Programming |
Variables, Types and Constants

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens

Memory

12 <—byte —»|

28 32-bit word

Memory behaves like an one dimensional array which we can address
using an address which is either a 32-bit or 64-bit number depending on
the architecture. The figure above presents the 32-bit version.

Variables in C

C language provides with an easy way to address the memory, without
the need to memorize memory addresses.

Variables in C

int main() {
int x1, x2, sum;

x1l = 1;
X2 2;
sum = x1 + x2;

}

In the program above we inform the compiler that we are going to require
the use of three memory locations in order to store integer numbers.
These 3 memory locations are going to be named x1, x2, and sum
respectively.

The compiler remembers the mapping between names and addresses.

Memory

sum ————

Variable names are shorthands for memory addresses.

Variables in C

int main() {
int x1, x2, sum;

x1 1;
X2 2;
sum = x1 + x2;

}

Memory locations of local variables are not initialized. It is the duty of
the programmer to provide with initial values.

Variables in C

#include <stdio.h>

int main() {
int x1, x2, sum;

x1 1;
X2 2;
sum = x1 + x2;

» Store value 1 at the memory location of variable x1 and 2 at the
memory location of variable x2.

» Finally read these two values again, add them up and store the
result at the memory location of variable sum.

Variables in C

x1 —| 00000000 | 00000000 | 00000000

x2

00000001
,—> 00000000 | 00000000 | 00000000 | 00000010
sum —| 00000000 | 00000000 | 00000000 | 00000011

Variables are shorthands for memory addresses.

Variables in C

Every variable has:
1. name
2. type

3. value

Variables in C

Name

A valid variable name in C must begin with a letter (not a digit), it
should not contain any spaces and should be equal to certain reserved
keywords such as main.

wrong variable names

int main;
int 3x;
int hello world;

correct variable names

int Main;
int x123456;
int hello_world;

Variables in C

Type

When we are declaring a variable, we explain to the compiler what kind
of information we are going to store in that location.

Basic data types

1. integer: int x;
2. character: char x;

3. floating point (approximate representation for real numbers):
float x;

There are more data types. We are going to see them in more detail after
we learn a few things about number representation in a computer.

Variables in C

C language requires all variable sto be declared at the beginning of a
block. For example:

int main() {
int x, y, z; /* declare all variables */

N
1
"
+
=

int i; /* NO! */

Variables in C

From C99 and afterwards, we can also declare variable in other locations.

int main() {
int x, y, z; /* declare some variables */

N
]
"
+
3

int i; /* YES! */

}

It is nowadays considered best practice to declare variables as close to
their use as possible.

Type int

Type int stores integers and its size depends on the architecture of the
computer that we are compiling our program.

> it must be able to take any value € [—32767, 32767]

» in recent architectures, it can take any value
€ [-2147483648,2147483647]

This means that it needs 32-bits.

Type char

Type char is used to store characters.

int main() {
char c;

In C characters are representation by numbers using the ASCII encoding.

Type char

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 @ 96 N
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] 36 24 $ 68 a4 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 ELL] 39 27 N 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 1 105 69 i
10 A [LINE FEED] 42 2A * 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C ’ 76 4ac L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F ! 79 4F (] 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o 80 50 P 112 70 P
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A H 90 5A z 122 TA z
27 1B [ESCAPE] 59 3B H 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 10 [GROUP SEPARATOR] 61 3D = 93 5D 1 125 70 }
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

The 95 printable characters from 32 to 126 (decimal). Characted from 0
to 31 are special characters for controlling the output devices, e.g. 8 is
BACKSPACE, 13 is ENTER and 27 is ESC.

printf and characters

#include <stdio.h>

int main() {
char ¢ = 'a';

printf("character %c is number %d in ASCII encoding\n", c, c);

}
The above program prints:

character a is number 97 in ASCII encoding

Type float

float is a type for approximately representing real numbers.

#include <stdto.h>

int main() {
float pi = 3.14159265;

printf("pi is approximately %f\n", pi);

Maximum and Minimum Values for Integer Types

The table below is taked from the C specification.

type minimum value maximum value
char < —-127 > +127
unsigned char <0 > +255
short int < —32767 > +32767
unsigned short int <0 > 465535
int < —-32767 > +32767
unsigned int <0 > +65535
long < 2147483647 > 42147483647
unsigned long <0 > 44294967295

Recent compilers have larger bounds. For example type int usually has
the bounds that are shown for long in the table above.

Types and Limits of Floating Point Numbers

type minimum value maximum value
float < -—-1E-37 > 1E+ 37
double < -1E-37 > 1E+ 37

Modern compilers have larger limits from the ones mentioned in the
ANSI C specification. For example, gcc on my computer has:

—1.175494E — 38 < x < 3.402823E 4 38

for type float and:

—2.225074E — 308 < x < 1.797693E + 308

for type double.

Function printf

The general form of printf () is:
int printf(const char * format, ...);

The parameter format contains the text to be printed along with special
character sequences which help to print the expressions that follow.
These special sequences have the general form:

%[flags] [width] [.precision] [length]specifier

Except for the specifier everything else is optional.

Specifiers of printf ()

Most specifiers are shown in the following table:

specifier Output Example

C character a
d i decimal with sign 392

e scientific notation using e 3.9265e+-2
E scientific notation using E 3.9265E+-2
f decimal floating point number 392.65
o octal with sign 610
s string sample
u decimal without sign 7235
X hexadecimal without sign Tfa
X hexadecimal without sign with capitals TFA

Line
printf("%d, %o and %x\n", 27, 27, 27);
prints 27, 33 and 1b.

printf () and padding
The width is a number which tells printf how many spaces to add to
the output in order for the result to have the specified characters.

#include <stdto.h>
#include <stdlib.h>

int main() {
int a = 100;
int b = 1000;
int c 10000;

printf ("%7d\n", a);
printf ("%7d\n", b);
printf ("%7d\n", c);
printf ("%7d\n", 1000000);
}
prints
100
1000
10000
1000000

printf () and precision

Precision has different meaning based on each type:
> for integers it denotes the least amount of digits to be printed
(possible by including additional zeros a the beginning)
> for floats is represents the number of digits after the decimal

» for strings it denotes the maximum number of characters to be
printed

int and precision
Denotes the least amount of digits to be printed (possible by including
additional zeros a the beginning)
#include <stdio.h>
#include <stdlib.h>

int main() {
int a = 100;
int b = 10000;
int c 1000000;

printf("%10.7d\n", a);
printf("%.7d\n", b);
printf("%.7d\n", c);

return O;
}
prints

0000100
0010000
1000000

float and precision

Denotes the number of digits after the decimal.

#include <stdio.h>
#include <stdlib.h>

int main() {
float pi = 3.14159265;

printf("%.3f\n", pi);
printf("%.10f\n", pi);

return O;
}
prints

3.142
3.1415927410

printf () and Special Characters

The special characters in C can be found in the following table:

character ASCIl code special character in C
newline 10
tab 9
carriage return 13
backspace 8
form feed 12
backslash 92
single quotation mark 39
double quotation mark 34
null character 0

for example the following code
printf ("Very\tSimple\nExample") ;
prints

Very Simple
Example

Constants

There are several different kind of constants:
> literals
» symbolic constants

» declared constants using const

Constants

There are several different kind of constants:

> literals: types directly in the code

int count;

count = 3;
» symbolic constants

» declared constants using const

Constants

There are several different kind of constants:

» literals

» symbolic constants: the pre-processor allows us to define symbols
which during the pre-processing phase are replaced with
corresponding values.

#include <stdto.h>
#define MAX 100

int main() {
int x = MAX;
printf("%d\n", x);

return O;

}

» declared constants using const

Constants

There are several different kind of constants:
> literals
» symbolic constants
» declared constants using const:

used in variable declarations and informs the compiler that a variable
is not supposed to change value.

int main() {
const int x = 3;

x = 5; /* Compilation error! */
}

If anyone tries to change the value, the compiler reports an error.

