Programming |

Pointers

Dimitrios Michail

Dept. of Informatics and Telematics
Harokopio University of Athens

What is a pointer

A pointer is a variable which contain 0

a memory address.

Recall that memory is a 2

one-dimensional array.

In the example, the memory location .

1024 contains the value 99. :

1024 | 00000000 | 00000000 | 00000000 | 01100011

Defining a Pointer in C

The "*" is used in order to define a pointer.
int *p;

The above definition create a variable of type pointer to integer.

Defining a Pointer in C

The "*" is used in order to define a pointer.
int *p;
The above definition create a variable of type pointer to integer.

The name of the variable is p.

Defining a Pointer in C

The "*" is used in order to define a pointer.

int *p;

The above definition create a variable of type pointer to integer.
The name of the variable is p.

The value of the variable is a memory address.

Setting the value of a pointer

Like all other local variables we must initialize a pointer.

In order to find the memory address of a variable we can use the
address-of operator &.

int main() {
int a;
int *ptr;

a = 99;
ptr = &a;

return 0;

Setting the value of a pointer

In order to find the memory address
of a variable we use the address-of
operator &.

int main() {
int a;
int *ptr;

a = 99;
ptr = &a;

return 0;

The pointer ptr "points” to
variable a.

The value of variable ptr is the
memory address of variable a.

12
16

1024

@

1024

Value 0 and Value NULL

In order for a pointer to not point somewhere we need to assign the value
0. The C library defines a constant named NULL in order to designate
that a pointer does not point to anything.

int main() {
int *ptr = 0;

Zamy

return 0O;

}
or

#include <stdio.h>

int main() {
int *ptr = NULL;

V72N

return O;

Indirection /dereferencing operator

Following a pointer in order to locate the variable that it points to can be
done using the indirection/dereferencing operator, "*";

int main() {
int a;
int *ptr; 12

a = 99;
ptr = &a;

printf ("%d\n", *ptr); 1024 9 .]

return O; 2404 1024

}

The expression *ptr returns the
variable which is located at the
memory location which is stored in
ptr.

In this case variable a.

Operators Precedence

1. parentheses: (), [1, expr++, expr—-
Calculated first, from left to right. Nested are calculated first.

2. unary operators:
+, —, ++expr, —-expr, !, *, & Calculated from right to left.

3. multiplication, division and remainder: %, /, or %
Calculated from left to right.

4. addition, subtraction: + or —
If there are many, calculated from left to right.

5. relational: <, >, <=, >=
Calculated from left to right.

6. equality: ==, | =
Calculated from left to right.

7. boolean AND: && Calculated from left to right.
8. boolean OR: || Calculated from left to right.

9. assignment: =, + =, — =, x=, /=, % =
From right to left.

Indirection /dereferencing operator

int main() {
int a, b;
int *ptr_to_a, *ptr_to_b;

a = 99;
ptr_to_a = &a;
ptr_to_b = &b;

*ptr_to_b = *ptr_t_a;
printf ("%d\n", *ptr_to_b);

return O;
}
Line 9 is practically:
b = a;
while line 10 is:

printf ("%d\n", b);

0
8

12
16

1024
1028

2404

99

1024

1028

ptr_to_a
ptr_tob

Indirection /dereferencing operator

int main() {
int a, b;
int *ptr_to_a, *ptr_to_b;

a = 99;
ptr_to_a = &a;
ptr_to_b = &b;

*ptr_to_b = *ptr_t_a;
printf ("%d\n", *ptr_to_b);

return O;
}
Line 9 is practically:
b = a;
while line 10 is:

printf ("%d\n", b);

0
8

12
16

1024
1028

2404

99

99

1024

1028

ptr_to_a
ptr_tob

Pointers to other types

In C we may have pointers to any variable. We need, however, to
correctly define it based on its type.

#include <stdio.h>

int main() {
double pi;
double *ptr = π

*ptr = 3.14159265;
printf ("/1f\n", pi);

return 0;

}

Similarly with the other types.

Multiple Pointers to a Single Variable

int main() {

}

Lines 9 and 10 are practically line:

at++;

int a;
int *ptrl, *ptr2;

a = 99;
ptrl = &a;
ptr2 = &a;

(*Ptr1)++;
(*ptr2)++;

printf("/d\n", a);
return O;

H

12
16

1024

2404
2408

99

1024

1024

a

ptrl
ptr2

Multiple Pointers to a Single Variable

int main() {
int a;
int *ptrl, *ptr2;

a = 99;
ptrl = &a;
ptr2 = &a;

(*Ptr1)++;
(*ptr2)++;

printf("/d\n", a);
return O;

}
Lines 9 and 10 are practically line:
at+;

H

The program prints 101.

12
16

1024

2404
2408

101

1024

1024

a

ptrl
ptr2

Printing the Value of a Pointer

The value of a pointer is a memory address. In order to print the value of
a pointer, function printf () provides the option %p.

#include <stdto.h>
int main() {

int a = 5;

int *ptr = &a;

printf("address of a is %p\n", ptr);

return O;

At the speaker’'s system this prints:
address of a is Ox7fffb5bc2dbcc

Common Mistakes

Declaring Multiple Pointers

Care must be taken when defining multiple pointers in the same line.

int* ptrl, ptr2, ptr3;
The "*" operation belongs to the name and not the type.

The above line defines 1 pointer to int with name ptr1 and two ints with
names ptr2 and ptr3.

In order to define 3 pointer to int we must write:

int *ptrl, *ptr2, *ptr3;

Common Mistakes

Operators Precedence

1

10

11

12

13

14

15

16

17

18

#include <stdio.h>

int main() {
int x, *p;

P = &x; /* initialise pointer */
p = 0; / set = to zero */
printf("x is %d\n", x);

printf("*p is %d\n", *p);

p += 1; / dincrement what p points to */
printf("x is %d\n", x);

(*p)++; /* increment what p points to */
printf("x is %d\n", x);

return O;

}

Notice that line 14 needs parentheses since the postfix ++ operator has
larger priority than the unary operator .

Simulating Call-By-Reference

Using pointers we can perform call-by-reference in C.

Let us make a small detour and explain the way function calling works.

Function Calls
Call Stack

In order to support functions, the compiler produces code which uses the
"Call Stack".

The call stack is responsible for storing various kind of information such
as:

» the return address of a function,

» the formal parameters of the function,

» the local variables of the function,

> etc.

Function Calls

Stack Frame

Every time a function is called the compiler add

one frame to the call stack which contains: —
local function variables
» the local variables of the function
) return address
» the return address of the function :
» the formal parameters of the function function parameters
> .
ete Jocalunction varabls
When the function execution ends the compiler return address
removes the last frame from the stack, and thus f ;
destroyes all local variables and formal parameters. unction parameters

The code for creating and destroying the stack
frames is produced by the compiler and injected at
the appropriate places of the program, before and
after every function call.

Call-By-Reference

In order to simulate call-by-reference we use pointers.

» We give as parameter to a function a pointer to the variable that we
wish to pass to the function.

» Inside the function, we use the pointer to read and/or write to the
variable.

» When the function finishes, the formal parameter (our pointer) will
be destroyed, but the value of our original variable will be updated.

Call-By-Reference

» Variable x points to the
variable which we would like
to pass as a parameter.

#include <stdio.h>

void increase(int *x) { . .
. » Inside the function we
(*x) ++;

} access our variable using
the pointer by writing *x.

int main() { » After the end of the
int a = 1; function, the local variable
x is lost, but the changes in
increase(&a); the value of a have been
printf ("%d\n", a); performed.
return O;
}

The above program prints 2.

Call-By-Reference

#include <stdio.h>

The program prints
void swap(int *a, int *b) {

int tmp = *a; x =2
*a:*b; y=1
*b = tmp;

3

int main() {
int x = 1,
y =2

swap (&x, &y);

printf("x = %d\n", x);
printf("y = J%d\n", y);
return O;

Pointers and const

Recall that the reserved word const tells the compiler that something
should not change.
But when we are dealing with pointer have 2 items:

1. a pointer, and

2. where the pointer points

The use of const is more complicated.

Pointers and const

There are 3 uses:
1. const int *ptr;

Pointer to a constant integer. The pointer can change values, the
integer cannot.

2. int *const ptr;

Constant pointer to an integer. The pointer cannot change value,
but the integer can.

3. const int *const ptr;

Constant pointer to a constant integer. Neither the pointer nor the
integer can change values.

It is easy to remember by looking left or right from the asterisk for the
reserved word const.

Pointers and const

Example

1 #include <stdio.h>

3 int main() {
4 const int y = 5;

5 const int x = 3;

6

7 const int *ptr = &y;
8

9 (*+ptr)++; // NO!
10

1 ptr = &x; // ok
12}

The compiler does not allow writing line 9.

Pointers and const

Example

1 #include <stdio.h>

3 int main() {

4 int y = 5;

5 int x = 3;

6

7 int *comst ptr = &y;
8

9 (xptr)++; // ok

10
11 ptr = &x; // NO!
12}

The compiler does not allow writing line 11.

Pointers and const

Example

1 #include <stdio.h>

3 int main() {
4 const int y = 5;
const int x = 3;

o

6

7 const int *const ptr = &y;
8

9 (xptr)++; // NO!

10

11 ptr = &x; // NO!

12}

The compiler does not allow writing both lines 9 and 11.

Mistakes and Casts

Be careful with casting.

1 #include <stdio.h>

2

3 int main() {

4 int i;

5 const int ci = 123;

6

7 const int *cpi; // pointer to const
8 int *ncpi;

9

10 cpi = &ci;

11 ncpi = &i;

12

13 cpi = ncpi; // allowed

14

15 // this needs a cast - usually BIG MISTAKE
16 ncpi = (int *)cpi;

17

18 *ncpi = 0; // UNDEFINED BEHAVIOR !!

19 }

Pointers and Arrays

Arrays and pointer are very close connected in C.

In order to define an array with 10 integers named a we write:

int a[10];

al0] a[1] al9)]

Pointers and Arrays

If pa is a pointer to an int
int *pa;

then the assignment

pa = &al0];

sets pa to point to the O-th element of array a.

pa :

)

al0] afl] al9]

Pointers and Arrays

From the definition, the value of a variable or an expression of array type
is the address of the 0-th element of the array. Thus, after the assignment

pa = &al[0];

point pa and a have the exact same value.

Since the name of array is a synonym for the location of the 0-th array
element, this assignment can also be written as

pa = a;

Pointers and Arrays

Since the name of array is a synonym for the location of the 0-th array
element, we can also deference it.

#include <stdio.h>

int main() {
int al] = {9, 8, 7, 6, 5, 4, 3, 2, 1};

printf ("/d\n", *a);
*a = 11;

printf ("%d\n", al0]);

return O;

The program above prints

Pointers and Arrays

A pointer can point at any element of an array.

#include <stdio.h>

int main() {
int a[] = {9, 8) 7: 6: 5};
int *ptr = &al[2];

printf ("%d\n", *ptr);

return O;

The above program prints

7

ptrEj

Pointers Arithmetic

Given a pointer to an array element, we can perform pointer arithmetic.

#include <stdio.h>
ptr

int main() {

int all = {9, 8, 7, 6, 5}; ot
int *ptr = &al1];
int *ptrl = ptr + 2;

printf ("%d\n", *ptr);
printf ("%d\n", *ptrl);

return O;

}

The above program prints

8
6

Pointers Arithmetic

When doing pointer arithmetic we can either add or subtract pointers.

When we write p+1 where p is a pointer, the result is also a pointer
which points one position after the one that p points.

How far p+1 is from p depends on the type where p points.

If p is a pointer to int, then the memory location p+1 will be 4 bytes
after p. If, however, p points to char then it will only be 1 byte after.

Pointers and Arrays

When we write a[i] in C, it automatically gets translated to *(a+i).
The two forms are equivalent.

Using the & operator and the two forms we get that
> galil]
> a+i

are also equivalent. a+i is the address of the i-th element after a.

Similarly given pointer pa = &al[0], the expression pa[2] is equivalent
to *(pa + 2). Thus, we can use the [] operator also with pointers.

Pointers and Arrays

Since a[i] in C gets translated to *(a+i), the same happens with i[a].

alil
*((a) + (1)) (definition)
*((1) + (2)) (commutative addition)

ifa] (definition)

Pointers and Arrays

Since a[i] in C gets translated to *(a+i), the same happens with i[a].

ali]

*((a) + (1)) (definition)

*((1) + (2)) (commutative addition)
i[al (definition)

This fact allows us to write "strange” code at various "strange” code
competitions.

For example the expression
5["abcdef"]

is correct and translates to the character 'f'.

Pointer Arithmetic
Copying Strings

void mystrcpy(char *dest, const char *src) {
char *dp = &dest[0],
*sp = &src[0];

while(*sp !'= '\0')
*dp++ = *spt++;

*dp = '\0';
The expression *dp++ first dereferences the pointer dp and then performs

dp=dp+1. In order to increase the variable that dp points, it should have
been written as (*xdp)++.

Pointer Arithmetic
Copying Strings

When performing pointer arithmetic we need to be careful not to get out
of bounds.
#include <stdio.h>
int main() {
int al] = {1, 2, 3, 4, 5};
int *p = &al[2];

printf ("%d\n", *(p + 4));

return 0;

3

Otherwise, the result will be undefined.

Pointer Arithmetic

A small exception

When performing pointer arithmetic we can use for
comparison (but never deference) the position that
follows just after the end of an array.

#include <stdio.h>

int main() {
int all = {1, 2, 3, 4, 5};

int *it &al0],
*end = it + 5;

while(it < end) {
printf ("%d\n", *it++);
}

return O;

Pointer Arithmetic

A small exception

#include <stdio.h> [:I:I:I:I:]
it EJ

int main() {
int a[l = {1, 2, 3, 4, 5};

int *it = &al0],
*end = it + 5;

while(it < end) {
printf ("/d\n", *it++);
}

return O;

}

In the above code which prints all the elements of
an array, pointer end points immediately after the
end of the array. It is allowed to do the comparison
it < end. The code is correct as long as we do
not ever perform *end.

Pointer Arithmetic

We can also substract pointers. a [:]::1::[::[:]

ptrli}
#include <stdio.h>
ptr2
int main() {
int af]l = {1, 2, 3, 4, 5 };
int *ptrl = &al0],
*ptr2 = &al4];

printf("}d", ptr2 - ptril);

return O;

What does the above code print?

Pointers and Arrays

There is a difference between the name of an array and a pointer which
we must always remember.

A pointer is a variable and thus expressions like
pa = a;

or

pat+t;

are perfectly valid.

The name of an array is not, however, a variable and thus the
corresponding expressions

a = pa;

or
at+;

are not allowed.

Pointers, Arrays and Functions

When an array is a formal parameter to a function, only the location of
the first array element is passed to the function. Inside the function, the
formal parameter is a local variable of pointer type.

The following two declarations are equivalent
int strlen(char s[]);

and

int strlen(char *s);

so it is better to use the second way which clearly explains to the
programmer that the parameter s is a pointer and not an array.

Pointers, Arrays and Functions

It is possible to pass only part of an array to a function by passing a
pointer to the first element of the sub-array.

For example if a is an array, then

f(&al2])

and
f(a+2)

pass to the function f the address of the sub-array which starts at a[2].

Pointers, Arrays and Functions

The functions can also be written as

f(int arr(]) { ... }
or
f(int *arr) { ... }

The function £ does not need to be changed at all.

If someone is certain that the elements exist, can also use negative array
indices such as arr[-1] or arr[-2]. The result will be undefined if
these array elements do not exist.

Array Pointers

The same way we use array of various types, we can also define arrays of
pointers. The syntax is more complicated.

The following statement defines an array with 10 pointers to integers.

int *a[10];

Array Pointers

Example

#include <stdio.h>

int main() {
int 1i;

int al[5] = {0, 1, 2, 3, 4};

int *ptr[5];

for(i = 0; i
ptrli] =
for(i = 0; i

< 5;

i++)

kal4-i];

< 5;

i++)

printf("%2d", *ptrl[il);

return O;

}

The code prints

43210

Function Pointers

The C language allows us to use pointers to functions. This is allowed
since functions are also loaded in memory.

In order to declare a pointer to a function, the type of the pointer must
describe the types of the parameters and the type of the returned result
of the function.

int (*ptr) (int, double);

The above statement defines a pointer to a function. The name of the
pointer is ptr. The pointer can point to functions than accepts two
parameters, one int and one double, and returns an int.

Function Pointers

In the following code we define a pointer named ptr which can point to
functions that accept an int parameter and return void.

#include <stdio.h>
void print(int x) {

printf ("%d\n", x);
}

int main() {
void (*ptr) (int);

ptr = &print;

return O;

> In order to assign a value to the pointer, we use the address-of
operator &. For example ptr = &print.

» The C language allows us to also write ptr = print with the same
result.

Function Pointers

#include <stdio.h>

void print(int x) {
printf ("%d\n", x);
¥

int main() {
void (*ptr) (int);

ptr = &print;
(+ptr) (5);

return O;

» In order to use a function pointer, we dereference in order to get the
function and then call the function, e.g. (xptr) (5).

» We cal also directly write ptr(5) with the same result.

Function Pointers

#include <stdio.h>

void foo(int x) {
printf("foo %d\n", x);
}

void bar(int y) {
printf("bar %d\n", y);
}

int main() {
void (*ptr) (int);

ptr = &foo;
(xptr) (5);

ptr = &bar;
(xptr) (5);

return O;

This code call 2
different functions
foo() and bar()
using a function
pointer.

Function Pointers as Parameters to Other Fucntions

#include <stdio.h>

void print(int x, void (xptr) (int)) {
(xptr) (x);
}

void foo(int x) {
printf("foo %d\n", x);
}

void bar(int y) {
printf("bar %d\n", y);
}

int main() {
print (5, &foo);
print(5, &bar);

return O;

We can pass a
function pointer as
parameter to another
function.

The code first calls
foo() and then
bar().

Returning a Function Pointer

The syntax is somewhat complicated, but we can write the following:

float (*getFunction(const char code)) (float, float)
{

// code here
}

which defines a function named getFunction. The function accepts one
paramater of type const char and returns a function pointer which can
point to a function with 2 float parameters which returns float.

Returning a Function Pointer

Example
#include <stdio.h>

float minus(float f1, float f2) { return f1-f2; }
float plus(float f1, float £2) { return f1+f2; }

float (*getFunction(const char code)) (float, float) {
if (code == '+')
return +
else if (code == '-')
return −
return NULL;
}

int main() {
float f£;
f = (*getFunction('+')) (2.0, 1.0);
f = (xgetFunction('-'))(f, 1.0);
printf ("%f\n", £);
return O;

Arrays of Function Pointers

We can also have arrays of function pointers. Again the syntax is
somewhat complicated.

In the statement below we define an array with 10 elements called
funcArr where each element is a pointer to function that returns int
and accepts 3 parameters with types float, char and char.

int (*funcArr([10]) (float, char, char);

Arrays of Function Pointers

#include <stdto.h>

void fool(int x) { printf("fool %d\n",
void foo2(int x) { printf("foo2 %d\n",
void foo3(int x) { printf("foo3 ’d\n",
void foo4(int x) { printf("foo4 %d\n",

int main() {
int i, j;
void (*farray[4]) (int) = {NULL};

farray[0] = &fool;
farray[1] = &foo2;
farray[2] = &foo3;
farray[3] = &foo4;

for(i = 0; i < 100; i++)
for(j = 0; j < 4; j++)
(#farray[j]) (1);

return O;

x); }
x); }
x); }
x); }

Pointers to void
In the program that follows
#include <stdio.h>
int main() {
int c;
double *ptr;

ptr = &c;

return O;

the compiler warns us

test.c: In function ‘main’:
test.c:8: warning: assignment from incompatible pointer type

Pointer to void

The C language provides a pointer to void which can point anywhere.

#include <stdio.h>

int main() {
int c;
double k;
void *ptr;

ptr = &c;
ptr = &k;

return 0;

}

We will see more example in next lectures. The downside is that we need
to perform a lot of casts.

Pointers to Pointers

In order to define a pointer to another pointer we need to follow the
following syntax.

int **x;

It might be clearer if we wrote int* *x in order to understand that x is
a pointer which points to a pointer to int.

Pointers to Pointers

IEEEEE
#include <stdio.h>

int main() {
int a[5] = {15 23 3, 4, 5}; ptl‘?‘i‘

int *ptrl = &al2];
int **ptr2 = &ptri;

printf ("/d\n", **ptr2);

return O;

The code prints

3

