
Data Structures
Priority Queues

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens



Priority Queue

The problem
We have items with keys and we want to be able to access the item with
the smallest key. Afterwards we would like to update our collection and
again access the element with the smallest key.



Priority Queue

Definition
A priority queue is a data structure which contains elements with keys
and supports the following three basic operations:

I insert a new element

I find the element with the minimum key

I delete the element with the minimum key



Applications

I events simulation, where the key corresponds to event times

I time scheduling of jobs where keys are job priorities

I sorting numbers (we will talk about this later)

and others which we will visit in other courses

I A∗ algorithm

I Dijkstra algorithm

I Huffman coding

I Prim’s algorithm for finding a minimum spanning tree (MST)



Operations

A priority queue usually supports:

I create a priority queue from n elements

I insert a new element

I find the minimum

I delete the minimum

I given an element, change its priority (decrease key)

I given an element, delete it

I merge two priority queues

These operations can also function as an abstract data type ADT.



Basic Implementation
With arrays

I insert a new element: at the end of the array

I delete minimum: linear search for the minimum in the array

I etc.

Other basic implementation are

I sorted array

I list

I sorted list



Basic Implementations
Cost per Operation

insert delete find
min min

array 1 n n
sorted array n 1 1
list 1 n n
sorted list n 1 1

Each of the basic implementations has one operation which costs O(n).



Binary Heap

A tree is heap ordered if the key of any node is smaller or equal with the
keys of its children.

Binary Heap
A binary heap is a set of nodes with keys placed on a complete binary
tree which is heap-ordered and represented as an array.



Binary Heap

A tree is heap ordered if the key of any node is smaller or equal with the
keys of its children.

Binary Heap
A binary heap is a set of nodes with keys placed on a complete binary
tree which is heap-ordered and represented as an array.



Complete Binary Tree

Definition
A binary tree where all levels, except maybe the last, are full. The last
level of the tree if not complete, is filled from left to right.

1

2 3

4 5 7

98

6



Complete Binary Tree as an Array

1

2 3

4 5

6

7

98

1 2 3 4 5 6 7 8 9

6

I parent(i) = bi/2c
I left − child(i) = 2i

I right − child(i) = 2i + 1



Complete Binary Tree Height
with n nodes

1

2 3

4 5 7

98

6

Since at every node its children are
divided by two, such a tree has
O(log n) levels.

This is the property that binary
heaps are based on.



Binary Heap Example

15

3

10

12

1316

4

7 11



Insert
fixup

15

3

10

12

1316

4

7 11



Insert
fixup

15

3

10

12

1316

4

7 11

1



Insert
fixup

15

3

10

12

1316

4

7 111



Insert
fixup

15

3

1012

1316

4

7 11

1



Insert
fixup

15

3

1012

1316

4

7 11

1



Insert
fixup

15

3

1012

1316

4

7 11

1



Insert
fixup

15

3

1012

1316

4

7 11

1

2



Insert
fixup

15

3

10

12

1316

4

7 11

1

2



Insert
fixup

15

3

10

12

1316

4

7 11

1

2



Insert
fixup

15

3

10

12

1316

4

7 11

1

2



Insert
Time

15

3

10

12

1316

4

7 11

1

2

0

The execution time is proportional to the of the tree, which is O(log n).



Delete Minimum
fixdown

15

3

10

12

1316

4

7 11

1

2



Delete Minimum
fixdown

15

3

10

12

1316

4

7 11

1

2



Delete Minimum
fixdown

15

3

10

12

1316

4

7 11

1

2



Delete Minimum
fixdown

15

3

10

12

1316

4

7 11

10

2



Delete Minimum
fixdown

15

312

1316

4

7 11

10

2



Delete Minimum
fixdown

15

312

1316

4

7 11

10

2



Delete Minimum
fixdown

15

312

1316

4

7 11

10

2



Delete Minimum
fixdown

15

3

12

1316

4

7 1110

2



Delete Minimum
fixdown

15

3

12

1316

4

7 1110

2



Top-Down Fix

wrong key

valid heap valid heap

valid heap

fix down

If the two subtrees of a node are already heaps, then one execution of a
top-down fix will make the whole tree into a heap.



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

Consider an array with n elements which we would like to turn into a
heap.

All the leafs are heaps. We can build the rest of the tree by doing
”top-down” fixes. Start from the middle of the array and run ”top-down”
fixes for each element until we reach the root (the first element of the
array).



Build a Binary Heap from an Array
heapify

How much does this procedure cost us?

I The array has n element and we perform ”top-down” fixes to at
most k = blog nc levels.

I Every level i has at most 2i nodes

I The up-down fix starting from level i has cost at most O(k − i).

Adding up:

O

 ∑
0≤i<k

2i (k − i)

 = O

2k
∑

0≤i<k

k − i

2k−i

 = O

2k
∑
j≥1

j

2j

 = O(n)



Sorting with a Binary Heap

Consider an array with n integers. We would like to output the integers
in non-decreasing order.

Algorithms

I create a heap from the array

I while the heap is not empty, remove and print its smallest element

This algorithm is called Heap-Sort and puts n numbers in order in time
O(n log n).


