Programming |

Control

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens

Relational and Equality Operators

A program besides arithmetic calculations also needs to take decisions.

For example a program which prints the students that passed a course
needs to read the grade of each enrolled student and to check whether
that grade was greater or equal to 50%.

Relational and Equality Operators

The C language does not provide any particular type which takes values
TRUE ofr FALSE but instead uses values # 0 and 0 in order to represent
those values.

Relational and Equality Operators

Equality and relational operators allow us to perform comparisons and to
get as a result a value of 1 or 0 (TRUE or FALSE) which can be used in
order to execute different parts of the program.

Relational and Equality Operators

operator code in C condition result
> x >y 1 (TRUE) if x>y, otherwise 0 (FALSE)
< x <y 1(TRUE) if x <y, otherwise 0 (FALSE)
>= x >=y 1 (TRUE) if x> y, otherwise 0 (FALSE)
<= x <=y 1 (TRUE) if x <y, otherwise 0 (FALSE)
== x ==y 1 (TRUE) if x =y, otherwise 0 (FALSE)
I= x !=y 0 (FALSE) if x =y, otherwise 1 (TRUE)

These operators are executed from left to right and have lower
precedence than the arithmetic operators.

Operators Precedence

The way that expressions are calculated depends on the precedence of
the operators:

1. parentheses: (), expr++, expr—-
Calculated first, from left to right. Nested parentheses are calculated first.

2. unary operators:
+, —, ++expr or ——expr (prefix) Calculated from right to left.

3. multiplication, division and remainder: x, /, or %
Calculated from left to right.

4. addition, subtraction: + or —
If there are many, calculated from left to right.

5. relational: <, >, <=, >=
Calculated from left to right.

6. equality: ==, | =
Calculated from left to right.

7. assignment: =, + =, — =, x=, /=, % =
From right to left.

Control Flow in C
The if

int main() {
int grade;

grade = 80;

if (grade >= 50)
printf ("PASS\n");

Allows to execute a set of instructions or not based on a condition which
depends on the value of expressions.

Control Flow in C
The if

The if structure accepts as a condition any expression which has an
integer value. If that integer is not equal to 0 then it executes the if
statement, otherwise it does not.

int main() {
int grade;

grade = 80;

if (grade >= 50) {
printf("grade = %d ", grade);
printf (" (PASS)\n");

We can execute most than one statement by forming a compound
stamement using curly brackets.

Example

#include <stdio.h>

int main() {
int numl, num2;

printf ("Enter two integers\n");
scanf ("%d%d", &numl, &num2);

if (numl == num2)
printf("/d is equal to %d\n", numl, num2);

if (numl !'= num2)
printf("%d is not equal to %d\n", numl, num2);

if (numl < num2)
printf(")d is less than %d\n", numl, num2);

if (numl > num2)
printf("}d is greater than %d\n", numl, num2);

if (numl <= num2)
printf("}d is less than or equal to %d\n", numl, num2);

if (numl >= num2)
printf("/d is greater than or equal to %d\n", numl, num2);

Attention: Assignment operator and if

Care needs to be taken when using the equality operator, so that we do
not accidentally write the same expression using the assignment operator.

if (x == 5) {
/* code to be exzecuted */

}
and not
if (x = 5) {
/* code to be executed */
}

The expression x=5 evaluates to 5 which is not equal to zero and thus
TRUE. This means that the second (erroneous) program always executes
the if statement regardless of the value of x.

Algorithms and Pseudocode

An algorithm is a set of instructions, typically to solve a class of problems
or perform some computation.

Structured Programming

In structured programming we use the following mechanisms in order to
implement algorithms:

sequence

selection

iteration

oo nd =

functions

Structured Programming

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence
in C all statements are executed one after another in the order that
they appear in the source code.

2. selection
3. iteration

4. functions

Structured Programming

In structured programming we use the following mechanisms in order to
implement algorithms:
1. sequence

2. selection
one or a number of statements is executed depending on the state of
the program. This is implemented using if-then-else.

3. iteration

4. functions

Structured Programming

In structured programming we use the following mechanisms in order to
implement algorithms:

1. sequence

2. selection

3. iteration
a statement or a block of statements can be executed multiple times
until the program reaches a certain state. C provides several
structures for loops like for, do..while.

4. functions

Structured Programming

In structured programming we use the following mechanisms in order to
implement algorithms:

sequence
selection

iteration

o nd =

functions
a sequence of program instructions that performs a specific task,
packaged as a unit. We have a separate chapter for functions in C.

if /then /else

if (/* boolean expression */) {
/* code to be executed if true */

}
else {

/* code to be exzecuted if false */
}

The else is optional...

if /then /else Example

int main() {
float grade = 0.65;

if (grade >= 0.50) {
printf ("PASSED!");
} else {
printf ("FAILED!");
}

Nested if /then/else

Control structures can be nested, something that allows us to have
greater control on the exact statements which will be executed.

int main() {
float grade = 0.65;

if (grade >= 0.50) {
printf ("PASSED!");
if (grade >= 0.85) {
printf(" with distinction!!");
}
printf("\n");
} else {
printf ("FAILED!\n");
}

return 0;

?:

ternary if (aka conditional operator)

The only ternary operator in C is closely related to the if/then/else
structure.

boolean expression 7 value if true : value if false

It has 3 operands:
1. a condition
2. a value for the expression if the condition is TRUE

3. a value for the expression if the condition is FALSE

7
ternary if (aka conditional operator)

int main() {
float grade;

printf ("Enter your grade in [0,1])\n");
scanf ("%f", &grade);

printf("%s\n", grade >= 0.57 "Passed" : "Failed");

or

int main() {
float grade;

printf ("Enter your grade in [0,1]\n");
scanf ("%f", &grade);

if (grade >= 5.0)
printf ("Passed\n");

else
printf("Failed\n");

while Loop

The while loop allows a programmer to execute certain instructions
repeatedly based on a certain boolean condition being TRUE.

while(condition) {
/* code to be exzecuted if condition is true */

3

while Examples

Print integers from 0 to 9

We would like to print all integers from 0 up to 9 (inclusively), one
integer per row.

#include <stdio.h>

int main() {
int i;

i=20;

while(i < 10) {
printf ("%d\n", i);
i=1+1;

return O;

Infinite Loop

#include <stdio.h>

int main() {
int i;

i= 0;

while(i < 10) {
printf("%d\n", i);

3

What will the above program do?

Infinite Loop

#include <stdio.h>

int main() {
int i;

i= 0;

while(i < 10) {
printf ("%d\n", i);

}

What will the above program do?
If you happen to run it, use CTRL-C to stop it.

do/while Loop

The do/while loop is similar to the while loop but it guaranties to be
executed at least once.

do {
/* code to be exzecuted */

} while(condition);

Be careful with the semicolon at the end, it is mandatory!

do/while Loop

Example

#include <stdto.h>

int main() {

int i;
i= 0;
do {

printf("%d\n", i);
} while(++i < 10);

do/while Loop

Example
#include <stdio.h>
int main() {
const int SECRETCODE = 3313;
int code;
do {
printf ("Type the secret code to enter.\n");
scanf ("%d", &code);
} while (code!=SECRETCODE) ;

printf("Well done, you can now enter\n");

return O;

do/while Loop

Example
#include <stdio.h>

int main() {
const int SECRETCODE = 3313;
int code;

do {
printf ("Type the secret code to enter.\n");
scanf ("%d", &code);

} while (code!=SECRETCODE) ;

printf("Well done, you can now enter\n");

return O;

}

Disclaimer: This is only meant as an example. Never store plain-text
passwords!

for Loop

The for loop helps writing iterations which counters, by providing special
places for common patterns such as initialization and incrementing.

for(initializations; test conditions; increment value) {
/* block of code to be repeated */
}

for Loop

Example

for(i = 0; i < 10; i++) {
printf ("/d\n", i);
}

for Loop

Example

The condition can be independent from the variables in the initialization
or iteration.

#include <stdio.h>
int main() {
int i, j;

j=0

for(i = 0; j < 10; i +
printf("i = %d, j
jtts

2) {
hd\n", i, j);

for Loop

Example

You might also have multiple initializations, etc.

#include <stdio.h>

int main() {
int i, j;

for(i =0, j =0; j < 10; i += 2, j++)
printf("i = %d, j = %d\n", i, j);

break
Sometimes we want to stop a loop prematurely.
#include <stdto.h>

int main() {
int i = 0;

while(i < 100) {
printf ("%d\n", i);
if (1 >= 9)
break;
i++;

3

printf("Due to break i should be 9: %s\n", (i==9)7"YES":"NO")

break can be used in all kind of loops.

continue

Other times we want to skip the remaining part of the loop, but execute
more iterations.

#include <stdto.h>

int main() {
int 1i,j;

for(i = 0, j =0; i < 10; i++, j++) {
printf("j = %d\n", j);
if (i == 5)
continue;
printf("i = %d\n", i);

Nested Loops

Several times we need multiple nested loops.

int main() {
int i,j;
for(i = 0; i < 10; i++) {
for(j = 0; j < 5; j++) {
printf (" (%d,%d) ", i, j);
3
printf("\n");

}

What does the code above print?

switch Statement

There are cases where if/then/else and the two cases are not enough.

switch(expression) {
case valuel:
/* code if valuel */
break;
case value2:
/* code if value2 */
break;
default:

/* execute default action */
break;

» the value of the expression must be an integer
» the value at case must be a constant

switch Statement

Example

#include <stdio.h>

int main() {
int acount = 0, bcount = 0;
char c;

while ((c = getchar()) !'= EOF) {
switch(c) {
case 'a':
case 'A':
acount++;
break;
case 'b':
case 'B':
bcount++;
break;
default:
break;
}
}

printf ("number of a: %d, number of b: %d\n", acount, bcount);

Boolean Conditions (AND OR NOT)

C provides the boolean operators &&, | | and ! in order to write more
complicated conditions in flow control statements.

operator ‘ meaning ‘ example
&& boolean AND x > 10 && x < 20
| boolean OR | x <= 10 || x >= 20
! boolean NOT 1(x>10 && x < 20)

Example
/*

* A program to count letters in input.
*/
#include <stdio.h>

int main() {
int ¢ ;
int count

0;

while ((c = getchar()) != EOF) {
if ((c >= "A") && (c <= 'Z2") ||
(c >= 'a") && (c <= 'z')) {
count++;

}
printf("/d letters\n" , count);

return O;

Operators Precedence
The way that expressions are calculated depends on the precedence of
the operators:
1. parentheses: (), expr++, expr—-
Calculated first, from left to right. Nested parentheses are calculated first.

2. unary operators:
+, —, ++expr or ——expr (prefix) Calculated from right to left.

3. multiplication, division and remainder: x, /, or %
Calculated from left to right.

4. addition, subtraction: + or —
If there are many, calculated from left to right.

5. relational: <, >, <=, >=
Calculated from left to right.

6. equality: ==, | =
Calculated from left to right.

7. boolean AND: && Calculated from left to right.
8. boolean OR: || Calculated from left to right.

9. assignment: =, +=, — =, x=, /=, % =
From right to left.

goto

The C language also supports goto statements which allow the program
counter to jump to any location in memory. This usually leads to
"spaggeti code”, meaning code which is difficult to follow.

#include <stdio.h>

int main() {
int a = 1;

if (a == 0)
goto testO;
else
goto testl;

testO:
printf("a = 0\n");
return O;

testl:
printf("a = 1\n");
return O;

goto

Whatever can be implemented with goto statements can also be
implemented using only structured programming.

The use of goto is prohibited

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE CWE LITILE.
‘GO INSTEAD.

?ﬁ\%

EH, SCREW G0D PRACTICE.
How BAD CAN IT BE?

\ Goto pain. sub3;

!J“

: : ?*CDP‘WJ’-’IL&Z#

http://xkcd.com/292

For more information read the following article by E. W. Dijkstra.

http://xkcd.com/292
https://doi.org/10.1145%2F362929.362947

