mcb LEDA Extension Package  0.8
Public Member Functions | List of all members
mcb::edge_num Class Reference

An edge numbering class. More...

#include <edge_num.h>

Public Member Functions

 edge_num ()
 
 edge_num (const leda::graph &G)
 
 edge_num (const edge_num &)
 
 ~edge_num (void)
 
edge_numoperator= (const edge_num &)
 
int operator() (leda::edge e) const
 
leda::edge operator() (int i) const
 
bool tree (leda::edge e) const
 
int dim_cycle_space () const
 
int num_weak_connected_comp () const
 

Detailed Description

An edge numbering class.

This class assigns a unique numbering to the edges of a graph. The $m$ graph edges are numbered from $0$ to $m-1$. The numbering is based on an arbitrary spanning tree $T$. Edges not in $T$ are numbered from $0$ to $m -n + \kappa -1$ where $\kappa$ are the number of (weakly) connected components of $G$. Edges in $T$ are numbered from $m-n+\kappa$ to $m-1$.

An edge numbering is implemented as two arrays, and therefore requires $O(m)$ space. All operations take constant time except construction which takes linear time.

This is a static data structure. Changes in the graph after initializing an edge numbering invalidate the data structure.

Date
2004-2005
Author
Dimitrios Michail

Constructor & Destructor Documentation

mcb::edge_num::edge_num ( )

Construct an edge numbering for the empty graph.

mcb::edge_num::edge_num ( const leda::graph &  G)
explicit

Construct an edge numbering for a graph.

Parameters
GThe graph to construct for.
mcb::edge_num::edge_num ( const edge_num )

Copy constructor

mcb::edge_num::~edge_num ( void  )

Destructor

Member Function Documentation

int mcb::edge_num::dim_cycle_space ( ) const
inline

Get the dimension of the cycle space of $G$. More precisely $m - n + \kappa$, where $\kappa$ is the number of (weakly) connected components of the graph.

Returns
The dimension of the cycle space of the graph.

Referenced by mcb::cycle_matrix(), mcb::determinant(), and mcb::DMCB().

int mcb::edge_num::num_weak_connected_comp ( ) const
inline

Returns the number of (weakly) connected components of the graph.

Returns
The number of (weakly) connected components of the graph.
int mcb::edge_num::operator() ( leda::edge  e) const
inline

Access the number of an edge.

Parameters
eThe edge to access.
Returns
The unique number of the edge.
leda::edge mcb::edge_num::operator() ( int  i) const
inline

Access the edge with a particular number.

Parameters
iAn integer from $0$ to $m-1$.
Returns
The edge corresponding to that integer.
edge_num& mcb::edge_num::operator= ( const edge_num )

Assignment operator

bool mcb::edge_num::tree ( leda::edge  e) const
inline

Check if an edge belongs to the spanning forest used to construct the numbering.

Parameters
eAn edge.
Returns
True if e belongs to the spanning forest, false otherwise.