimental data on the size of trivial and non-trivial

cycles in the MCBs of point clouds sampled from compact manifolds. The

main observation is that the MCB cycles are separated into the two cate-

gories, short trivial and long non-trivial, for rather small values of k and

sampling density. Moreover, the upper bound on the length of the triv-

ial cycles is much less than 2(k + 3) and the method also works for some

non-smooth samples.

We study four different examples:

(a) the “double torus”, a genus 2 double torus (Figure 6.4a) with a sparse

point cloud (Figure 6.4b),

(b) the “bumpy torus”, a genus 1 surface (Figure 6.4c) with a dense point

cloud (Figure 6.4d),

(c) the “homer torus”, a genus 1 surface (Figure 6.5a) with a sparse point

cloud (Figure 6.5b), and

86 Chapter 6. Sampled Manifolds

(a) Double torus (b) 767 points cloud

(c) Bumpy torus (d) 5044 points cloud

1

4

16

64

256

1024

4096

2 4 6 8 10 12 14

1
+
#
cy
cl
es

length

double torus

1

4

16

64

256

1024

4096

16384

65536

5 10 15 20 25 30

length

bumpy torus

k = 10 k = 10

(e) Distribution of the lengths of the MCB cycles of Gk of the double and
bumpy torus models for k = 10.

Figure 6.4: The “double” and “bumpy” torus models. The red cycles
are the long non-trivial cycles extracted from the MCB of Gk for k =
10.

6.3. Experimental Validation 87

(d) the “wedge torus”, a genus 1 non-smooth surface (Figure 6.6a) with a

sparse point cloud (Figure 6.6b).

Double torus

Since the model has genus 2 we expect the MCB to reveal exactly 4 non-

trivial cycles. The minimum value of k for this event to happen is 6. All

cycles but four of the MCB have length at most 8, two cycles have length 13

and two 24. As k increases this gap grows, for k = 8 two cycles have length

11, two others have length 24 and all the rest at most 5. For k = 10 two

cycles have length 8, two 13 and the rest at most 4. This continues to be

true as we increase k as long as the edges of the k-nearest neighbor graph

do not shortcut a handle.

Although the proof of Lemma 6.10 fails in the case of the unsymmetric k-

nearest neighbor graph, where an edge is added even if only one endpoint is

a k-nearest neighbor of the other, in practice we observe the same behavior.

The values of k are even smaller for this case. For minimum k = 5 there are

two cycles of length 11, two of length 24 and the rest at most 6. For k = 9

all MCB cycles are triangles except two with length 9 and two with length

14.

Bumpy torus

The situation improves if the sampling is dense. The “bumpy torus” model

has genus one and thus we expect the MCB to reveal two non-trivial cycles.

For k = 6 the two non-trivial cycles have length 35 and 42 and the rest at

most 27. Due to the density of the sample as we increase k this difference

becomes more noticeable. For k = 10 the non-trivial cycles have length 22

and 30 and the rest at most 12. For k = 12 the two non-trivial have length

20 and 26 and the rest at most 9. Note also that in all these examples almost

all trivial cycles have length 3 or 4. For example, when k = 12 about 99% of

the trivial cycles are triangles. See Figure 6.4e for a histogram of the cycles

lengths when k = 10.

Homer torus

This model has again genus 1 and thus we expect the MCB to reveal two

non-trivial cycles. For k = 7 the MCB contains one cycle of length 252, one

of length 8 and all the remaining have length at most 5. Our point cloud

however is considerably sparse and thus it is quite easy for the MCB to fail

88 Chapter 6. Sampled Manifolds

(a) Homer torus (b) 3486 points cloud

Figure 6.5: The “homer” torus model and the two non-trivial cycles
revealed by the MCB for k = 7. The two non-trivial cycles have length
8 and 252 respectively.

to detect the two non-trivial cycles for other values of k. We elaborate more

on this at the end of this section.

Wedge torus

The non-smooth surface has genus one. We expect that as long as k is

not too large, our method should reveal two non-trivial cycles. Figure 6.6b

shows the two non-trivial cycles of the MCB for k = 22. Note that this is a

difficult instance for surface reconstruction.

Discussion

In the examples above, the MCB was able to reveal the genus. There were

exactly 2g long cycles and long and short cycles are clearly discernible by

length. However, in practice, if g is unknown and the sampling density

not as high as it should be, how can g be determined from the MCB? We

suggest the following heuristic. Let l be the minimal integer such that the

MCB contains no cycle of length between l and 2l inclusive. Then, 2g is the

number of cycles of length larger than l. If this number is odd, this is an

indication of insufficient sampling density or a wrong value of k.

What can go wrong when the sample is not sufficiently dense or the value

of k is not chosen properly? When k is too small, the MCB might contain

long trivial cycles. When k is too large, Gk may contain edges between

6.4. Application to Surface Reconstruction 89

(a) Wedge torus (b) 6078 points cloud

1

4

16

64

256

1024

4096

16384

65536

2 4 6 8 10 12 14 16 18 20

1
+
#
cy
cl
es

length

non-smooth wedge-torus

k = 22

(c) Distribution of the lengths of the MCB
cycles for k = 22.

Figure 6.6: The “wedge” torus model and the two non-trivial cycles
revealed by the MCB for k = 22.

points distant from each other in S and hence spurious long cycles may

enter the basis, see Figure 6.7. The figure also shows that non-smoothness

by itself is not an obstacle.

6.4 Application to Surface Reconstruction

In this section we outline the approach of Tewari et al. [75] for surface

reconstruction. The interested reader is referred to their paper for more

details.

Tewari et al. [75] show that if a basis for the trivial loops of the manifold

may be computed from the sample of a 2-manifold of genus 1, it is possi-

ble to parameterize the sample set, and then construct a piecewise-linear

approximation to the surface. They use the MCB of the k-nearest neigh-

bor graph to extract this basis, assuming that the non-trivial cycles are the

two longest ones. They observed that this is correct if the sample is dense

90 Chapter 6. Sampled Manifolds

too small k
long trivial cycles

too large k
spurious edge

edges are ok

Figure 6.7: Several difficult situations. In the left figure due to sym-
metry a small choice for k (k = 4) leads to long trivial cycles. In
the upper right figure a large value of k results in an edge which con-
nects two parts of the surface which are distant from each other. The
lower right figure shows that edges near non-smooth features are not a
problem as long as k is not too large.

enough, but did not prove anything in this respect. Theorem 6.1 shows

under which conditions this reconstruction algorithm provably constructs a

triangulation homeomorphic to the surface.

The parameterization based approach has its origins in Tutte’s “spring

embedder” for planar graphs [79]. Tutte introduced a simple, yet powerful

method for producing straight-line drawings of planar graphs. The vertices

of the outer face are mapped to the vertices of a convex polygon and all

other vertices are placed at the centroid of their neighbors. Algorithmically,

this amounts to solving a linear system of equations. If we use pv to denote

the location of vertex v and Nv to denote the set of neighbors of v, this

means

pv =
∑
w∈Nv

λvwpw and λvw = 1/|Nv| (6.6)

for every interior vertex v. Tutte proved that the coordinates computed

in this way define a non-degenerate embedding for any 3-connected planar

graph. Floater [32] showed that the result stays true if vertices are placed

6.4. Application to Surface Reconstruction 91

at arbitrary convex combinations of their neighbors, i.e.,∑
w∈Nv

λvw = 1 and λvw ≥ 0 .

For the sequel, it is convenient to rewrite Equation (6.6) as∑
w∈Nv

λvw(pw − pv) = 0

and to introduce xvw for the vector from v to w in the embedding. Gortler

et al. [41] extended the method to embeddings onto the torus. Given a

3-connected map (= graph + cyclic ordering on the edges incident to any

vertex) of genus one, they viewed undirected edges {v, w} as pairs of directed

edges and associated a variable xvw with every directed edge. They used

the equations:

xvw + xwv = 0 for all edges (v, w) (symmetry)∑
w∈Nv

λvwxvw = 0 for all vertices v (center of gravity)

∑
(w,v)∈∂f

xwv = 0 for all faces f (face sums)

The first class of equations ensures that the vector from w to v is the same

as the vector from v to w, the second class ensures that v is a convex

combination of its neighbors, and the third class ensures that the vectors

along any face boundary sum to zero. There are 2m unknowns and m+n+f

equations. Two equations are redundant (one center of gravity constraint

and one face sum constraint) and hence the rank of the system is m+ n +

f−2 = 2m−2 (this uses the Euler theorem f−m+n = 2−2g = 0). Gortler

et al., extending results of Gu and Yau [44], proved that two independent

solutions can be used as the x and y-coordinates of an embedding onto a

torus.

Floater and Reimers [33] observed that Tutte’s method can also be used

to reconstruct surfaces with boundary of genus zero and Tewari et al. [75]

extended the observation to closed surfaces of genus one, as follows. Con-

struct the k-nearest neighbor graph Gk of P and then set up the equations

introduced above. Face sum constraints are needed for a basis of the trivial

cycles and this is exactly what an MCB yields. The solution of the system

defines an embedding of P onto the torus. A triangulation, say the Delau-

nay triangulation, of the embedded point set is computed and then lifted

92 Chapter 6. Sampled Manifolds

back to the original point set. In this way a genus 1 surface interpolating P

is obtained. The surface may have self-intersections. Postprocessing can be

used to improve the quality of the mesh.

6.5 Concluding Remarks

In this chapter we have shown that given a suitably nice sample of a smooth

manifold of genus g and sufficiently large k, the k-nearest neighbor graph

of the sample has a cycle basis consisting only of short (= length at most

2(k + 3)) and long (= length at least 4(k + 3)) cycles. Moreover, the MCB

is such a basis and contains exactly m − (n − 1) − 2g short cycles and 2g

long cycles. The short cycles span the subspace of trivial loops and the long

cycles form a homology basis. Thus, the MCB reveals the genus of S and

also provides a basis for the set of trivial cycles and a set of generators for

the non-trivial cycles of S. These cycles may then be used to parameterize P

and ultimately generate a piecewise linear manifold surface approximating

S.

In our experiments we observe that the length separation of trivial and

non-trivial cycles happens already for relatively sparse samples. In addition,

this threshold is less than 2(k + 3). Furthermore, our experiments suggest

that the method also works for some non-smooth surfaces.

As a final remark we note that a constant factor approximate MCB has

similar properties as the MCB for sufficiently dense samples.

Chapter 7
Conclusions

This thesis studies the minimum cycle basis problem in undirected graphs.

Our work can be logically divided into four parts. The nature of the first

three is algorithmic while the fourth is structural. In the first part we im-

prove existing algorithms with respect to the running time, reaching an

O(m2n + mn2 log n) bound in the general case. For special cases of undi-

rected graphs we improve the bounds even further. In the second part we

approximate the minimum cycle basis problem and provide time bounds

which for sufficiently dense graphs are o(mω). In the third part we experi-

ment with various implementations of MCB algorithms. We design several

heuristics, from simple to more complex, which improve the running times

dramatically. In the fourth part of this thesis, we study properties of the

minimum cycle bases of neighborhood graphs of point clouds sampled from

compact smooth 2-manifolds. Such MCBs encode topological and geomet-

rical information about the underlying manifold. We note that most of the

techniques developed in this thesis are extendible in the directed minimum

cycle basis problem where the base field is no longer F2 but Q.

There are still quite a few remaining questions regarding minimum cycle

bases in undirected graphs. First of all, we only presented improved upper

bounds for finding an MCB. An interesting open problem is to derive a lower

bound on the running time of any MCB algorithm for an undirected graph.

The approach that we used in Chapter 3 is very unlikely to be improved to

something better that Θ(mω). Is therefore something like an Ω(mω) lower

bound for the MCB problem?

The second main question is whether Algorithm 3.3 can be further im-

proved and reach an O(mω) upper bound even for sparse graphs. In order

to accomplish this we need to reduce the time taken by the shortest paths

94 Chapter 7. Conclusions

computations. One way to accomplish this is to find the shortest cycle with

an odd number of edges from some subset of the edges S ⊆ E in time

o(APSP(n,m)) where APSP(n,m) is the time to perform all pairs shortest

paths in an undirected graph with n vertices and m edges.

From a practical perspective we are interested in computing sparse cycle

bases very fast. A constant factor approximate cycle basis is such a sparse

cycle basis. One of the most important open question in this area is to

decouple the cycle basis computation from the null space basis. We have

partially solved this by computing all but O(n1+1/k) cycles without using a

null space basis.

Bibliography

[1] Althöfer, I., Das, G., Dobkin, D., Joseph, D., and Soares, J.

On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 1

(1993), 81–100.

[2] Amenta, N., and Bern, M. Surface reconstruction by voronoi fil-

tering. In SCG ’98: Proceedings of the fourteenth annual symposium

on Computational geometry (New York, NY, USA, 1998), ACM Press,

pp. 39–48.

[3] Amenta, N., Choi, S., and Kolluri, R. The power crust. In

Proceedings of 6th ACM Symposium on Solid Modeling (2001), pp. 249–

260.

[4] Andersson, M., Giesen, J., Pauly, M., and Speckmann, B.

Bounds on the k-neighborhood for locally uniformly sampled surfaces.

In Symposium on Point-Based Graphics (2004).

[5] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and

Wu, A. Y. An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. J. ACM 45, 6 (1998), 891–923.

[6] Barahona, F., and Mahjoub, A. R. On the cut polytope. Math.

Programming 36 (1986), 157–173.

[7] Baswana, S., and Sen, S. Approximate distance oracles for un-

weighted graphs in expected o(n2) time. ACM Transactions on Algo-

rithms. to appear.

[8] Berger, F., Gritzmann, P., and de Vries, S. Minimum cycle

basis for network graphs. Algorithmica 40, 1 (2004), 51–62.

96 Bibliography

[9] Boissonnat, J.-D., and Cazals, F. Smooth surface reconstruction

via natural neighbour interpolation of distance functions. In Proc. 16th

Annual ACM Sympos. Comput. Geom. (2000), pp. 223–232.

[10] Bollobás, B. Extremal Graph Theory. Academic Press, New York,

1978.

[11] Bollobás, B. Modern Graph Theory. Springer-Verlag, 1998.

[12] Boost C++ Libraries. http://www.boost.org, 2001.

[13] Callahan, P., and Kosaraju, R. A decomposition of multidimen-

sional point sets with applications to k-nearest-neighbors and n-body

potential field. Journal of the ACM 42, 1 (1995), 67–90.

[14] Cassell, A. C., Henderson, J. C., and Ramachandran, K. Cycle

bases of minimal measure for the structural analysis of skeletal struc-

tures by the flexibility method. In Proc. Royal Society of London Series

A (1976), vol. 350, pp. 61–70.

[15] Chua, L. O., and Chen, L. On optimally sparse cycle and cobound-

ary basis for a linear graph. IEEE Trans. Circuit Theory CT-20 (1973),

495–503.

[16] Cohen, E., and Zwick, U. All-pairs small-stretch paths. Journal of

Algorithms 38 (2001), 335–353.

[17] Coppersmith, D., and Winograd, S. Matrix multiplications via

arithmetic progressions. Journal of Symb. Comput. 9 (1990), 251–280.

[18] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction

to Algorithms. The MIT Press and McGraw-Hill Book Company, 1989.

[19] Kreisbasenbibliothek CyBaL. http://www-m9.ma.tum.de/dm/cycles/

cybal, 2004.

[20] de Pina, J. Applications of Shortest Path Methods. PhD thesis, Uni-

versity of Amsterdam, Netherlands, 1995.

[21] Deo, N., Prabhu, G. M., and Krishnamoorthy, M. S. Algo-

rithms for generating fundamental cycles in a graph. ACM Trans. Math.

Software 8 (1982), 26–42.

[22] Dey, T. K. Curve and surface reconstruction. In Handbook of Discrete

and Computational Geometry, J. E. Goodman and J. O’Rourke, Eds.

CRC Press, 2004.

http://www.boost.org
http://www-m9.ma.tum.de/dm/cycles/cybal
http://www-m9.ma.tum.de/dm/cycles/cybal

Bibliography 97

[23] Dey, T. K., Giesen, J., and Hudson, J. Delaunay based shape

reconstruction from large data. In Proc. IEEE Symposium in Parallel

and Large Data Visualization and Graphics (2001), pp. 19–27.

[24] Dey, T. K., and Goswami, S. Tight cocone: A water-tight sur-

face reconstructor. Journal of Computing and Information Science in

Engineering 3 (2003), 302–307.

[25] Diestel, R. Graph Theory. Springer-Verlag, Heidelberg, 2005.

[26] Dijkstra, E. W. A note on two problems in connection with graphs.

Numerische Mathematik 1 (1959), 269–271.

[27] Dobkin, D. P., Friedman, S. J., and Supowit, K. J. Delaunay

graphs are almost as good as complete graphs. Discrete Comput. Geom.

5, 4 (1990), 399–407.

[28] Edelsbrunner, H., and Shah, N. Triangulating topological spaces.

In Proc. 10th ACM Symposium on Computational Geometry (1994),

pp. 285–292.

[29] Erdős, P., and Rényi, A. On random graphs I. Publ. Math. Debrecen

6 (1959), 290–297.

[30] Erickson, J., and Whittlesey, K. Greedy optimal homotopy and

homology generators. In Proceedings of the Sixteenth Annual ACM-

SIAM Symposium on Discrete Algorithms (2005), pp. 1038–1046.

[31] Euler, L. Solutio problematis ad geometriam situs pertinentis. Comm.

Acad. Sci. Imp. Petropol. 8 (1736), 128–140. (Latin).

[32] Floater, M. S. Parametrization and smooth approximation of surface

triangulations. Computer Aided Geometric Design 14, 3 (1997), 231–

250.

[33] Floater, M. S., and Reimers, M. Meshless parameterization and

surface reconstruction. Computer Aided Geometric Design 18, 2 (2001),

77–92.

[34] Fredman, M. L., and Tarjan, R. E. Fibonacci heaps and their uses

in improved network optimization algorithms. J. ACM 34, 3 (1987),

596–615.

[35] Funke, S., and Ramos, E. A. Smooth-surface reconstruction in

near-linear time. In Proceedings of the thirteenth annual ACM-SIAM

symposium on Discrete algorithms (2002), pp. 781–790.

98 Bibliography

[36] Galil, Z., and Margalit, O. All pairs shortest paths for graphs

with small integer length edges. Journal of Computing Systems and

Sciences 54 (1997), 243–254.

[37] Giblin, P. J. Graphs, Surfaces and Homology. An Introduction to

Algebraic Topology. Chapman and Hall, 1981. Second Edition.

[38] Giesen, J., and Wagner, U. Shape dimension and intrinsic met-

ric from samples of manifolds with high co-dimension. In SCG ’03:

Proceedings of the nineteenth annual symposium on Computational ge-

ometry (New York, NY, USA, 2003), ACM Press, pp. 329–337.

[39] Gleiss, P. M. Short Cycles, Minimum Cycle Bases of Graphs from

Chemistry and Biochemistry. PhD thesis, Fakultät Für Naturwis-

senschaften und Mathematik der Universität Wien, 2001.

[40] Golynski, A., and Horton, J. D. A polynomial time algorithm to

find the minimum cycle basis of a regular matroid. In 8th Scandinavian

Workshop on Algorithm Theory (2002).

[41] Gortler, S., Gotsman, C., and Thurston, D. One-forms on

meshes and applications to 3D mesh parameterization. Computer Aided

Geometric Design (To Appear, 2005).

[42] Gotsman, C., Kaligosi, K., Mehlhorn, K., Michail, D., and

Pyrga, E. Cycle bases of graphs and sampled manifolds. Tech. Rep.

MPI-I-2005-1-2008, Max-Planck-Institut für Informatik, Stuhlsatzen-

hausweg 85, 66123 Saarbrücken, Germany, December 2005. Accepted

for publication in Computer Aided Geometric Design.

[43] Grötschel, M., Lovász, L., and Schrijver, A. Geometric Algo-

rithms and Combinatorial Optimization. Springer-Verlag, 1988.

[44] Gu, X., and Yau, S.-T. Computing conformal structures of surfaces.

Communications in Information and Systems 2, 2 (2002), 121–146.

[45] Hariharan, R., Kavitha, T., and Mehlhorn, K. A faster de-

terministic algorithm for minimum cycle basis in directed graphs. In

Proceedings of ICALP (2006). to appear.

[46] Hartvigsen, D. Minimum path bases. J. Algorithms 15, 1 (1993),

125–142.

Bibliography 99

[47] Hartvigsen, D., and Mardon, R. When do short cycles generate

the cycle space? Journal of Combinatorial Theory, Series B 57 (1993),

88–99.

[48] Hartvigsen, D., and Mardon, R. The all-pairs min cut problem

and the minimum cycle basis problem on planar graphs. Journal of

Discrete Mathematics 7, 3 (1994), 403–418.

[49] Herstein, I. N. Topics in Algebra. John Wiley & Sons, New York,

1975.

[50] Hopcroft, J., and Tarjan, R. Efficient planarity testing. Journal

of the ACM 21 (1974), 549–568.

[51] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and

Stuetzle, W. Surface reconstruction from unorganized points. In

Proceedings of SIGGRAPH (1992), pp. 71–78.

[52] Horton, J. D. A polynomial-time algorithm to find a shortest cycle

basis of a graph. SIAM Journal of Computing 16 (1987), 359–366.

[53] Huber, M. Implementation of algorithms for sparse cycle bases of

graphs. Tech. rep., Technische Universität München, 2002. http://

www-m9.ma.tum.de/dm/cycles/mhuber.

[54] Hubicka, E., and Syslo, M. M. Minimal bases of cycles of a graph.

Recent Advances in Graph Theory (1975), 283–293.

[55] Kavitha, T. An Õ(m2n) randomized algorithm to compute a mini-

mum cycle basis of a directed graph. In Proceedings of ICALP, LNCS

3580 (2005), pp. 273–284.

[56] Kavitha, T., and Mehlhorn, K. A polynomial time algorithm

for minimum cycle basis in directed graphs. In STACS 2005, 22nd

Annual Symposium on Theoretical Aspects of Computer Science (2005),

vol. 3404 of LNCS, pp. 654–665. Full version available at http://www.

mpi-inf.mpg.de/~mehlhorn.

[57] Kavitha, T., Mehlhorn, K., and Michail, D. New approximation

algorithms for minimum cycle bases of graphs. In Proceedings of 24th

International Symposium on Theoretical Aspects of Computer Science

(2007). to appear.

http://www-m9.ma.tum.de/dm/cycles/mhuber
http://www-m9.ma.tum.de/dm/cycles/mhuber
http://www.mpi-inf.mpg.de/~mehlhorn
http://www.mpi-inf.mpg.de/~mehlhorn

100 Bibliography

[58] Kavitha, T., Mehlhorn, K., Michail, D., and Paluch, K. E. A

faster algorithm for minimum cycle basis of graphs. In 31st Interna-

tional Colloquium on Automata, Languages and Programming, Finland

(2004), pp. 846–857.

[59] Keil, J. M., and Gutwin, C. A. Classes of graphs which approxi-

mate the complete euclidean graph. Discrete Computational Geometry

7 (1992), 13–28.

[60] Kirchhoff, G. Über die Auflösung der Gleichungen, auf welche man

bei der Untersuchungen der linearen Verteilung galvanischer Ströme

geführt wird. Poggendorf Ann. Phy. Chem. 72 (1847), 497–508.

[61] Kolasinska, E. On a minimum cycle basis of a graph. Zastos. Mat.

16 (1980), 631–639.

[62] Kolluri, R., Shewchuk, J., and O’Brien, J. Spectral surface re-

construction from noisy point clouds. In Proc. Symposium on Geometry

Processing (2004), pp. 11–21.

[63] Liebchen, C., and Rizzi, R. Classes of cycle bases. Tech. Rep.

2005/18, Technische Universität Berlin, August 2005.

[64] Liebchen, C., and Rizzi, R. A greedy approach to compute a min-

imum cycle basis of a directed graph. Inf. Process. Lett. 94, 3 (2005),

107–112.

[65] Minimum Cycle Basis LEDA Extension Package (LEP). http://www.

mpi-inf.mpg.de/~michail/mcb.shtml, 2004-2006.

[66] Mehlhorn, K., and Michail, D. Implementing minimum cycle basis

algorithms. In Proceedings of 4th International Workshop on Experi-

mental and Efficient Algorithms (2005), vol. 3503 of Lecture Notes in

Computer Science, pp. 32–43.

[67] Mehlhorn, K., and Näher, S. LEDA: A Platform for Combinatorial

and Geometric Computing. Cambridge University Press, 1999.

[68] Munkres, J. Elements of Algebraic Topology. Perseus, 1984.

[69] Padberg, M. W., and Rao, M. R. Odd minimum cut-sets and

b-matchings. Mathematics of Operations Research 7 (1982), 67–80.

[70] Roditty, L., Thorup, M., and Zwick, U. Deterministic construc-

tions of approximate distance oracles and spanners. In Proceedings of

http://www.mpi-inf.mpg.de/~michail/mcb.shtml
http://www.mpi-inf.mpg.de/~michail/mcb.shtml

Bibliography 101

the 32nd International Colloquium in Automata, Languages and Pro-

gramming, LNCS volume 3580 (2005), pp. 261–272.

[71] Roditty, L., and Zwick, U. On dynamic shortest paths problems.

In ESA ’04: Proceedings of the 12th Annual European Symposium on

Algorithms (2004), vol. 3221 of Lecture Notes in Computer Science,

pp. 580–591.

[72] Seidel, R. On the all-pairs-shortest-path problem in unweighted undi-

rected graphs. Journal of Computing Systems and Sciences 51 (1995),

400–403.

[73] Stepanec, G. F. Basis systems of vector cycles with extremal prop-

erties in graphs. Uspekhi Mat. Nauk 19 (1964), 171–175.

[74] Swamy, M. N. S., and Thulasiraman, K. Graphs, Networks, and

Algorithms. John Wiley & Sons, New York, 1981.

[75] Tewari, G., Gotsman, C., and Gortler, S. J. Meshing genus-1

point clouds using discrete one-forms. Computers and Graphics (2006).

to appear.

[76] Thorup, M. Undirected single-source shortest paths with positive

integer weights in linear time. Journal of the ACM 46 (1999), 362–394.

[77] Thorup, M. Floats, integers, and single source shortest paths. Journal

of Algorithms 35 (2000), 189–201.

[78] Thorup, M., and Zwick, U. Approximate distance oracles. In ACM

Symposium on Theory of Computing (2001), pp. 183–192.

[79] Tutte, W. T. How to draw a graph. Proceedings of the London

Mathematical Society 13, 3 (1963), 743–768.

[80] Vegter, G., and Yap, C. Computational complexity of combinato-

rial surfaces. In Sixth Annual Symposium on Computational Geometry

(1990), pp. 102–111.

[81] Zwick, U. All pairs shortest paths in weighted directed graphs - exact

and approximate algorithms. In Proceedings of the 39th Annual IEEE

FOCS (1998), pp. 310–319.

[82] Zykov, A. A. Theory of finite graphs. Nauka, Novosibirsk (1969).

Notation

G(V,E) Graph G with vertex set V and edge set E

V or V (G) Vertex set of graph G

E or E(G) Edge set of graph G

n Cardinality of the vertex set of a graph

m Cardinality of the edge set of a graph

κ(G) Number of weakly connected components of graph G

N Dimension of cycle space of G, N = m− n+ κ(G)

(u, v) Edge between vertices u and v

deg(v) The degree of vertex v

δ(u, v) The shortest path weight from u to v

V(G) Vertex space of graph G

E(G) Edge space of graph G

C(G) Cycle space of graph G

A⊕B (A \B) ∪ (B \A)

Õ(f(n)) O(f(n) poly(log n))

〈a, b〉 Inner product of vectors a and b

[n] Set {1, 2, . . . , n}

G ∼= G′ Groups G and G′ are isomorphic

104 Notation

Ck(M ;R) Chain group

∂k Boundary operator

Zk Subgroup of k-cycles in Ck

Bk Subgroup of k-boundaries in Ck

Hk(M ;R) k-th homology group

Gk k-nearest neighbor graph

f : S 7→ R local feature size (least distance to the medial axis of S)

DP Delaunay triangulation of point sample P

VP Voronoi diagram of point sample P

DP |S Restricted Delaunay triangulation of point sample P to sur-

face S

VP |S Restricted Voronoi diagram of point sample P to surface S

γab Continuous curve on a manifold connecting a and b

||a− b|| Euclidean distance between vectors a and b

Zusammenfassung

Wir betrachten das Problem, eine minimale Kreisbasis eines ungerichteten,

Kanten-gewichteten Graphen G mit m Kanten und n Knoten zu berechnen.

Hierbei assoziieren wir mit jedem Kreis einen {0, 1} Inzidenzvektor. Der

Vektorraum über F2, der durch diese Vektoren erzeugt wird, heißt Kreis-

raum von G. Eine Menge von Kreisen wird als Kreisbasis von G bezeichnet,

wenn sie eine Basis des Kreisraumes von G ist. Eine Kreisbasis heißt min-

imal, wenn die Summe der Gewichte ihrer Kreise minimal ist. Minimale

Kreisbasen werden in vielen Kontexten verwendet, z.B. in der Analyse von

elektrischen Netzwerken und in der Chemie.

Wir präsentieren einen Algorithmus mit Laufzeit O(m2n+mn2 log n) um

eine solche minimale Kreisbasis zu berechnen. Die beste bekannte Laufzeit

war O(mωn), wobei ω der Exponent der Matrix-Multiplikation ist. Zurzeit

bekannt ist, daß ω < 2.376 gilt. Wenn die Kantengewichte ganzzahlig sind,

geben wir einen O(m2n) Algorithmus an. Für ungewichtete Graphen, die

hinreichend dicht sind, läuft unser Algorithmus in O(mω) Zeit.

Weiterhin entwickeln wir Approximationsalgorithmen für das Minimale

Kreisbasen Problem. Für jedes ε > 0 entwickeln wir einen schnellen (1 + ε)-

Approximations Algorithmus. Außerdem, präsentieren wir für jede ganze

Zahl k ≥ 1 zwei Approximationsalgorithmen, die beide einen Approxima-

tionsfaktor von 2k−1 haben. Der eine hat erwartete Laufzeit O(kmn1+2/k+

mn(1+1/k)(ω−1)) und der andere Laufzeit O(n3+2/k). Für Graphen, die hin-

reichend dicht sind, sind die Laufzeiten o(mω). Für spezielle Graphen, wie

planare oder geometrische, präsentieren wir noch schnellere Approximation-

salgorithmen. Unsere Methoden sind auch auf gerichtete Graphen anwend-

bar.

Wir untersuchen das Minimale Kreisbasis Problem ebenfalls aus einer

praktischen Perspektive. Wir beschreiben, wie man den O(m3 +mn2 log n)

Algorithmus von de Pina effizient implementiert. Wir entwickeln verschiedene

106 Zusammenfassung

Heuristiken, die die Laufzeit beträchtlich verbessern. Indem wir die zwei fun-

damental verschiedenen Methoden, eine minimale Kreisbasis zu berechnen,

kombinieren, erhalten wir einen O(m2n2) Algorithmus. Weiterhin vergle-

ichen wir verschiedene Algorithmen anhand von Experimenten.

Schließlich untersuchen wir die minimale Kreisbasis eines
”
nearest neigh-

bor“ Graphen, der auf eine Stichprobenmenge einer Oberfläche im R3 definiert

wird. Wir zeigen, dass unter bestimmten Bedingungen die minimale Kreis-

basis topologische Informationen über die Oberfläche kodiert und Basen der

trivialen und nicht-trivialen Kreise der Oberfläche liefert. Wir bestätigen

unsere Ergebnisse anhand von Experimente.

Index

(2k − 1)-approximation

algorithm, 38–50

algebraic framework, 17–24

α-approximation

algorithm, 34–38

α-stretch, see stretch

basis

of trivial cycles, 72

certificate

of optimality, 30

chord, 10

cycle, 8

candidate, 60–62

fundamental, 10

separating, 13

cyclomatic number, 10

deformation, 13, 73

Delaunay, 48, 75–92

Dijkstra’s algorithm, 9, 22, 40, 54

disjoint union

of cycles, 10

edge space, 9

ε-sample, 72–92

locally uniform, 72

(ε, δ)-sample, 72–92

Euler, 91

Gaussian elimination, 17, 60

general position assumption, 75

generators

of non-trivial cycles, 72, 92

genus

of manifold, 13, 72–92

geometric graph, 48

greedy algorithm, 11, 61

heuristic, 53, 88

homeomorphic, 13, 76

homology

basis, 13, 72

shortest, 73

class, 13, 73, 83

cycle, 13

group, 13, 73, 74

simplicial, 13

singular, 13

theory, 12

hybrid algorithm, 61–66

incidence vector, 15, 17, 21, 31, 49

integer weights, 30

k-nearest neighbor graph, 71

LEDA, 51

108 Index

Lipschitz continuous, 75

local feature size, 72–83

loop, 72–92

non-trivial, 72, 73

trivial, 72, 73

lower bound, 38, 83, 93

manifold, 13

compact, 71

smooth, 72

matrix multiplication

fast, 17–32, 66–69

medial axis

of manifold, 72

medial ball, 76

model

non-smooth, 89

NP-complete, 2, 17

orthogonal subspace, 10

planar graph, 47–48, 77, 90

point sample, 71–92

dense, 72

locally uniform, 72, 76

random graph, 52

signed graph, 20, 42, 54, 56

spanner, 39–49

spanning tree, 10, 11, 17, 31, 44

minimum, 39, 68

spring embedder, 90

straight-line drawing, 90

stretch, 35–37, 46, 47

surface, 71

non-smooth, 72

piecewise linear, 72

reconstruction, 89

smooth, 71

torus, 83, 85–92

verification algorithm, 31

vertex space, 9

Voronoi, 75–79

witness, 18, 23, 54

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Preliminaries
	Graph Theory
	Graphs and Linear Algebra
	Topology
	Simplicial Complexes
	Manifolds and Simplicial Homology

	Exact Minimum Cycle Basis
	Introduction
	Algorithmic History

	An Algebraic Framework
	Computing the Cycles
	Computing the Witnesses
	A New Algorithm
	Running Time

	Computing a Certificate of Optimality
	Concluding Remarks

	Approximate Minimum Cycle Basis
	Introduction
	An Approximate Algorithm
	Running Time

	Most of the Cycles
	The Remaining Cycles
	1st Approach
	2nd Approach
	More Approximation

	Planar and Euclidean Graphs
	Directed Graphs
	Concluding Remarks

	Minimum Cycle Basis Algorithms in Practice
	Introduction
	Experimental Setup

	Heuristics
	Compressed and/or Sparse Representation
	Upper Bounding the Shortest Path
	Reducing the Shortest Path Computations
	Basis Reordering

	Updating the Witnesses
	Number of Shortest Path Computations
	Combining the Two Approaches
	Horton's Algorithm
	A Hybrid Algorithm

	Running Times Comparison
	Dense Unweighted Graphs

	Approximation Algorithms
	Concluding Remarks

	Sampled Manifolds
	Introduction
	Other Approaches and Remarks

	Structure of Cycles
	The Basic Idea
	Sampling and Restricted Delaunay Triangulations
	Short Cycles
	Long Cycles
	Putting It All Together

	Experimental Validation
	Genus Determination

	Application to Surface Reconstruction
	Concluding Remarks

	Conclusions
	Bibliography
	Notation
	Index

