
Programming I
Introduction

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens

. .

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bibliography

▶ Deitel & Deitel, ”C How to Program”, 7/3, 2013.
▶ B. W. Kernighan & D. M. Ritchie, ”The C Programming

Language”, Prentice Hall, 2/e, 1988.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Material

The lecture material is available at:

e-class platform
http://eclass.hua.gr/courses/DIT135

http://eclass.hua.gr/courses/DIT135

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What is a computer?

A computer is a device which can execute calculations and take decisions,
billion times faster than humans.

But in order for a computer to know what to do, someone must provide
the instructions.

In this lecture we will learn how to give instructions to a computer.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Anatomy of a Computer

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Anatomy of a Computer

Input Devices:
keyboard, mouse,
touch screen, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Anatomy of a Computer

Output Devices:
Screen, printer, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Anatomy of a Computer

Main unit: central
processing unit (CPU),
memory unit,
secondary-storage (e.g.
SSD, Hard-Drive),
arithmetic and logical
unit (usually inside the
CPU), bus for
communication
between different
units, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software

The computer needs instructions. This role is played from different
software components:
▶ BIOS: program which helps the computer boot

▶ operating system: program which takes control after the booting
sequence and manages the resources of the computer, its input and
output devices and generally takes care about the execution of other
programs (e.g. Linux, MacOSX, Windows, SunOS, etc.)

▶ general applications: programs build for a specific purpose, e.g.
playing movies, image processing, word editing, games, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software

The computer needs instructions. This role is played from different
software components:
▶ BIOS: program which helps the computer boot
▶ operating system: program which takes control after the booting

sequence and manages the resources of the computer, its input and
output devices and generally takes care about the execution of other
programs (e.g. Linux, MacOSX, Windows, SunOS, etc.)

▶ general applications: programs build for a specific purpose, e.g.
playing movies, image processing, word editing, games, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Software

The computer needs instructions. This role is played from different
software components:
▶ BIOS: program which helps the computer boot
▶ operating system: program which takes control after the booting

sequence and manages the resources of the computer, its input and
output devices and generally takes care about the execution of other
programs (e.g. Linux, MacOSX, Windows, SunOS, etc.)

▶ general applications: programs build for a specific purpose, e.g.
playing movies, image processing, word editing, games, etc.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What can a Computer Understand?

A computer can understand two states: 0 and 1

But a human cannot easily talk to a computer using 0s and 1s.
e.g.

000000 00001 00010 00110 00000 100000
in some architecture tells the computer to read register 1 and register 2,

add them up and write the result into register 6.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What can a Computer Understand?

A computer can understand two states: 0 and 1

But a human cannot easily talk to a computer using 0s and 1s.
e.g.

000000 00001 00010 00110 00000 100000
in some architecture tells the computer to read register 1 and register 2,

add them up and write the result into register 6.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

From Machine Language up to today

▶ machine language
▶ assembly language contains english shortcuts for commands but still

very close to the machine instructions, e.g.
ADD32 6, 1, 2
A program called the assembler takes the responsibility of translating
between assembly and machine code.

▶ high-level languages which allows us to which instructions in almost
spoken english which contain common mathematical symbols, e.g.
x6 = x1 + x2;
A program called compiler translates between a high-level language
and an assembly language (or sometimes directly to machine code).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The History of the C Language

1969-1973 AT & T Bell Labs, Dennis Ritchie
1978 “The C Programming Language” K & R:

Kernighan & Ritchie
1983 ANSI Standardization Committee X3J11
1989-1990 Acceptance of ANSI/ISO Standard (ANSI C)
1999 Revised the standard ��� ������� C9X (C99)
2011 C11 add numerous new features (atomic opera-

tions, multi-threading, etc.)
2018 C18 includes no new features, only technical cor-

rections and clarifications to defects in C11.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size

▶ Usage of functions
▶ Loose type system
▶ Structured language
▶ Low-level programming
▶ The programmer has full control (and power) but is responsible for

her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size
▶ Usage of functions

▶ Loose type system
▶ Structured language
▶ Low-level programming
▶ The programmer has full control (and power) but is responsible for

her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size
▶ Usage of functions
▶ Loose type system

▶ Structured language
▶ Low-level programming
▶ The programmer has full control (and power) but is responsible for

her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size
▶ Usage of functions
▶ Loose type system
▶ Structured language

▶ Low-level programming
▶ The programmer has full control (and power) but is responsible for

her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size
▶ Usage of functions
▶ Loose type system
▶ Structured language
▶ Low-level programming

▶ The programmer has full control (and power) but is responsible for
her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

▶ Small size
▶ Usage of functions
▶ Loose type system
▶ Structured language
▶ Low-level programming
▶ The programmer has full control (and power) but is responsible for

her/his mistakes.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Characteristics of C

C is well known for various reasons:

▶ has high level structures
▶ can be used for low-level programming
▶ produces very efficient programs (speed and memory footprint)
▶ can be compiled into many many platforms

The syntax of a lot of languages which you will learn like C++, Java,
C#, Javascript, etc. is based on C.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structured Programming

A program is organized into small, self-contained entities. Each such
entity must have a well defined entry and exit point.

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
2. selection
3. iteration
4. functions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structured Programming

A program is organized into small, self-contained entities. Each such
entity must have a well defined entry and exit point.

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
in C all statements are executed one after another in the order that
they appear in the source code.

2. selection
3. iteration
4. functions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structured Programming

A program is organized into small, self-contained entities. Each such
entity must have a well defined entry and exit point.

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
2. selection

one or a number of statements is executed depending on the state of
the program. This is implemented using if-then-else.

3. iteration
4. functions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structured Programming

A program is organized into small, self-contained entities. Each such
entity must have a well defined entry and exit point.

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
2. selection
3. iteration

a statement or a block of statements can be executed multiple times
until the program reaches a certain state. C provides several
structures for loops like for, do..while.

4. functions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structured Programming

A program is organized into small, self-contained entities. Each such
entity must have a well defined entry and exit point.

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
2. selection
3. iteration
4. functions

a sequence of program instructions that performs a specific task,
packaged as a unit. We have a separate chapter for functions in C.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

My First Program in C

/*
* Hello world program in C
*/

#include <stdio.h>

int main() {

printf("Hello, world!\n");

return 0;
}

which tells the computer to print the message ”Hello, world!” to the
screen.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Compilation

Text
Processing
Editor

if a < b

(lib ref)

do while
z = x− y

(lib ref)

Source Code

Preprocessor

if a < b

(lib ref)

do while
z = x− y

(lib ref)

Pre-processed Code

Compiler

01100100

(lib ref)

11001001
00010001

(lib ref)

Object Code

Linker

01100100

11011010

11001001
00010001

11110001

Executable

Library

01100101

11011010

10001001
11011010

11110001

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Detailed Explanation

/*
* Hello world program in C
*/

Anything inside

/*
*/

are comments which are completely removed and ignored by the compiler
(pre-processor).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Detailed Explanation

#include <stdio.h>

Gives the instruction to the compiler (more specifically to the
pre-processor) to find and read file stdio.h which includes declarations of
several function which help print to the screen.

In this particular case, function printf().

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Detailed Explanation

int main()
{

and
}

is the definition of function main() which must exist in every C program
and designates the start of a program.

Function main() returns an integer (int) after it finishes executing to
the user.

The curly brackets denote the beginning and end of the function.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Detailed Explanation

printf("Hello, world!\n");

calls a function (declared in the file stdio.h) which prints to the screen
the character sequence (string)

Hello, world!

the sequence \n denotes a special character in C which means newline
and forces the computer to switch line in the screen.

The whole statement must end with a semicolon.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Detailed Explanation

return 0;

this statement tells the program to finish the execution of function
main() and return to the user the value 0.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General Guidelines

▶ use comments (where appropriate) to make code readable to others
▶ use approriate names for identifiers, functions, types, etc. which

clearly express the functionality
▶ always write code which is properly indented (or use a proper editor

which automatically does it for you)
▶ write simple programs, try to avoid ”programming tricks”

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of Bad Programming

#include <stdio.h>

main(t,_,a)
char *a;
{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a
)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,
t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\
,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!/\
+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){n\
l]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == '/')+t,_,a\
+1):0<t?main (2, 2 , "%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc \
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

The above code can be compiled!!

