
Data Structures
Graphs

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graphs

Directed Graph
A directed graph G is a pair of sets (V,E) where V is a set of nodes and
E is a set of ordered node pairs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graphs

Undirected Graph
An undirected graph G is a pair of sets (V,E) where V is a set of nodes
and E is a set of node pairs.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Modelling Problems

A lot of different problems can be modelled with graphs.

Road Networks
Social Networks

Molecules



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Operations
▶ Accessing information.

Given a node or edge, access its information, e.g. edge weight,
distance from other node, etc.

▶ Navigation.
▶ Given a node, access its outgoing edges.
▶ This operation lies in the heart of most graph algorithms.
▶ Sometimes we would also like easy access to the incoming edges of a

node.
▶ Edge Queries.

▶ Given 2 nodes (u, v) we would like to know if such an edge exists in
the graph.

▶ Sometimes we would like to easily find the opposite edge (v, u) of a
directed edge (u, v).

▶ Construct, convert and output. Convert the representation to the
most natural form for the problem that we are trying to solve.

▶ Update. Add and remove nodes or edges, change the information of
node or edge, etc.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Operations
▶ Accessing information.

Given a node or edge, access its information, e.g. edge weight,
distance from other node, etc.

▶ Navigation.
▶ Given a node, access its outgoing edges.
▶ This operation lies in the heart of most graph algorithms.
▶ Sometimes we would also like easy access to the incoming edges of a

node.

▶ Edge Queries.
▶ Given 2 nodes (u, v) we would like to know if such an edge exists in

the graph.
▶ Sometimes we would like to easily find the opposite edge (v, u) of a

directed edge (u, v).
▶ Construct, convert and output. Convert the representation to the

most natural form for the problem that we are trying to solve.
▶ Update. Add and remove nodes or edges, change the information of

node or edge, etc.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Operations
▶ Accessing information.

Given a node or edge, access its information, e.g. edge weight,
distance from other node, etc.

▶ Navigation.
▶ Given a node, access its outgoing edges.
▶ This operation lies in the heart of most graph algorithms.
▶ Sometimes we would also like easy access to the incoming edges of a

node.
▶ Edge Queries.

▶ Given 2 nodes (u, v) we would like to know if such an edge exists in
the graph.

▶ Sometimes we would like to easily find the opposite edge (v, u) of a
directed edge (u, v).

▶ Construct, convert and output. Convert the representation to the
most natural form for the problem that we are trying to solve.

▶ Update. Add and remove nodes or edges, change the information of
node or edge, etc.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Operations
▶ Accessing information.

Given a node or edge, access its information, e.g. edge weight,
distance from other node, etc.

▶ Navigation.
▶ Given a node, access its outgoing edges.
▶ This operation lies in the heart of most graph algorithms.
▶ Sometimes we would also like easy access to the incoming edges of a

node.
▶ Edge Queries.

▶ Given 2 nodes (u, v) we would like to know if such an edge exists in
the graph.

▶ Sometimes we would like to easily find the opposite edge (v, u) of a
directed edge (u, v).

▶ Construct, convert and output. Convert the representation to the
most natural form for the problem that we are trying to solve.

▶ Update. Add and remove nodes or edges, change the information of
node or edge, etc.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Operations
▶ Accessing information.

Given a node or edge, access its information, e.g. edge weight,
distance from other node, etc.

▶ Navigation.
▶ Given a node, access its outgoing edges.
▶ This operation lies in the heart of most graph algorithms.
▶ Sometimes we would also like easy access to the incoming edges of a

node.
▶ Edge Queries.

▶ Given 2 nodes (u, v) we would like to know if such an edge exists in
the graph.

▶ Sometimes we would like to easily find the opposite edge (v, u) of a
directed edge (u, v).

▶ Construct, convert and output. Convert the representation to the
most natural form for the problem that we are trying to solve.

▶ Update. Add and remove nodes or edges, change the information of
node or edge, etc.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Representation

There are different methods, depending on our needs on space, time and
whether we would also like to support dynamic graphs or just static ones.

▶ Unordered edge list
▶ Adjacency arrays
▶ Adjacency matrix
▶ Adjacency lists

and others which maybe relevant to the application at hand.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unordered edgelist
graph G(V,E) where |V| = n and |E| = m

The representation contains:
▶ an unordered list of edges

1 0

2 34

((1, 0), (0, 3), (1, 3), (1, 2), (4, 3), (2, 1), (4, 2), (1, 4), (4, 1))



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unordered edgelist
graph G(V,E) where |V| = n and |E| = m

((1, 0), (0, 3), (1, 3), (1, 2), (4, 3), (2, 1), (4, 2), (1, 4), (4, 1))

Characteristics
▶ common for input/output
▶ each addition of edges or nodes in O(1)
▶ all the rest (e.g. navigation) O(m)

▶ too much!



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Array
graph G(V,E) where |V| = n and |E| = m

The representation contains:
▶ array E[0 . . .m − 1] with outgoing edges grouped by node
▶ array V[0 . . . n − 1] with starting positions of subarrays in E (per

node)
▶ For node v, position V[v] contains the position in E where the first

outgoing edge of v is located.
▶ Helpful to add virtual entry V[n] = m, then outgoing edges of v are

at E[V[v]], . . . ,E[V[v + 1]− 1].

1 0

2 34

3 0 3 2 4 1 2 1 3E

V

0 n− 1

0 m− 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Array
graph G(V,E) where |V| = n and |E| = m

1 0

2 34

3 0 3 2 4 1 2 1 3E

V

0 n− 1

0 m− 1

Characteristics
▶ space consumption n + m +Θ(1) words
▶ addition information for nodes can be stored in the node array
▶ addition information for edges can be stored in the edge array
▶ static representation
▶ navigation (e.e. print all outgoing edges) in time equal to the degree

of a node O(d)
▶ edge query O(d) time



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Array
graph G(V,E) where |V| = n and |E| = m

Exercise
Design a linear time O(n + m) algorithm which converts a directed graph
from an unordered edge list representation into a representation as
adjacency arrays. You must use only O(n) additional space.

Hint: Consider the problem of sorting edges based on their source vertex.
Use, by adjusting appropriately, an algorithm which sorts integers in
linear time.

You will need to read the chapter on sorting.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Matrix
graph G(V,E) where |V| = n and |E| = m

The representation contains:
▶ a 2 dimensional array A with dimensions n × n
▶ the array location i, j denotes whether directed edge (i, j) exists or

not
▶ if e = (i, j) ∈ E then A[i][j] = 1 otherwise 0

1 0

2 34

A =


0 0 0 1 0
1 0 1 1 1
0 1 0 0 0
0 0 0 0 0
0 1 1 1 0





.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Matrix
graph G(V,E) where |V| = n and |E| = m

Characteristics
▶ Insert/delete edges in O(1) time
▶ Edge query in O(1) time
▶ Navigation in O(n) time - good only in very dense graphs
▶ Space n2 bits
▶ Connection between graphs and linear algebra, e.g. if C = Ak then

Cij counts the total number of paths from node i to node j which
have k edges.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency Lists
graph G(V,E) where |V| = n and |E| = m

The representation contains:
▶ a one-dimensional array A with one position for each node
▶ every element of array A is a list of edges which have the

corresponding node as its source

1 0

2 34

0 n− 1

3 0

3

2

4

1 2

1

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adjacency List
������� G(V,E) ���� |V| = n ��� |E| = m

1 0

2 34

0 n− 1

3 0

3

2

4

1 2

1

3

Characteristics
▶ space consumption n + 3m words
▶ additional information can be stored either at the lists (for the

edges) or at the array (for the nodes)
▶ dynamic representation - each addition/removal of edges
▶ navigation (e.g. all outgoing edges) in time equal with the vertex

degree O(d)
▶ edge query in O(d) time



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph with Weights

Using graphs in order to answer path queries in a GPS device, we would
like to find the shortest path between two points:



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph with Weights

Using graphs in order to answer path queries in a GPS device, we would
like to find the shortest path between two points:

▶ we have pre-calculated an approximation on the average time which
we need in order to travel road segments

▶ we associate each road segment with an edge of the graph, and set
its weight equal to the travel time of the segment

In general we can associate information with both vertices and edges.
Another example is the association of a name with each edge.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Representation

Exercise
You would like to store a graph which represents the road map of the city
that you leave in. Answer the following questions:

1. What does each graph vertex represent?
2. What does each graph edge represent?
3. What additional information is required on the vertices and edges, in

order to be able to answer shortest path queries and be able to draw
the map to the user.

4. White representation from the ones we explained is the more
relevant? Why? Explain.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search

BFS is one of the simplest search algorithms in graphs and used as a
basis for several other important graph algorithms.

Input
▶ graph G(V,E), and
▶ a start node s

Operation
The BFS algorithm explores edges of G in order to discover all vertices
which are reachable from s.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Output

Distances The distance (least number of edges) from s to all
reachable nodes.

BFS Tree A ”breadth-first tree” with node s as root which
contains all reachable nodes.
For every reachable node v from s, the path on the
BFS tree corresponds to a shortest path in the
graph.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search

Directed and Undirected
The algorithms works fine with directed and undirected graphs.

Search Frontier
The search is called breadth-first since it grows the search frontier in all
its width.
In order words, the algorithm discovers all nodes at distance k from s
before it discovers any node at distance k + 1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search

Directed and Undirected
The algorithms works fine with directed and undirected graphs.

Search Frontier
The search is called breadth-first since it grows the search frontier in all
its width.
In order words, the algorithm discovers all nodes at distance k from s
before it discovers any node at distance k + 1.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search

In order to track down progress, the BFS algorithm colors graph nodes
using 3 colors a) white, b) gray, and c) black.

▶ All nodes start as white, become gray then black.
▶ A node gets discovered the first time that it appears in the search,

and becomes non-white.
▶ All gray and black nodes have been discovered.
▶ Gray nodes represent the frontier of the search and may have white

neighbors.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Pseudo Code

BFS(G, s)
for each vertex u ∈ V \ {s} do

color[u] = WHITE
d[u] = ∞
π[u] = nil

end
color[s] = GRAY
d[s] = 0
π[s] = nil
Q = {s}
while Q ̸= ∅ do

u = Q.head()
for each neighbor v of u do

if color[v] = WHITE then
color[v] = GRAY
d[v] = d[u] + 1
π[v] = u
Q.enqueue(v)

end
end
Q.dequeue()
color[u] = BLACK

end



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞ ∞∞

∞∞∞ 0

sr t u

wv x y

Q s

0



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞ ∞∞

∞∞0

sr t u

wv x y

Q r

1

1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞∞

∞∞0

sr t u

wv x y

Q r

1

1

1

w

1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞∞

∞∞0

sr t u

wv x y

Q r

1

1

1

w

1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞

∞∞0

sr t u

wv x y

Q w

1

1

1 2

v

2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞

∞∞0

sr t u

wv x y

Q w

1

1

1 2

v

2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞ ∞

∞0

sr t u

wv x y

Q

2

1

1 2

t

2

v

2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞

∞0

sr t u

wv x y

Q

2

1

1 2

t

2

v

2

2

x

2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞

∞0

sr t u

wv x y

Q

2

1

1 2

t

2

v

2

2

x

2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞

∞0

sr t u

wv x y

Q

2

1

1 22

2

2

t x



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞

∞0

sr t u

wv x y

Q

2

1

1 22

2

2

t x



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

∞

0

sr t u

wv x y

Q

2

1

1 32

2

2

x u

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

2

1

1 32

2

2

x u

3

∞



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

3

1

1 32

2

2

u y

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

3

1

1 32

2

2

u y

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

3

1

12

2

2

y

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

3

1

12

2

2

y

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

1

12

2

2

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Example

0

sr t u

wv x y

Q

1

12

2

2

3

3



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Running time

Assuming that the graph is represented as adjacency lists.

Initialization
O(n) since we initialize arrays which have one element per node.

Cost of Queue Operations
After initialization no node becomes white again. Thus, each node is
added to the queue at most one, which also means that it gets removed
at most once.
The queue needs O(1) for these operations, thus, O(n) time in total.

Cost of Edge Traversals
The outgoing edges of each node is iterated at most once when the node
is removed from the queue. The sum of the lengths of all outgoing edge
lists is O(m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Running time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Cost of Queue Operations
After initialization no node becomes white again. Thus, each node is
added to the queue at most one, which also means that it gets removed
at most once.
The queue needs O(1) for these operations, thus, O(n) time in total.

Cost of Edge Traversals
The outgoing edges of each node is iterated at most once when the node
is removed from the queue. The sum of the lengths of all outgoing edge
lists is O(m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Running time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Cost of Queue Operations
After initialization no node becomes white again. Thus, each node is
added to the queue at most one, which also means that it gets removed
at most once.
The queue needs O(1) for these operations, thus, O(n) time in total.

Cost of Edge Traversals
The outgoing edges of each node is iterated at most once when the node
is removed from the queue. The sum of the lengths of all outgoing edge
lists is O(m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Running time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Cost of Queue Operations
After initialization no node becomes white again. Thus, each node is
added to the queue at most one, which also means that it gets removed
at most once.
The queue needs O(1) for these operations, thus, O(n) time in total.

Cost of Edge Traversals
The outgoing edges of each node is iterated at most once when the node
is removed from the queue. The sum of the lengths of all outgoing edge
lists is O(m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Breadth-first search
Running time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Cost of Queue Operations
After initialization no node becomes white again. Thus, each node is
added to the queue at most one, which also means that it gets removed
at most once.
The queue needs O(1) for these operations, thus, O(n) time in total.

Cost of Edge Traversals
The outgoing edges of each node is iterated at most once when the node
is removed from the queue. The sum of the lengths of all outgoing edge
lists is O(m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search

Depth-first search tries to go as deep in the graph as possible.

Input
▶ graph G(V,E), and
▶ start node s

Operation
Befores from s and follows one by one all outgoing edges of s, calling the
same function recursively.
If at a node v there is no other outgoing edge to follow, it returns back to
the node it came from and continues to follow unexplored edges.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search

In order to keep track of progress, the algorithm colors the vertices of the
graph using three colors a) white, b) gray, and c) black.

▶ All nodes start as white and they become gray and black afterwards.
▶ When a node first gets discovered it becomes gray and remains gray

until all its neighbors are recursively explored. Then it becomes
black.

▶ The algorithm records two times for each node, the time it becomes
gray and the time that it becomes black.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search
Pseudocode

dfs(G, s)
for every vertex u ∈ V do

color[u] = WHITE
π[u] = nil

end
time = 1
dfsvisit(G, s);

dfsvisit(G, u)
color[u] = GRAY
d[u] = time
time = time + 1
for every neighbor v of u do

if color[v] = WHITE then
π[v] = u
dfsvisit(G, v)

end
end
color[u] = BLACK
f[u] = time
time = time + 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/4/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/4/5/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/4/5/6



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/4/75/6



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/84/75/6



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/84/75/6

9/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/84/75/6

9/

10/



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/84/75/6

9/

10/11



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/ 2/

3/84/75/6 10/11

9/12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

1/

3/84/75/6 10/11

9/122/13



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Graph Search
Depth-first search

u v x y

rs t

3/84/75/6 10/11

9/122/131/14



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search
Running Time

Assuming that the graph is represented as adjacency lists.

Initialization
O(n) since we initialize arrays which have one element per node.

Calls to dfsvisit(G, v)
The recursive function dfsvisit(G, v) is called once per node since it is
called only on white nodes and the first thing it does is to change their
color to gray.
A call to dfsvisit(G, v) costs as must as the length of the outgoing edge
list of v. The sum of these outgoing edge lists for all vertices is (m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search
Running Time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Calls to dfsvisit(G, v)
The recursive function dfsvisit(G, v) is called once per node since it is
called only on white nodes and the first thing it does is to change their
color to gray.
A call to dfsvisit(G, v) costs as must as the length of the outgoing edge
list of v. The sum of these outgoing edge lists for all vertices is (m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search
Running Time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Calls to dfsvisit(G, v)
The recursive function dfsvisit(G, v) is called once per node since it is
called only on white nodes and the first thing it does is to change their
color to gray.
A call to dfsvisit(G, v) costs as must as the length of the outgoing edge
list of v. The sum of these outgoing edge lists for all vertices is (m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Depth-first search
Running Time

Assuming that the graph is represented as adjacency lists.
Initialization
O(n) since we initialize arrays which have one element per node.

Calls to dfsvisit(G, v)
The recursive function dfsvisit(G, v) is called once per node since it is
called only on white nodes and the first thing it does is to change their
color to gray.
A call to dfsvisit(G, v) costs as must as the length of the outgoing edge
list of v. The sum of these outgoing edge lists for all vertices is (m).

Total running time O(n + m).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reading and Sources

▶ Sections 8.1, 8.2, 8.3, 8.4, 9.1, and 9.2
Kurt Mehlhorn ��� Peter Sanders. Algorithms and Data Structures,
The basic toolbox, 1/e, 2014.

▶ Sections 3.7, and 5.8
Robert Sedgewick. Algorithms in C: Fundamentals, Data Structures,
Sorting, Searching. 3/e, Addison-Wesley Professional, 1997.

▶ Sections 3.1, 3.2, 3.3, 4.1, and 4.2
Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani,
Algorithms, McGraw-Hill Education, 1/e, 2006

▶ Sections 22.1, 22.2, and 22.3
Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.
3/e, MIT Press. 2009.


