mcb LEDA Extension Package  0.8
dmcb.h
Go to the documentation of this file.
1 //
2 // This program can be freely used in an academic environment
3 // ONLY for research purposes, subject to the following restrictions:
4 //
5 // 1. The origin of this software must not be misrepresented; you must not
6 // claim that you wrote the original software. If you use this software
7 // an acknowledgment in the product documentation is required.
8 // 2. Altered source versions must be plainly marked as such, and must not be
9 // misrepresented as being the original software.
10 // 3. This notice may not be removed or altered from any source distribution.
11 //
12 // Any other use is strictly prohibited by the author, without an explicit
13 // permission.
14 //
15 // Note that this program uses the LEDA library, which is NOT free. For more
16 // details visit Algorithmic Solutions at http://www.algorithmic-solutions.com/
17 // There is also a free version of LEDA 6.0 or newer.
18 //
19 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20 // ! Any commercial use of this software is strictly !
21 // ! prohibited without explicit permission by the !
22 // ! author. !
23 // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 //
25 // This software is distributed in the hope that it will be useful,
26 // but WITHOUT ANY WARRANTY; without even the implied warranty of
27 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 //
29 // Copyright (C) 2004-2008 - Dimitrios Michail <dimitrios.michail@gmail.com>
30 //
31 
70 #ifndef DMCB_H
71 #define DMCB_H
72 
73 #include <LEP/mcb/config.h>
74 
75 
76 #ifdef LEDA_GE_V5
77 #include <LEDA/graph/graph.h>
78 #include <LEDA/graph/edge_array.h>
79 #include <LEDA/core/array.h>
80 #include <LEDA/core/random_source.h>
81 #include <LEDA/numbers/integer.h>
82 #else
83 #include <LEDA/graph.h>
84 #include <LEDA/array.h>
85 #include <LEDA/edge_array.h>
86 #include <LEDA/integer.h>
87 #include <LEDA/random_source.h>
88 #endif
89 
90 #include <LEP/mcb/edge_num.h>
91 #include <LEP/mcb/fp.h>
92 #include <LEP/mcb/spvecfp.h>
93 #include <LEP/mcb/arithm.h>
94 #include <LEP/mcb/transform.h>
95 #include <LEP/mcb/dsigned.h>
96 
97 namespace mcb {
98 
99 #if defined(LEDA_NAMESPACE)
100  using leda::graph;
101  using leda::edge;
102  using leda::edge_array;
103  using leda::node;
104  using leda::node_array;
105  using leda::array;
106  using leda::integer;
107  using leda::random_source;
108  using leda::pq_item;
109 #endif
110 
115  // W = weight type
116  // ptype = type of prime p
117 
118  /* \brief Compute a cycle basis of a weighted directed graph modulo a prime number.
119  *
120  * The function computes a directed Cycle Basis \f$B\f$ of \f$g\f$, that
121  * is a cycle basis of \f$g\f$ with the smallest length (sum of lengths of cycles). The
122  * basis is returned as an array of sparse vectors spvecfp, called mcb.
123  *
124  * Every edge is represented by some integer, by a fixed and arbitrary numbering. This
125  * numbering is represented by enumb.
126  *
127  * The function also returns a certificate of optimality of the minimum cycle basis.
128  * More precisely a set of linearly independent vectors for which cycle \f$i\f$ is the
129  * shortest cycle in \f$g\f$ with non-zero intersection with the proof vector \f$i\f$.
130  *
131  * The returned cycle basis might not be a minimum cycle basis.
132  *
133  * The function returns the weight of the cycle basis or is undefined
134  * if there were any errors.
135  *
136  * The running time is \f$O( m^3 )\f$ where \f$m\f$ are the number of edges of \f$g\f$.
137  *
138  * \param g A directed graph.
139  * \param len The edge lengths.
140  * \param mcb A leda::array of spvecfp to return the cycle basis.
141  * \param proof A leda::array of spvecfp to return the proof.
142  * \param enumb An edge numbering.
143  * \param p A leda::integer prime number.
144  * \pre g is simple and loop-free
145  * \pre len is positive
146  * \pre enumb is already initialized with g
147  * \pre p is a prime number
148  * \ingroup exactmcb
149  */
150  template<class W>
151  W DMCB( const graph& g,
152  const edge_array<W>& len,
153  array< mcb::spvecfp >& mcb,
154  array< mcb::spvecfp >& proof,
155  const mcb::edge_num& enumb,
156  ptype& p
157  )
158  {
159 #if ! defined(LEDA_CHECKING_OFF)
160  if ( Is_Simple( g ) == false )
161  error_handler(999,"DMCB: illegal graph (non-simple?)");
162  if ( Is_Loopfree( g ) == false )
163  error_handler(999,"DMCB: illegal graph (has loops?)");
164 
165  edge e1;
166  forall_edges( e1 , g ) {
167  if ( len[e1] <= 0 )
168  error_handler(999,"MIN_CYCLE_BASIS: illegal edge (non-positive weight)");
169  }
170 
171  if ( ! primes<ptype>::is_prime( p ) )
172  error_handler(999,"DMCB: p is not a prime number!");
173 
174 #endif
175  int d = enumb.dim_cycle_space();
176  if ( d <= 0 ) return W(0);
177 
178  mcb.resize( d );
179  array< spvecfp >& B = mcb;
180  proof.resize( d );
181  array< spvecfp >& X = proof;
182 
183  // initialize shortest paths
184  dirsp<W,ptype> SP( g, len, p, enumb );
185 
186 #if defined(LEP_DEBUG_OUTPUT)
187  std::cout << "executing with prime p = " << p << std::endl;
188 #endif
189 
190  // initialize X_i's and $B_i$'s
191  // assume that $p$ fits in ptype
192  // and $d$ in indextype
193  indextype i,j;
194  for( i = 0; i < d; i++ ) {
195  X[i] = spvecfp( p );
196  X[i] = i;
197  B[i] = spvecfp( p );
198  }
199 
200  // now execute main loop
201  spvecfp tmp = spvecfp( p );
202  ptype tmpi;
203  W min = W(0);
204  for( i = 0; i < d; i++ ) {
205 
206  // compute B_i
207  W mini;
208  B[i] = SP.get_shortest_cycle( X[i], mini );
209  min += mini;
210 
211  // precompute part
212  // NOTE: we do not precompute inverses, since we don't want
213  // to have a dependency on the maximum size of an
214  // array that will store these values
215  // p is O(d^2 logd) and thus O(logd) to compute inverse
216  // at most d times, thus O(d logd) = O(m logm) in total
217  tmpi = X[i]*B[i];
218  while( tmpi < 0 ) tmpi += p; // make [-i]_p = [p-i]_p
219  while( tmpi >= p ) tmpi -= p; // make [i+p]_p = [i]_p
220  tmp = X[i] * fp<ptype>::get_mult_inverse( tmpi, p );
221 
222  // update sets X_j, j > i
223  for( j = i+1; j < d; j++ )
224  X[j] -= tmp * (B[i] * X[j]) ;
225  }
226 
227  return min;
228 
229  } // end of DMCB
230 
265  template<class W>
266  W DMCB( const graph& g,
267  const edge_array<W>& len,
268  array< mcb::spvecfp >& mcb,
269  array< mcb::spvecfp >& proof,
270  const mcb::edge_num& enumb,
271  double error = 0.375
272  )
273  {
274 #if ! defined(LEDA_CHECKING_OFF)
275  if ( Is_Simple( g ) == false )
276  error_handler(999,"MIN_CYCLE_BASIS: illegal graph (non-simple?)");
277  if ( Is_Loopfree( g ) == false )
278  error_handler(999,"MIN_CYCLE_BASIS: illegal graph (has loops?)");
279  if ( error <= 0 || error >= 1 )
280  error_handler(999,"MIN_CYCLE_BASIS: error probability is out of range");
281 
282  edge e1;
283  forall_edges( e1 , g ) {
284  if ( len[e1] <= 0 )
285  error_handler(999,"MIN_CYCLE_BASIS: illegal edge (non-positive weight)");
286  }
287 #endif
288  int d = enumb.dim_cycle_space();
289  if ( d <= 0 ) return W(0);
290 
291  mcb.resize( d );
292  proof.resize( d );
293 
294  // decide how many times to execute the algorithm ( perror <= 3/8 = 0.375 )
295  int times = (int) ceil( log(error)/log(0.375) );
296 
297 #if defined(LEP_DEBUG_OUTPUT)
298  std::cout << "Executing " << times;
299  std::cout << " number of times to achieve error probability ";
300  std::cout << error << std::endl;
301 #endif
302 
303  // create X and B matrices
304  array< spvecfp > X ( d );
305  array< spvecfp > B ( d );
306  W min_so_far = W(0);
307  bool min_so_far_inf = true;
308 
309  // loop necessary times, for error probability to be correct
310  while( times-- > 0 ) {
311 
312  // pick random prime
313  ptype p;
314  {
315  int logd = log( integer( d + 1 ) );
316  int loglogd = log( integer( logd + 1 ) );
317  int randbits = 7 + 2 * logd + loglogd;
318  int failsafe = 50 * randbits;
319  int count = 0;
320 
321  while( true ) {
322  // loop failsafe, increase random bits
323  if ( count++ > failsafe ) {
324  randbits++;
325  failsafe += 50;
326  count = 0;
327  }
328 
329  // get random number
330  p = ptype::random( randbits );
331  p += d*d;
332  //std::cout << "testing p = " << p << std::endl;
333 
334  // if is > 1 and prime break
335  if ( p > 1 && primes<ptype>::is_prime( p ) ) break;
336  }
337  }
338 
339 #if defined(LEP_DEBUG_OUTPUT)
340  std::cout << "executing with prime p = " << p << std::endl;
341 #endif
342 
343  W min = DMCB( g, len, B, X, enumb, p );
344 
345  // if found better, update
346  if ( ( min_so_far_inf == true ) ||
347  ( min_so_far_inf == false && min < min_so_far ) ) {
348 #if defined(LEP_DEBUG_OUTPUT)
349  if ( min_so_far_inf == false )
350  std::cout << "found better solution with weight " << min << std::endl;
351 #endif
352  mcb = B;
353  proof = X;
354  min_so_far_inf = false;
355  min_so_far = min;
356  }
357 
358  }
359  return min_so_far;
360  } // end of DMCB
361 
391  template<class W>
392  W DMCB( const graph& g,
393  const edge_array<W>& len,
394  array< mcb::spvecfp >& mcb,
395  const mcb::edge_num& enumb,
396  double error = 0.375
397  )
398  {
399  array< spvecfp > proof_tmp;
400  return DMCB(g, len, mcb, proof_tmp, enumb, error );
401  }
402 
432  template<class W>
433  W DMCB( const graph& g,
434  const edge_array<W>& len,
435  array< array<etype> >& mcb,
436  const mcb::edge_num& enumb,
437  double error = 0.375
438  )
439  {
440  array< spvecfp > mcb_tmp;
441  array< spvecfp > proof_tmp;
442 
443  int d = enumb.dim_cycle_space();
444 
445  // run the general version
446  W min = DMCB<W>( g, len, mcb_tmp, \
447  proof_tmp, enumb, error );
448 
449  // get p used
450  ptype p = proof_tmp[0].pvalue();
451 
452  // transform
453  mcb.resize( d );
454  for ( int i = 0; i < d; i++ )
455  spvecfp_to_array_ints( g, enumb, p, mcb_tmp[i], mcb[i] );
456 
457  return min;
458  }
459 
461 
462 } // end of mcb namespace
463 
464 #endif // DMCB_H
465 
466 /* ex: set ts=4 sw=4 sts=4 et: */
Sparse vector in .
Definition of edge numbering.
An edge numbering class.
Definition: edge_num.h:75
The main package namespace.
int indextype
Definition: arithm.h:54
Basic arithmetic definitions.
leda::integer ptype
Definition: arithm.h:58
int dim_cycle_space() const
Definition: edge_num.h:140